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Abstract.

In this study we develop an efficient computational procedure that generates

medically acceptable treatment plans for volumetric modulated arc therapy with

constant gantry speed. Our proposed method is a column generation heuristic

based on a mixed integer linear programming model, where the objective function

contains minimization of total monitor unit of the treatment plan and dose-volume

requirements are included as conditional value-at-risk constraints. Our heuristic

generates a full treatment arc for the restricted master problem and calibrates the

right hand side parameters of the conditional value-at-risk constraints in the first

phase. In the second phase, this initial solution is improved by performing column

generation. This is a fully automated procedure and produces treatment plans in

a single call without any human intervention. We evaluate its performance on real

prostate cancer data by comparing the quality of the generated plans with those

obtained by a widely used commercial treatment planning system. Our analysis

shows that the results are promising, and the generated plans satisfy the prescription

restrictions and require 22% fewer monitor units on average compared to the ones

obtained using Eclipse.

Keywords: VMAT, column generation, constant gantry speed, shortest path problem, prostate

cancer, real clinical data sets
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1. Introduction

Volumetric modulated arc therapy (VMAT) is a state-of-the-art modality of external-beam

radiation, in which the gantry of the linear accelerator rotates around the body along one or

more arcs and delivers radiation continuously. During the rotation, the radiation beam is shaped

by a multileaf collimator (MLC) system made up of a number of parallel movable metal leaf

pairs and mounted on the linear accelerator. Furthermore, dose rate and gantry speed can change

simultaneously while the gantry is rotating. These features of VMAT enable it to produce radiation

therapy plans having high conformal dose distributions with fewer monitor units (MUs) compared

to intensity modulated radiation therapy (IMRT) (Teoh et al. 2011, Cambazard et al. 2012).

Also, radiation delivery times of the resulting plans are significantly shorter. However, total MUs

of VMAT and IMRT plans are higher compared to conventional three-dimensional conformal

radiation therapy (3D-CRT) (Palma et al. 2008, Teoh et al. 2011). It is known that higher MU

means higher integral body dose and higher risk of secondary malignancy as a result (Hall &

Wuu 2003). To this end, we focus on finding the VMAT plans that are not only feasible with

respect to clinical prescriptions, but also require fewer MUs compared to the existing methods in

a reasonable amount of computation time.

VMAT planning is a challenging issue in radiation therapy due to the unique characteristic of

the technique that causes additional constraints and makes the problem much harder compared to

IMRT. The leaves of MLC can move and shape the beam during rotation, but there is a limitation

on the speed of this movement: the beam shapes (apertures) at two consecutive beam angles

(control points) must be compatible in terms of maximum leaf motion limitation, namely they are

interdependent. This requires considering all apertures on a full treatment arc (360◦ arc) together.

VMAT planning models yield large-scale formulations due to these properties of the technique.

Another important issue in VMAT planning is to take into account dose-volume constraints of

target volumes (TVs) and organs at risk (OARs). In the literature, there are different ways to

formulate these constraints. In the first and widely applied approach, a nonlinear and volume-

sensitive penalty term is added to the objective function. In another approach, a set of binary

decision variables (one for each voxel) is included to the model and used to determine the fraction

of the voxels in a structure that satisfy the dose limit. Unfortunately, this leads to a large-scale

mixed integer linear programming (MILP) model, which is computationally difficult to solve for

most clinical cases. The use of conditional value-at-risk (CVaR) constraints (Rockafellar et al.

2000) is a more promising way that does not require additional integer variables and yields more

reasonable formulations in terms of computational cost. In this approach, the average dose in the

upper (or lower) tail of an OAR’s (or TV’s) dose distribution is forced to satisfy the corresponding

dose objective. However, CVaR functions result in very tight dose-volume constraints, which

makes it much harder to obtain feasible plans. For all these reasons, most of the models in the

literature are not comprehensive enough to take all aspects of VMAT treatment into account (i.e.

not all of the dose prescriptions for every structure are explicitly considered in the formulation)

due to increasing computational difficulty.

VMAT is not the first radiation treatment technique that benefits from the flexibility a

rotating gantry introduces in order to obtain treatment plans with higher quality. Yu (1995)
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proposed the rotational IMRT called intensity modulated arc therapy (IMAT); but the clinical

implementations remained very limited until Otto (2008) suggested VMAT. In VMAT, the gantry

speed and the dose rate as well as the beam shape can vary during rotation. There are two main

VMAT planning approaches in the literature. In the first one, a two-step algorithm is used to

convert an idealized IMRT plan consisting of fluence maps at both coarse (Luan et al. 2008, Wang

et al. 2008, Cao et al. 2009) and dense (Craft et al. 2012, Wala et al. 2012, Salari et al. 2012)

sampling of control points into a deliverable VMAT plan. Direct aperture optimization (DAO) is

the second approach in VMAT planning, where beam shapes (i.e. aperture shapes or leaf positions)

and beam intensities at all control points are optimized simultaneously. Otto (2008) and Yan et al.

(2018) start with a coarse sampling of the control points and use heuristic methods to find the final

VMAT treatment plan. Bzdusek et al. (2009) and Bedford (2009) propose a three-step framework

where they find initial apertures at the first two steps, then they refine them in the third step

where aperture shapes and intensities are the decision variables. Christiansen et al. (2018) modify

the algorithm of Bzdusek et al. (2009) in order to make the continuous aperture dose calculation

possible. Men et al. (2010) and Peng et al. (2012) propose a column generation based heuristic

to solve a large-scale convex programming problems. Mahnam et al. (2017) develop a large-scale

nonlinear integer programming model that minimizes a quadratic voxel-based least square penalty

function. Their model optimizes the gantry speed in addition to the leaf positions and the dose

rate at each control point. They also propose a column generation heuristic, where the subset of

sequential apertures (i.e. the partial arcs) are considered as columns in their formulation. In their

recent work, Mahnam et al. (2019) integrate DVH criteria into their column generation heuristic.

Peng et al. (2015) propose a heuristic approach to solve VMAT with constant gantry speed and

dose rate. In addition to constant gantry speed and dose rate assumptions, Papp & Unkelbach

(2014) formulate the problem in such a way that MLC leaves move unidirectionally over an arc

segment. On the other hand, Hoegele et al. (2012) optimize leaf motion by utilizing a priori

knowledge about the type of the leaf motion pattern during delivery. Gozbasi (2010), Akartunalı

et al. (2015), and Song et al. (2015) formulate large-scale MILP models for the problem. Gozbasi

(2010) and Song et al. (2015) relax some treatment related constraints and aim to satisfy them via

the objective function (e.g. minimizing total deviation from the prescribed doses or minimizing

the weighted sum of the average dose on critical structures). On the other hand, Akartunalı et al.

(2015) only relax the partial volume constraints of target volumes (TVs) and try to satisfy them

in the objective function. Other treatment related requirements are embedded into their MILP

model as hard constraints. Dursun et al. (2019a,b) apply Benders decomposition and branch-and-

price to improve solution performance of a MILP model for VMAT, respectively. For more detail

about rotational therapy planning we refer to the studies of Unkelbach et al. (2015), which reviews

mathematical optimization methods used in VMAT planning, and Cedric & Tang (2011), which

reviews mainly IMAT studies from a clinical point of view. Also, there is a recent comprehensive

review of Breedveld et al. (2018) that describes the use of multi-criteria optimization and decision-

making methods in radiation therapy as well as clinical details of treatment. All of these studies

consider co-planar treatment. However, there are also studies that optimize VMAT plans for

non-coplanar geometries obtained by couch rotation (Smyth et al. 2013, Lyu et al. 2018).

We consider a MILP model that optimizes simultaneously aperture shapes and radiation
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intensities at control points. Our VMAT planning model, which we call VMATP, is based on our

previous works (Dursun et al. 2016, 2019a,b). It includes CVaR constraints for partial-volume

restrictions of all structures, and all treatment dose prescriptions are satisfied by the constraints

as a result. The objective of VMATP is to minimize total radiation delivered to the patient. Our

model, which essentially seeks an optimal VMAT plan with minimum MUs, is capable of handling

many aspects of the complex decision process behind VMAT planning. However, this makes it

computationally very difficult to solve exactly in order to generate optimal plans for realistic

clinical cases with many OARs. In this study, we address this issue and propose an efficient

two-phase heuristic that expands some algorithmic ideas that we employed in our previous work

(Dursun et al. 2019b) for the development of a branch-and-price exact solution algorithm. In the

first phase, we generate an initial full treatment arc using a two-step approach and calibrate the

right hand side values of the CVaR constraints, simultaneously. We consider the rows of a full

treatment arc as variables, and generate them by solving the subproblems, which are formulated

as shortest path problems and solved efficiently by dynamic programming (Bellman 1952). In

the second phase, we improve the initial treatment plan obtained in the first phase using column

generation. Main contributions of our study can be listed as follows:

• We propose a fully automated VMAT planning algorithm that is capable of finding good plans

in one run. This is in contrast with commonly used software systems, which often require

multiple iterations of modifications in parameters and re-run.

• By minimizing total radiation (MUs) delivered to the patient in the objective function, it not

only finds an acceptable VMAT plan that meets dose-volume restrictions, but also reduces

the risk of secondary malignancy that may arise due to high integral body dose.

• Use of CVaR constraints is not widespread in VMAT planning due to their conservatism. In

this study we propose a simple approach to tune the parameters of these constraints in order

to make them usable without degrading quality of the resulting plans.

• Finally, we test our algorithm on nine real prostate cases. The results show that our algorithm

is able to find high-quality plans for clinical size problems in reasonable times. Moreover, we

consider 2 planning TVs (PTVs) and 5 OARs and make a comprehensive dose distribution

evaluation for them.

The remainder of the paper is organized as follows. In Section 2 we explain our mathematical

formulation. Section 3 includes the basic components of our VMAT treatment planning algorithm

including fluence map optimization (FMO), CVaR parameter tuning, leaf sequencing, pricing

problem formulation, and other necessary derivations for the column generation method. In

Section 4, we provide the computational experiments and clinical comparisons on real prostate

cases. Finally, Section 5 concludes the paper.

2. Mathematical model

In this section, we briefly explain our proposed mixed integer linear programming (MILP) model

for the sake of completeness. Its previous versions are given in our earlier studies in detail (Dursun

et al. 2016, 2019a). We start by discretizing some continuous parts of the VMAT planning problem.
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The gantry of the linear accelerator rotates around the patient and delivers radiation continuously.

We first discretize a complete tour (i.e. a full treatment arc, a 360◦ tour) by assuming that radiation

delivery occurs at only a number of control points. This is a reasonable assumption when total

number of control points (K) is large enough. At each control point radiation is delivered through

the aperture formed by the multileaf collimator (MLC) mounted on the linear accelerator. A two-

dimensional m × n binary matrix represents an aperture for an MLC consisting of m leaf pairs.

Each row of the matrix corresponds to a leaf pair and is decomposed into n columns. The resulting

mn entries of the matrix are called beamlets (bixels). Two nonnegative integer variables lik and

rik represent positions of the left and right leaves, respectively, on row i (i = 1, . . . ,m) at control

point k (k = 1, . . . , K). lik is the rightmost beamlet closed by the left leaf (0 ≤ lik ≤ n). Similarly,

rik is the leftmost beamlet closed by the right leaf (1 ≤ rik ≤ n + 1). Note that 0 and n + 1 are

the home positions of the left and right leaves. To represent jth beamlet (j = 1, . . . , n) of row i

at control point k we introduce the binary variable zijk, which takes value 1 if the corresponding

beamlet is open, 0 otherwise. We only consider the consecutive ones property of MLC systems

that requires open beamlets to be consecutive. We refer the reader to the study of Gören & Taşkın

(2015) for details of other possible properties of various MLC systems.

We assume that the gantry rotates around the patient at a constant speed, which may result

in plans having longer treatment time than necessary. We note that Peng et al. (2015) also makes

the same assumption; however, unlike our approach they also assume that dose rate is constant

during the rotation. The leaves of MLC can move in order to change the shape of the beam during

the rotation of the gantry. The maximum allowable distance parameter δ that a leaf can move

between two adjacent control points depends on the speed of the gantry, and it is calculated in

terms of beamlets. We introduce a nonnegative continuous variable muk for the radiation dose

intensity (MU) at control point k. Dose rate (MU/second) may change during the rotation but

it is constant at a control point. Also, we assume that the irradiation takes the same amount

of time (tour completion time/K seconds) at each one of the control points. This indicates an

upper limit on the radiation dose intensity, parameter Umu, at any control point. We define

another parameter, Lmu, which represents the lower limit on the radiation dose intensity. We also

introduce a nonnegative continuous variable aijk that represents the radiation dose intensity of

the jth beamlet of row i at control point k.

The body of a patient consists of different type of structures: target volumes (TVs) and

organs at risks (OARs). These volumes are discretized into a number of small cubes called voxels.

Let V TV
t be the set of all voxels in TV t for t = 1, . . . , T , and let V OAR

o be the set of all voxels in

OAR o for o = 1, . . . , O. Finally, V is the set of all voxels (i.e. V = (∪Tt=1V
TV
t ) ∪ (∪Oo=1V

OAR
o )).

The model calculates dv, which is a nonnegative continuous variable and indicates the amount

of radiation absorbed by voxel v (in Gray, Gy). In VMAT treatment there may be two types of

prescription doses for a structure. These prescriptions are satisfied by the full-volume and partial-

volume constraints. There may be both types of constraints for a TV. A full-volume constraint

requires that the entire volume should absorb radiation above (or below) a certain amount of

radiation. LTVt and UTV
t parameters are the corresponding lower and upper bounds, respectively,

on the amount of radiation dose absorbed by voxels in TV t. According to a partial-volume

constraint defined for TV t, at least a certain ratio αTVtc of its volume must absorb radiation no
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less than the prescribed dose dtc. Note that there may be more than one partial-volume constraint

defined for TV t. Thus, αTVtc and dtc parameters demonstrate the ratio and the prescribed dose

of the cth partial-volume constraint of TV t, respectively, for c = 1, . . . , Ct. On the other hand,

a partial-volume constraint defined for OAR o requires that the ratio of the volume absorbing

radiation at most tolerance dose Uoc must be at least αOARoc . Similarly, αOARoc and Uoc parameters

represent the corresponding ratio and the tolerance dose of the cth partial-volume constraint of

OAR o for c = 1, . . . , Co. The mixed integer linear programming model for VMAT planning, which

we call VMATP, then reads:

VMATP:

min
K∑
k=1

muk (1)

s.t.

rik − jzijk ≥ 1 i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K (2)

(n+ 1− j)zijk + lik ≤ n i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K (3)

rik − lik −
n∑
j=1

zijk = 1 i = 1, . . . ,m; k = 1, . . . , K (4)

li(k+1) − lik ≤ δ i = 1, . . . ,m; k = 1, . . . , K − 1 (5)

lik − li(k+1) ≤ δ i = 1, . . . ,m; k = 1, . . . , K − 1 (6)

ri(k+1) − rik ≤ δ i = 1, . . . ,m; k = 1, . . . , K − 1 (7)

rik − ri(k+1) ≤ δ i = 1, . . . ,m; k = 1, . . . , K − 1 (8)

aijk ≤ Umuzijk i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K (9)

aijk ≥ muk − Umu(1− zijk) i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K (10)

aijk ≤ muk i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K (11)

dv −
m∑
i=1

n∑
j=1

K∑
k=1

Dijkvaijk = 0 v ∈ V (12)

ξTVtc −
1

(1− αTVtc )|V TV
t |

∑
v∈V TV

t

xtcv ≥ dtc t = 1, . . . , T ; c = 1, . . . , Ct (13)

xtcv ≥ ξTVtc − dv t = 1, . . . , T ; c = 1, . . . , Ct; v ∈ V TV
t (14)

ξOARoc +
1

(1− αOARoc )|V OAR
o |

∑
v∈V OAR

o

yocv ≤ Uoc o = 1, . . . , O; c = 1, . . . , Co (15)

yocv ≥ dv − ξOARoc o = 1, . . . , O; c = 1, . . . , Co; v ∈ V OAR
o (16)

dv ≥ LTVt t = 1, . . . , T ; v ∈ V TV
t (17)

dv ≤ UTV
t t = 1, . . . , T ; v ∈ V TV

t (18)

muk ≥ Lmu k = 1, . . . , K (19)

muk ≤ Umu k = 1, . . . , K (20)

l ∈ Zm×K+ ; r ∈ Zm×K+ ; z ∈ {0, 1}m×n×K (21)
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mu ∈ RK
+ ; a ∈ Rm×n×K

+ (22)

d ∈ R|V |+ ; x ∈ R
∑T

t=1 Ct|V TV
t |

+ ; y ∈ R
∑O

o=1 Co|V OAR
o |

+ (23)

ξTV ∈ R
∑T

t=1 Ct ; ξOAR ∈ R
∑O

o=1 Co . (24)

Constraints (2)–(4) ensure the consecutive ones property of the binary matrices representing

the apertures. They ensure that left and right leaves in each row do not overlap. Also, they

guarantee that zijk variables, associated with only open beamlets (i.e. the beamlets between

the leaf pairs), are 1. Movement of the leaves during rotation is controlled by constraints (5)–

(8). Radiation passes through only the open beamlets, and constraints (9)–(11) ensure that aijk
variable equals to muk if associated beamlet is open, and 0 otherwise. Constraint (12) calculates

the radiation dose absorbed by voxel v. Note that D is the dose-influence matrix, where Dijkv

specifies the dose contribution (in Gy/MU) to voxel v from beamlet (i, j) at control point k.

Constraints (9)–(12) are equivalent to the linearization of

dv =
m∑
i=1

n∑
j=1

K∑
k=1

Dijkvzijkmuk v ∈ V (25)

by means of McCormick’s envelope (McCormick 1976). The right hand side expression of

(25) includes the product of binary variables z with the continuous variables mu, thus it

is nonlinear. We formulate the dose-volume constraints (13)–(16) for each TV and OAR as

conditional value-at-risk (CVaR) constraints similar to the studies of Romeijn et al. (2003,

2006) and Gozbasi (2010). The CVaR approach was originally developed by Rockafellar et al.

(2000) for portfolio optimization. Constraints (13)–(14) ensure that the lower mean tail dose

at level αTVtc , namely the average radiation dose of (1-αTVtc )|V TV
t | voxels in TV t absorbing

the lowest radiation, is at least dtc. Similarly, constraints (15)–(16) ensure that the upper

mean tail dose at level αOARoc , namely the average dose of (1-αOARoc )|V OAR
o | voxels absorbing

the highest radiation, is at most Uoc. As discussed in Romeijn et al. (2003), continuous

variable ξOARoc in constraint (15) is a bound on the upper value-at-risk (VaR) at level αOARoc ,

which is the smallest dose level with the property that no more than 100(1 − αOARoc )% of

OAR o receives a larger dose. Furthermore, the left hand side of constraint (15) is the upper

αOARoc -CVaR, which is the mean of all doses that exceed the upper αOARoc -VaR. The variable yocv is

the surplus of the value ξOARoc by the dose received by voxel v in OAR o. Note that if constraint

(15) is satisfied as an equality in an optimal solution, then ξOARoc equals to the VaR corresponding

to that constraint. Also note that the number of constraints (14) and (16) depends on the number

of voxels and the number of partial-volume constraints; they are respectively
∑T

t=1Ct|V TV
t | and∑O

o=1Co|V OAR
o |. Similarly, the number of constraints (13) and (15) are equal to total number of

partial-volume constraints defined for target volumes (
∑T

t=1Ct) and OARs (
∑O

o=1Co), respectively.

Constraints (17)–(18) are full-volume constraints defined for TV t. Constraints (19)–(20) limit

the radiation intensity at each one of the control points. Equations (21)–(24) define the variables.

Finally, (1) is the objective function that minimizes total radiation intensity delivered to the

patient during treatment.
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3. Proposed method

VMATP determines K sequential apertures (a full treatment arc) satisfying all geometry

constraints of MLC system. It also finds the radiation intensity of each one of the control

points. We first observe that if we are given the full treatment arc, then the problem reduces

to finding the radiation intensities only. Using this observation we decompose VMATP into two

subproblems. We also note that the apertures are interdependent because of the leaf motion

limitations. However, we only consider the consecutive ones property and the rows of a treatment

arc are independent. This makes it possible to decompose a full treatment arc into m rows

that satisfy the leaf motion limitations and the consecutive ones property, which we refer to as

row arcs. We note that such a decomposition is not possible in the presence of interdigitation

constraints. Let Zi = {z1
i , z

2
i , . . . , z

e
i , . . . , z

|Zi|
i } be the set of all feasible row arcs of row i, where

zei = {ẑeijk ∈ {0, 1}, j = 1, . . . , n; k = 1, . . . , K}. Let also Z0
i be a subset of Zi. We introduce bei

binary variable to the master problem (MP) that are set to 1 if the corresponding feasible row arc

zei is selected, 0 otherwise. We solve the linear programming relaxation of MP with the subset Z0
i

for each row i. Moreover, we introduce one nonnegative artificial variable (φTVtc or φOARoc ) for each

one of the CVaR constraints (13 and 15) to allow deviations. We penalize positive deviations in

the objective function. Then the resulting modified restricted linear master problem (M-RLMP)

becomes

M-RLMP:

min
K∑
k=1

muk +
T∑
t=1

Ct∑
c=1

γTVtc φTVtc +
O∑
o=1

Co∑
c=1

γOARoc φOARoc (26)

s.t.

(11)− (12); (14); (16)− (20); (22)− (24),
|Z0

i |∑
e=1

bei = 1 i = 1, . . . ,m (27)

−aijk + Umu

|Z0
i |∑

e=1

bei ẑ
e
ijk ≥ 0 i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K(28)

aijk −muk − Umu

|Z0
i |∑

e=1

bei ẑ
e
ijk ≥ −Umu i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K(29)

ξTVtc −
1

(1− αTVtc )|V TV
t |

∑
v∈V TV

t

xtcv + φTVtc ≥ dtc t = 1, . . . , T ; c = 1, . . . , Ct (30)

ξOARoc +
1

(1− αOARoc )|V OAR
o |

∑
v∈V OAR

o

yocv − φOARoc ≤ Uoc o = 1, . . . , O; c = 1, . . . , Co (31)

b ∈ R
∑m

i=1 |Z0
i |

+ ; φTV ∈ R
∑T

t=1 Ct

+ (32)

φOAR ∈ R
∑O

o=1 Co

+ . (33)

Here γTVtc and γOARoc are large penalty costs for deviations in the cth partial-volume constraints of
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TVs t and OAR o, respectively. Also, ẑeijk becomes a parameter in this model, which takes on value

1 or 0 and indicates whether the jth beamlet of row i at control point k is open or not, respectively.

Note that if the leaf motion limitations are not considered then the size of Zi for each row is(
1
2
(n+ 1)(n+ 2)

)K
, hence total number of feasible treatment row arcs is m

(
1
2
(n+ 1)(n+ 2)

)K
.

Thus, solving linear programming relaxation of MP including all columns is not tractable. Instead,

we iteratively solve M-RLMP and search for new promising row arcs (columns for M-RLMP) by

solving m pricing subproblems (PSPs). Then, we replace the current columns with the newly

generated ones having negative reduced cost while ensuring that each row arc has a corresponding

column in the formulation. We discuss the details of our column generation approach in the

following sections.

3.1. Pricing subproblem

Let λ̂i, β̂
1
ijk and β̂2

ijk be the optimal dual values associating with constraints (27)–(29). In column

generation iterations, for each row i the following subproblem PSPi is solved to optimality to

find a row arc with minimum reduced cost. If the resulting reduced cost is negative then the

corresponding row arc is added to the M-RLMP. On the other hand, if there is no row arc with

negative reduced cost for any row i then we are at an optimal solution of M-RLMP.

PSPi:

min−λ̂i − Umu

K∑
k=1

n∑
j=1

(β̂1
ijk − β̂2

ijk)zijk (34)

s.t.

rik − jzijk ≥ 1 j = 1, . . . , n; k = 1, . . . , K (35)

(n+ 1− j)zijk + lik ≤ n j = 1, . . . , n; k = 1, . . . , K (36)

rik − lik −
n∑
j=1

zijk = 1 k = 1, . . . , K (37)

li(k+1) − lik ≤ δ k = 1, . . . , K − 1 (38)

lik − li(k+1) ≤ δ k = 1, . . . , K − 1 (39)

ri(k+1) − rik ≤ δ k = 1, . . . , K − 1 (40)

rik − ri(k+1) ≤ δ k = 1, . . . , K − 1 (41)

l ∈ ZK+ ; r ∈ ZK+ ; z ∈ {0, 1}n×K . (42)

At optimality of M-RLMP, if all bei variables are integer then we have also an optimal solution

for VMATP. However, this is a rare situation and generally optimal values of bei variables are

fractional, which does not provide a feasible VMAT treatment plan. In order to resolve this

problem, we start with only one row arc for each one of the rows in our heuristic approach.

Namely, there is only one column for each row arc i in the initial column pool. Hence, there is

only one b1i variable that takes value of 1 at optimality. Therefore, the optimal solution yields

a full treatment arc that is feasible in terms of geometry constraints of MLC. Each time a new

promising row arc is generated we replace the current one with this new arc to ensure that there
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remains exactly one column for each row i in the column pool (i.e. the size of the column pool for

each row |Z0
i | = 1).

We note that replacing an existing column with a new one may worsen the objective function

value. The reason is that the new column is not guaranteed to improve the objective function

value in the absence of the existing set of columns. We employ a specialized column generation

strategy to ensure that the objective function value does not worsen in subsequent iterations of our

algorithm. We first observe that often a subset of control points has positive radiation intensity

(i.e. muk > 0) in an optimal solution of M-RLMP, whereas radiation intensity values associated

with the remaining control points are zero. Based on this observation, our column generation

strategy ensures that leaf positions corresponding to control points having muk > 0 are kept

constant between successive iterations. This strategy ensures that the previous solution stays

feasible with respect to the new set of columns, and therefore the objective function value does

not deteriorate in successive iterations.

Network models have been applied in radiation therapy planning studies to solve the MLC

sequencing problem in IMRT planning (Boland et al. 2004) and to generate a treatment arc in

VMAT planning (Gozbasi 2010, Mahnam et al. 2017). We use a network structure similar to the

one in Gozbasi (2010) and formulate our pricing problem as a shortest path problem. The layers

represent the control points and at each layer there are (n+1)(n+2)
2

nodes stand for the possible leaf

configurations satisfying the consecutive ones property. There are additional two layers including

a dummy start and finish node. There is an arc between two nodes at two consecutive control

points if they are compatible, namely the leaf motion limitations are satisfied. Note that the arcs

of the network are directed, since we assume the gantry rotates in one direction. Furthermore,

there is no arc between any two nodes at the same control point. Thus, the network is acyclic.

We solve this problem using dynamic programming. If we do not consider leaf motion limitations,

then there are (K−1)
4

(n + 1)2(n + 2)2 + (n + 1)(n + 2) arcs in the network. Thus, solving by

dynamic programming takes O(Kn4) time in the worst case, which makes it a polynomial time

procedure. Finally, the cost of arcs are derived using the dual optimal solution of M-RLMP. Hence,

−Umu
∑j=r−1

j=l+1 (β̂1
ijk − β̂2

ijk) is the cost of an arc that connects two nodes from control points k and

k + 1 (i.e. the arc only carries the cost of the node at control point k). Thus, there is no cost

on an arc between the start node and the nodes at the first control point. Let C be the cost of a

shortest path in the network, then the minimum reduced cost is C − λ̂i.
Figure 1 illustrates a small network of PSP with 2 control points (K = 2) and 2 columns

(n = 2). Also, the maximum distance that a leaf can take between two stages is 1 beamlet (δ = 1).

There are 6 different leaf configurations at each one of the stages. The white and gray rectangles

indicate the open and closed beamlets, respectively. The home positions of the left and right leaves

are j = 0 and j = 3 and capital letters “L” and “R” shows the last blocked beamlets by the left

and right leaves, respectively. The arcs indicate the feasible leaf movements. Let the path in the

figure with solid lines indicate a shortest path. Then, the positions of the leaf pair during rotation

are (li1 = 0, ri1 = 2) and (li2 = 1, ri2 = 3).

Finally, each time when we solve PSP for row i, we fix the leaf positions at the control points

having positive radiation intensity in the last optimal M-RLMP solution. Let k be such a control

point with positive radiation intensity (i.e. muk > 0). We remove all other nodes that are different
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Figure 1. Network representation of a PSP where K = 2, n = 2, δ = 1.

from the leaf configuration of the last optimal M-RLMP solution on row i at control point k.

Remark 1: When the size of the column pool for each row i is one, the associated variable b1i
takes value 1 for any optimal solution to the M-RLMP. In this case, certain simplifications can

be made to our proposed column generation approach. In particular, the simplified versions of

the constraints (28) and (29) become −aijk + Umuẑ1ijk ≥ 0 and aijk − muk − Umuẑ1ijk ≥ −Umu,

respectively. Furthermore, for these constraints the corresponding dual variables (β1
ijk and β2

ijk)

remain the same, and this simplification reveals the role of dual values more clearly. In the first

case, when a particular beamlet is closed (ẑ1ijk = 0), its constraint (28) becomes aijk ≤ 0, namely

the corresponding beamlet intensity is zero. If this constraint limits the optimal value of M-RLMP

and its corresponding dual value β1
ijk is positive, then PSP will try to open that particular beamlet

in order to reduce the cost (i.e. zijk will be 1 and the constraint (28) will be aijk ≤ Umu). In the

second case, if a particular beamlet is open (zijk = 1) then the beamlet intensity takes value muk.

Similarly, if this constraint limits the optimal value of M-RLMP and dual value β2
ijk is positive,

then closing this particular beamlet will reduce the cost. Therefore, PSP will close that beamlet

(zijk = 0) and the constraint (29) will become aijk ≥ muk − Umu.

Remark 2: When the size of the column pool for each row i is one, main role of M-RLMP becomes

finding the optimum radiation intensity, muk, for a subset of given apertures and calculating

corresponding dual multipliers. Moreover, PSP finds the best promising row arc for each row i,

and it adjusts apertures.

3.2. Initial column generation

At the beginning there is exactly one column (one row arc) for each row i in the initial column

pool to formulate M-RLMP. Their union yields a full treatment arc consisting of K apertures
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(one aperture per control point). We apply a simple heuristic consisting of two steps to generate

these initial columns. At the first step a number of fluence maps are generated by solving a linear

programming model, and in the second step using a simple fluence map conversion algorithm

a full treatment arc, which yields a column per each row, is constructed. Finally, M-RLMP is

formulated. Note that dose intensities of all control points are determined by M-RLMP, namely

muk is a decision variable for control point k to be optimized. These steps constitute the first

phase of our two-phase algorithm. In the second phase, this initial full arc is modified during the

column generation iterations in order to obtain a better treatment plan, so it is very important to

start with good columns.

3.2.1. Fluence map generation: The linear programming (LP) model that we solve in the first

step is derived from VMATP and includes only a subset of original control points and constraints.

Note that, as in this study, K is generally taken 180 in VMAT planning studies (i.e. 180 equally

spaced beam angles with 2◦-spacing). The LP model, namely the modified VMATP (M-VMATP)

includes 45 control points with 8◦-spacing. We let K denote this subset of control points. Similar

to M-RLMP, we introduce one artificial variable for each CVaR constraint of all OARs to M-

VMATP, and penalize the positive deviations in the objective function. We allow these deviations

not only because M-VMATP includes only a subset of control points but also because at the

beginning CVaR constraints consisting of the original tolerance doses are very tight. Thus, finding

a treatment plan which satisfies all treatment dose prescriptions is very hard. The M-VMATP is

as follows:

M-VMATP:

min
∑
k∈K

muk +
O∑
o=1

Co∑
c=1

γOARoc φOARoc (43)

s.t.

(13)− (14); (16)− (18); (23)− (24); (31); (33),

aijk ≤ muk i = 1, . . . ,m; j = 1, . . . , n; k ∈ K (44)

dv −
m∑
i=1

n∑
j=1

∑
k∈K

Dijkvaijk = 0 v ∈ V (45)

muk ≥ Lmu k ∈ K (46)

muk ≤ Umu k ∈ K (47)

mu ∈ R|K|+ ; a ∈ Rm×n×|K|
+ . (48)

Solving this modified model has similarities with FMO optimization in IMRT planning. M-

VMATP finds a number of fluence maps for some of the control points in K, which we denote as

K. Notice that K ⊂ K ⊂ K. However, K, the set of control points with positive intensities, is not

determined in advance; M-VMATP model finds it. Also, the intensities of the beamlets of a fluence

map are bounded from above with radiation intensity at this control point (muk). Observe that if

there is no beamlet with positive intensity at control point k then muk value will be 0, since total

radiation intensity is minimized in the objective function. Furthermore, in this step, in addition to
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generating fluence maps we also tune the parameters Uoc of CVaR constraints of OARs to obtain

more reasonable feasible treatment plans. In a loop, we increase the tolerance dose Uoc by a small

value if the difference between the radiation dose that the corresponding volume of OAR o receives

and the original tolerance dose is at least a certain amount, and resolve M-VMATP model until

there remains no parameter to increase. At the end of this loop, if there is a CVaR constraint

with positive deviation we increase its right hand side parameter by the amount of deviation. We

use the resulting tuned parameters throughout the entire algorithm.

3.2.2. Tuning of CVaR constraints: The main advantage of using CVaR constraints is that it

allows modeling of dose volume requirements as linear inequalities. However, we observe that

CVaR constraints with original parameters are very conservative and it is challenging to apply

this approach in radiation therapy planning, which is also indicated in Romeijn et al. (2003) and

Hindi (2013). Let us consider a CVaR constraint defined for an OAR. It forces the average dose

in the upper tail of the dose distribution of the OAR to be at most its tolerance dose. However,

the fact that the left end of the tail (i.e. VaR) does not exceed this tolerance dose is sufficient

in a clinically acceptable plan (Hindi 2013). In order to alleviate this problem we tune the right

hand side values, i.e. Uoc of the CVaR constraints of OARs. We change these parameters in such

a way that the resulting ones continue to produce treatment plans satisfying clinical prescription

doses. In particular, we solve M-VMATP and check whether the VaR values are too small than

the corresponding bounds; if they are, we update the right hand sides of the constraints. In each

iteration we do this operation for all OARs, after that we resolve M-VMATP. We continue until

there remains no CVaR constraint that we can update. The pseudo code of this parameter tuning

procedure is given below. Note that it is not appropriate to use the same right hand side values

for all patients due to the anatomical differences between them. Thus, it is convenient to use such

an adaptive procedure for tuning the right hand side values for each patient.

3.2.3. Conversion algorithm: In the second step we derive a number of apertures (at most three)

from each one of the fluence maps obtained in the first step using a conversion algorithm. Clearly, in

a fluence map, the beamlets with positive radiation intensity do not have to satisfy the consecutive

ones property, also their intensities may differ from each other. We assume that all beamlets with

positive intensity are open. Our conversion algorithm seeks at most three feasible apertures to

cover the open beamlets as much as possible. If all open beamlets of all rows are consecutive in a

fluence map at control point k, then we generate only one aperture and fix it at k. If there are at

most two open beamlet chains at each row than we generate two different apertures and sequence

them on to control points k and k + 2. Otherwise, if there are rows with more than two open

beamlet chains than we generate three different apertures and sequence them on to control points

on to k, k + 1, and k + 2. There are two important details in the generation of these apertures.

First, an aperture must be compatible with the fixed ones at the adjacent control points. Namely,

the leaf motion limitations must be satisfied. If a row of an aperture is not compatible with the

adjacent ones we close all beamlets in this row. The second point is that we first fix the aperture

at k, and then k + 2. If there is a third aperture, finally we fix it at k + 1. After sequencing all

apertures on to a subset of K, we fill the missing control points in such a way that the number of
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Algorithm CVaR parameter tuning
1: ε1, ε2, counter = 0

2: while true do

3: update and solve M-VMATP

4: for each o in OARs and c in Co do

5: if ξOARoc < Uoc − ε1 then

6: Uoc ← Uoc + ε2
7: counter ← counter+1

8: end if

9: end for

10: if counter = 0 then

11: break

12: else

13: counter = 0

14: end if

15: end while

16: for each o in OARs and c in Co do

17: if φOARoc > 0 then

18: Uoc ← Uoc + φOARoc

19: end if

20: end for

open beamlets in the resulting arc is maximum. Namely, we open all the beamlets as long as they

are compatible with the ones at fixed apertures. Thus, we obtain a full treatment arc (consisting

of K sequential apertures) to construct M-RLMP. The pseudo code of this conversion algorithm

is given below.

The first two rows of Figure 2 illustrate the conversion of a fluence map at the fifth control

point (gantry angle 8◦) into three apertures and their sequencing. The fluence map is decomposed

into three apertures. The rows of the aperture at k=5 are the first consecutive beamlet chains

from the left part of the fluence map. If there is more than one open beamlet chain at any row then

we need another aperture to complete the fluence map. The aperture at control point 7 consists

of the first open beamlet chains of the rows from the right. Finally, at control point 6, there is

an aperture with one beamlet at the second row, since there are three open beamlet chains at the

second row of the fluence map. Also, there is an open beamlet at third row in order to make the

apertures at control points 5 and 6 compatible (i.e. satisfying leaf motion limitations). At the last

row of the figure, the part of the full treatment arc between 8◦ and 16◦ is shown where δ = 2.

In summary, our proposed two-phase algorithm starts by generating initial columns to

construct M-RLMP in the first phase that includes two steps: solving M-VMATP to obtain a

number of fluence maps, and generating a full treatment arc from these fluence maps by applying

the conversion algorithm. Initially there is only one column for each row i at M-RLMP, and

they are improved in column generation iterations in the second phase. The flow diagram of the

resulting algorithm is given in Figure 3.
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Algorithm Conversion algorithm

1: Input: a number of fluence maps

2: Output: a full treatment arc

3: for the fluence map at control point k ∈ K do

4: for row i = 1, . . . ,m do

5: if all beamlets with positive intensity are consecutive then

6: generate a row with one open beamlet chain

7: if it is compatible with the previous control points in K then

8: fix it at row i at control point k

9: else

10: close all beamlets at row i at control point k

11: end if

12: else

13: generate a row including the first open beamlet chain from the left

14: if it is compatible with the previous control points in K then

15: fix it at row i at control point k

16: else

17: close all beamlets at row i at control point k

18: end if

19: generate a row including the first open beamlet chain from the right

20: if it is compatible with the previous control points in K then

21: fix it at row i at control point k + 2

22: else

23: close all beamlets at row i at control point k + 2

24: end if

25: end if

26: end for

27: end for

28: for fluence map at control point k ∈ K do

29: for row i = 1, . . . ,m do

30: if there are more than two positive beamlet chains then

31: generate a row including the second open beamlet chain from the left

32: if it is compatible with control points k and k + 2 then

33: fix it at row i at control point k + 1

34: end if

35: end if

36: end for

37: if at least one row is fixed at control point k + 1 then

38: find compatible apertures for control point k+1 with minimum number of open beamlets

39: end if

40: end for

41: find compatible apertures with maximum number of open beamlets for the control points

without any fixed rows
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Figure 2. Initial column (initial treatment arc) generation.

4. Computational results and clinical comparisons

We generate VMAT plans for nine prostate cancer patients treated in Istanbul University Oncology

Institute, which is one of the largest and oldest cancer centers in Turkey. Annually, an average

of 5,000 new patients apply at the institute, and 60,000 patients are called for follow-up and

control. Every day around 120-150 patients undergo radiotherapy and 90-100 patients receive

chemotherapy. In our experiments, we used a number of computed tomography (CT) images

with 2.5 mm spacing and a radiation therapy (RT) structure set of each one of the patients in

digital imaging and communications in medicine (DICOM) format (Pianykh 2009). There are

two planning target volumes (PTVs) with different prescription doses (75.6 Gy and 56 Gy in 36

fractions, respectively) and 5 OARs (rectum, bladder, penile bulb, left and right femoral heads)

in each case. In radiation therapy planning there are three main volumes to be considered: gross

tumor volume (GTV), clinical target volume (CTV), and PTV. The CTV contains the GTV,

which is the primary tumor, and subclinical microscopic malignant lesions. The PTV surrounds

the CTV and a margin to account for uncertainties in planning or delivery, and it is included in

treatment planning optimization. Therefore, the terms PTV and TV are used interchangeably in

the rest of the paper. Table 1 lists all structure dose constraints used for prostate radiation therapy

optimization at Istanbul University Oncology Institute in accordance with the recommendation of

Buyyounouski et al. (2006). There are two partial-volume constraints for each one of rectum and

bladder, and for the remaining structures there is only one constraint. We use the constraints given
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Figure 3. Flow diagram of the VMAT planning heuristic.
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in Table 1 and aim to deliver 75.6 Gy in 36 fractions (2.1 Gy per fraction). Table 1 also includes

the corresponding ratios of all volumes used to formulate VMATP model. Also, the value of dtc
and Uoc parameters equal to dose amounts prescribed for one fraction. In general, dose-volume

histograms (DVHs) are used to evaluate the quality of a treatment plan. For a given structure,

a DVH specifies the percentage of its volume that absorbs at least a certain amount of dose. We

calculate DVHs of PTVs and OARs and compare them to the clinical guidelines and also to the

ones obtained in the institute.

Table 1. Dose-volume constraints used at Istanbul University Oncology Institute.

Structure Dx%
∗ Dose (in 36 fractions) Ratio of volume

PTV75.6 D95% 75.6 Gy αPTV11 = 0.95

R-PTV56 D95% 56 Gy αPTV21 = 0.95

Rectum D35% ≤ 40 Gy αOAR11 = 0.65

D17% ≤ 65 Gy αOAR12 = 0.83

Bladder D50% ≤ 40 Gy αOAR21 = 0.50

D25% ≤ 65 Gy αOAR22 = 0.75

PB D90% ≤ 15 Gy αOAR31 = 0.10

Lt F D10% ≤ 50 Gy αOAR41 = 0.90

Rt F D10% ≤ 50 Gy αOAR51 = 0.90
∗Dx% : the minimum dose received by x% of the structure.

Istanbul University Oncology Institute currently uses Varian Eclipse Treatment Planning

System (TPS) v.15.6 (Varian 2018), which is a commercial software. Thus, it is not possible to

export the dose-influence matrices calculated by using Analytical Anisotropic Algorithm (AAA)

algorithm (Sievinen et al. 2005). Therefore, we compute these matrices for a 6 MV photon energy

using an open-source radiation TPS called matRad (Wieser et al. 2017). matRad is a multi-

modality radiation TPS written in MATLAB (MATLAB 2015), and supports IMRT treatment

planning for photons, scanned protons, and scanned carbon ions at clinically adequate resolution.

It is freely available online and has been developed to contribute to educational and research

activities. It uses a singular value decomposed pencil beam algorithm to calculate photon dose

calculation (Bortfeld et al. 1993). We set the voxel resolution to 5 mm3 and bixel resolution

to 1 cm2 during the DICOM import. The couch angle is selected as 0◦ for all patients and

dose-influence matrices for 180 evenly spaced control points (gantry angles) with 2◦-spacing are

computed. Then, we scale the dose-influence matrices in such a way that the absorbed dose of 1

cGy/MU is delivered at 100 cm source-to-axis distance (SAD) at 5 cm depth with field size 10 cm

× 10 cm. Thus, we divide original dose-influence matrices by the parameter 100 to obtain Gy/MU

values. In other words, they are scaled such that a weight of 1 is equivalent to 100 MU. We also

validate this scaling parameter on a water equivalent phantom provided by Istanbul University

Oncology Institute. We list total number of voxels in each structure of all patients in Table 2.

Note that, matRad’s dose calculation is restricted to the projection of the target onto the beam’s

eye view (BEV) at each control point. Thus, for each case, we determine the smallest MLC system
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size (i.e. value of m and n, in Table 2) that includes all beamlets in the matrices provided by

matRad. Furthermore, a TV t may invade an OAR o, namely there may be a set of voxels in an

OAR o which also belong to a TV. In such a case the overlap region is considered to belong to the

TV t and the CVaR constraint is reformulated for the rest of OAR o. However, the entire OAR

must satisfy the associated dose constraint according to the clinical guidelines, so we adjust αOARoc

parameter in the CVaR constraint as described in (Romeijn et al. 2003) to meet this requirement.

Let R-OAR stands for the rest of the corresponding OAR, then we use αR−OARoc , which equals to

1− (1−αOAR
oc )|V OAR

o |−|V OAR
o \V R−OAR

o |
|V R−OAR

o | , instead of αOARoc . Clearly, if the set of voxels belonging also a TV

is not empty, i.e. |V OAR
o \ V R−OAR

o | 6= 0, then αR−OARoc > αOARoc . Also, if αR−OARoc |V R−OAR
o | voxels

satisfy the dose constraint in R-OAR then αOARoc |V OAR
o | voxels of the entire OAR also satisfy the

constraint. Similarly, if a voxel belongs to more than one TV, it is considered only in the one

with the highest prescription dose. Data sets provided by Istanbul University Oncology Institute

include the rest of a structure if there is an intersection with this structure and a PTV. The rest

of the structure is obtained by subtracting all voxels in the PTV with a margin of 2-3 mm.

Table 2. Properties of the prostate cancer data sets.

Number of voxels of size 5 mm3

Patient m n PTV75.6 R-PTV56 Rectum Bladder PB Lt F Rt F TOTAL

P1 11 13 890 676 436 2836 58 1559 1476 7931

P2 9 13 1127 230 743 1567 20 923 953 5563

P3 9 13 1000 218 886 1915 53 1728 1791 7591

P4 9 13 889 407 736 2026 51 1653 1610 7372

P5 8 13 1056 346 632 755 90 2025 1845 6749

P6 12 9 1198 383 1035 4649 43 1300 1255 9863

P7 8 11 606 157 402 2911 67 1428 1495 7066

P8 9 9 699 213 757 4814 34 1827 1774 10118

P9 10 13 1971 219 753 1209 36 1630 1684 7502

Istanbul University Oncology Institute uses Varian’s RapidArc technology to deliver VMAT

treatment plans. The MLC system of the linear accelerator consists of 120 leaves, which are 0.5

cm thick at the isocenter for the central 20 cm, and 1 cm in the outer 2× 10 cm. The maximum

leaf speed is 2.5 cm/second and the dose rate can be 0-600 MU/minute. We set the associated

parameters in our algorithm in alignment with these properties of the system. We assume that

the gantry rotates at a constant rate and completes a tour in 6 minutes. There is one co-planar

arc, thus delivery time of each plan is 6 minutes. The gantry moves from one control point to

the consecutive one in 2 seconds, thus we set δ = 5 beamlets. Moreover, the maximum radiation

intensity (in MU) is 20 MUs since it is assumed that the radiation delivery lasts 2 seconds at a

control point. The remaining parameters are as follows: lower and upper bound dose limits for

PTV75.6 are set to 84 Gy (2.334 Gy per fraction) and 67 Gy (1.861 Gy per fraction), respectively,

in accordance with the plans provided by the institute. Also, we set the upper bound dose limit

for PTV56, which is 72 Gy (2 Gy per fraction). Finally, in CVaR parameter tuning operation we

set ε1 to 0.10 Gy and ε2 to 0.03 Gy, and the penalty costs γTVtc and γOARoc are set to 3000 and

1000 for each TV and OAR, respectively. We implement the proposed algorithm in Python 2.7
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programming language (Python 2015) and use Gurobi 8.0 as MILP solver (Gurobi 2018). All tests

are carried out on a 64-bit PC with 3.20 GHz Intel(R) Core(TM) i5-6500 CPU and 8 GB of RAM.

We set the number of threads of Gurobi solver to 4.

4.1. Results

In Istanbul University Oncology Institute, the VMAT plans of all patients are optimized using two

full arcs on older versions of Eclipse TPS (v.8.9 and v.15.1, Varian (2018)) using 6 MV photon

beams. In Table 3 total MUs and dosimetric results of all plans are provided. According to

these results all VMAT plans satisfy all dose-volume constraints given in Table 1 (except the plan

of patient 6, since it does not satisfy the first dose-volume constraint of rectum, which requires

D%35 ≤ 40 Gy). Total radiation dose (sum of MUs of two arcs) of plans varies between 570 and

743 MUs with average 633.9 MUs. Table 4 provides dosimetric results of VMAT plans obtained

by our column generation based heuristic algorithm. Almost all plans are optimized within 20

minutes (1200 seconds) with an average of 1020 seconds. It takes a little longer to optimize plan

3 and plan 6 (1227 and 1782 seconds, respectively). We first note that total radiation intensity

decreases in almost all plans significantly (except plan 5). The amount of radiation dose varies

between 366 and 689 MUs with an average of 494.4 MUs. The maximum reduction occurs for the

plan of patient 7, which is 363 MUs (48.9%). The average decrease of all plans is approximately

139.5 MUs and the average percentage of reduction is 22.0%. By assuming that the dose-influence

matrices obtained by AAA algorithm (Sievinen et al. 2005) and by the singular value decomposed

pencil beam algorithm (Bortfeld et al. 1993) used in matRad are sufficiently close, we can say that

our proposed model and solution algorithm can find high quality plans requiring significantly less

radiation. We observe that the first dose-volume constraint of rectum is not satisfied in the plans

of three patients (patient 1, 6 and 8). However, the maximum deviation from the tolerance dose,

which is 40 Gy, is 2.4 Gy. Note also that if we decrease the radiation intensities at all control

points by same ratio without violating partial-volume constraints of PTVs, then the resulting

deviations will be less. For example, in plan 6 it is possible to reduce the radiation intensities at

all control points to 97.73% of the original intensities. Therefore, 95% of R-PTV56 will receive 56

Gy and 95% of PTV75.6 will receive 76 Gy. The resulting plan almost satisfies all dose constraints

of rectum (D%35 will be 40.07 Gy). By this way total MUs of the plan also decreases by around

9.6 MUs. Similarly, we can adjust plan 1 and plan 8, and reduce the D%35 of rectum to 41.4 Gy

and 41.2 Gy, respectively. Note that one needs to exercise caution while shifting the plans, since

such a shift may also reduce the minimum dose to PTVs and increase the risk of resulting in cold

spots. Moreover, in four out of nine plans (patient 1, 2, 6, and 8) D%90 of PB is more than 15

Gy (the maximum is 27.4 Gy). Since the deviations are not excessive the plans are acceptable

according to the oncologists and medical physicists at Istanbul University Oncology Institute as

well as other dose prescription recommendations in the literature such as limiting D%70 and D%90

of PB to 70 Gy and 50 Gy, respectively (Roach III et al. 2010). Thus, we can say that our

proposed algorithm is capable of optimizing high-quality VMAT plans with significantly less MUs

in clinically reasonable times. Finally, we provide DVHs of patient 3 obtained by our algorithm

(in Figure 4) and by Eclipse (in Figure 5). We observe that DVHs of the structures in Figure 5

are smoother than those in Figure 4. The main reason for this difference is the usage of a lower
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voxel resolution in our experiments compared to Eclipse. Especially for small structures (such

as penile bulb) the resulting number of voxels becomes small, which makes the corresponding

DVH less smooth. However, we note that the DVHs generated by both approaches satisfy clinical

prescriptions with only minor deviations as discussed above.

Table 3. Dosimetric results of the VMAT plans obtained by Eclipse.
PTV75.6 R-PTV56 Rectum Bladder PB Lt F Rt F

Patient MU D95% D95% D35% D17% D50% D25% D90% D10% D10%

P1 591 76.6 56.9 39.9 50.9 32.9 42.6 10.7 26.5 25.8

P2 575 75.8 56.2 38.9 52.9 31.7 57.3 10.5 38.1 37.0

P3 743 76.4 56.5 34.2 48.7 22.0 57.9 8.6 22.0 18.4

P4 659 76.8 57.1 37.2 54.1 30.7 55.3 14.1 35.0 34.2

P5 661 75.9 56.5 38.4 56.7 37.7 63.5 6.0 37.8 37.8

P6 570 76.1 56.8 41.2 53.7 16.2 26.4 14.4 36.2 32.9

P7 667 76.2 56.9 37.7 48.8 5.5 14.9 5.3 24.8 27.5

P8 625 76.4 56.6 33.8 49.1 4.5 16.8 11.1 26.0 30.8

P9 614 76.0 56.7 38.8 55.2 30.6 62.8 8.0 34.9 39.4

Table 4. Dosimetric results of the VMAT plans obtained by the new algorithm.
PTV75.6 R-PTV56 Rectum Bladder PB Lt F Rt F

Patient MU D95% D95% D35% D17% D50% D25% D90% D10% D10%

P1 526 76.7 57.3 42.0 51.0 27.2 46.3 24.3 40.9 43.9

P2 561 77.2 56.8 38.1 53.7 36.5 63.3 25.1 34.3 33.5

P3 380 76.4 56.9 36.1 50.8 34.7 64.6 12.1 42.3 37.3

P4 523 77.1 57.2 37.2 48.9 34.2 64.3 14.2 45.1 48.0

P5 689 76.2 58.2 38.9 57.5 39.1 64.6 6.7 41.1 43.5

P6 424 77.8 57.3 41.0 57.8 7.4 27.8 20.4 46.2 45.8

P7 366 76.2 57.1 38.3 50.9 3.3 16.9 7.4 35.1 36.1

P8 509 77.8 58.0 42.4 61.3 6.4 25.8 27.4 26.5 22.5

P9 472 75.9 57.1 34.9 54.0 37.8 64.5 12.8 46.7 46.8

4.2. Sensitivity analysis on initial columns and tuning of CVaR constraints

In our next experiment, we analyze the effect of starting with the initial columns generated from

the fluence maps obtained by solving M-VMATP model, and tuning the right hand side values of

CVaR constraints.

We generate VMAT plans for all patients using two different sets of initial columns: the

columns generated from a full treatment arc with maximum number of open beamlets, and from a

randomly generated full treatment arc. These new initial columns are also feasible with respect to

the MLC constraints (i.e. satisfying the consecutive ones property and the leaf motion limitations).

Also, random columns are generated from a treatment plan satisfying the full volume constraints

of all target voxels, which is obtained by solving a model including all geometry constraints and

full volume constraints. According to our computational experiments, none of the resulting plans

are clinically acceptable. In particular, the partial volume constraints of PTV75.6 or some of the
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Figure 4. DVH of the plan of patient 3 obtained by our algorithm with full single arc.

Figure 5. DVH of the plan of patient 3 obtained by Eclipse v.15.1 with full double arcs.
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OARs are not satisfied. This implies that starting with initial columns generated from the fluence

maps improves the quality of the plans in terms of dose distributions.

In our experiments, the average necessary time for the CVaR parameter tuning operation is

138.5 seconds. We repeat the computational experiments for all patients without this operation

in order to see the effect on the performance of the algorithm. We observe from the results that

the average CPU time of the plans without tuning operation decreases as expected. However, the

average MUs of the plans increases by 76.4 MUs. In the new plans, rectum, bladder and penile

bulb absorb less radiation. However, there are 3 plans where the partial-volume constraint of

PTV75.6 is not satisfied. Therefore, tuning the right hand side parameters of CVaR constraints

makes the resulting plans more reasonable without compromising OAR partial-volume constraints;

and all PTV constraints are satisfied with fewer MUs (with an average decrease of 13.3%).

4.3. Computational results for CORT dataset

In our final experiment, we compare our proposed two-stage heuristic with the exact Benders

decomposition algorithm in our previous work (Dursun et al. 2019a). In this experiment, we

solved all instances used in our previous work (Dursun et al. 2019a) by our two-phase heuristic.

Recall that the first phase of our heuristic algorithm tunes the tolerance doses of OARs, thus we

have performed the computational experiments for both with and without the tuning operation.

There are 11 different samples in dataset, and each one of them includes 5 different instances.

Also, there is one target volume (TV) and one OAR. In Table 5, we give the summary results of

all samples solved by the Improved Benders Algorithm 2, which is the best algorithm in Dursun

et al. (2019a), and by our new two-phase heuristic. Note that we do not obtain a lower bound

when we solve an instance by the two-phase heuristic, thus we use the lower bounds provided

by Improved Benders Algorithm 2 in order to calculate optimality gaps. Also note that when

we perform the tuning operation, the tolerance dose of OAR may increase, namely the problem

may be simplified, thus the lower bound of the resulting model may decrease. Nevertheless, we

used the same lower bound obtained by the Improved Benders Algorithm 2 to give an indication

of optimality gaps. According to the results, CPU times and average optimality gaps obtained

by our proposed two-phase heuristic are significantly smaller than those obtained by Improved

Benders Algorithm 2. In both cases, the average necessary CPU time is around one minute (65.5

and 72.2 seconds for the computational experiments without tuning and with tuning operation,

respectively). Two-phase heuristic can find a feasible solution with small optimality gap for all

instances in both cases, however, it can solve only 2 and 6 out of 55 instances optimally. We

should also note that in the resulting dose distributions of all instances when they are solved by

the two-phase heuristic with tuning operation, partial-volume constraint of OAR is satisfied.

4.4. Discussion

VMAT plans are made by experienced dosimetrists in treatment planning departments. The

planning process involves various manual interventions such as adapting planning objectives and

constraints according to the individual anatomy of the patient. For example, shape and size of

the tumor(s), and location of organs at risk are some of the anatomical properties that play an
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Table 5. Summary results for CORT dataset (CPU in seconds, GAP %)

Impr. Benders Alg. 2 Two-phase without CVaR Tuning Two-phase with CVaR Tuning

SAMPLE GAP CPU S/T O/T GAP CPU S/T O/T GAP CPU S/T O/T

22 0.00 112.2 5/5 5/5 3.09 30.1 5/5 0/5 2.86 28.9 5/5 0/5

44 0.00 627.8 5/5 5/5 0.30 29.0 5/5 0/5 0.46 29.3 5/5 0/5

66 0.14 1884.2 5/5 3/5 4.69 31.6 5/5 0/5 4.75 39.7 5/5 0/5

88 0.00 826.9 5/5 4/5 3.61 49.7 5/5 0/5 2.38 47.7 5/5 0/5

220 0.02 1187.1 5/5 4/5 4.01 31.8 5/5 0/5 2.48 39.6 5/5 0/5

660 0.22 3585.9 5/5 1/5 0.04 53.6 5/5 0/5 0.05 56.1 5/5 1/5

880 3.23 3600 5/5 0/5 0.07 66.8 5/5 1/5 0.09 68.0 5/5 1/5

1100 0.96 3600 5/5 0/5 0.06 79.0 5/5 1/5 0.06 90.3 5/5 2/5

1301 0.34 3600 5/5 0/5 0.16 96.6 5/5 0/5 0.08 112.8 5/5 0/5

1501 18.43 3600 4/5 0/5 0.18 120.6 5/5 0/5 0.12 127.1 5/5 1/5

1701 0.49 3600 5/5 0/5 0.18 131.6 5/5 0/5 0.07 154.8 5/5 1/5

Avg/Sum 4.82 2483.4 54/55 21/55 1.49 65.5 55/55 2/55 1.22 72.2 55/55 6/55

important role in the manual adjustments of the parameters, which influence the plan quality. In

particular, dosimetrists try to guide the TPS towards a favorable plan by modifying optimization

parameters. Thus, this manual process necessitates additional optimization steps and extra time,

and also the quality of the final plan depends on the skills and experience of the dosimetrist as well

as the complexity of the case and time allocated for planning. The VMAT plans whose dosimetric

results are shown in Table 3 are obtained and adjusted by an experienced dosimetrist via a manual

process as explained above. In the original data sets there are some additional structures (e.g.

a subset of rectum) for which the dosimetrist defines additional constraints (in 7 out of 9 plans)

to ensure that the related received radiation amounts fall into approvable limits. However, we

do not use such an additional structure and/or additional dose-constraint in our algorithm. Our

algorithm automatically adjusts parameters for each patient, and does not require any expert

guidance.

5. Conclusions

In this study we provide a two-phase column generation based heuristic algorithm to solve a

mixed integer linear programming (MILP) model for VMAT planning, which includes all dose-

volume constraints and minimizes total radiation intensity delivered to the patient. Our proposed

algorithm can find high quality VMAT treatment plans for problems with clinically adequate

voxel and bixel (beamlet) resolution. In the first phase of the algorithm we generate an initial

plan by solving a relaxed model, which is derived from the original model and gives a number

of fluence maps. Then we convert these fluence maps into deliverable apertures and sequence

them on an arc by applying a simple sequencing operation. In the second phase, we improve

the initial solution by column generation iterations. Unfortunately, formulating VMAT planning

problem results in a large-scale nonconvex optimization model due to the continuous nature of the

problem. In order to avoid nonlinearities, we discretize a full arc into a large number of control
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points and assume that the gantry rotates at a constant speed. Also, we use CVaR constraints to

formulate dose-volume restrictions and an automated strategy for parameter tuning. We test our

algorithm on nine real prostate patient data and compare the resulting VMAT plans with the ones

obtained by an expert dosimetrist on Eclipse in one of the major oncology institutes of Turkey.

Our model includes dose-volume constraints of all critical organs and two planning target volumes,

parallel to clinical application. The results show that our algorithm is capable of finding plans

of high quality with respect to clinical dose-volume criteria and requiring fewer MUs in clinically

acceptable time. We only consider the consecutive ones property of MLC leaves in VMATP and

the current network model does not consider connectedness property and allows interdigitation of

the leaves. A potential future research direction is to extend the current network model to account

for different MLC leaf constraints. Moreover, we assume that the gantry rotates at a constant

speed, which may cause longer treatment time. Another potential future extension is to adjust

the model to consider dynamic gantry speed in order to obtain higher quality treatment plans

requiring less treatment time.
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