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Abstract

The success of radiation therapy depends on the ability to deliver the proper amount of radiation to cancerous cells

while protecting healthy tissues. As a natural consequence, any new treatment technology improves quality standards

concerning primarily this issue. Similar to the widely used Intensity Modulated Radiation Therapy (IMRT), the

radiation resource is outside of the patient’s body and the beam is shaped by a multi-leaf collimator mounted on the

linear accelerator’s head during the state-of-the-art Volumetric Modulated Arc Therapy (VMAT) as well. However,

unlike IMRT, the gantry of the accelerator may rotate along one or more arcs and deliver radiation continuously. This

property makes VMAT powerful in obtaining high conformal plans in terms of dose distribution; but the apertures are

interdependent and optimal treatment planning problem cannot be decomposed into simpler independent subproblems

as a consequence. In this work, we consider optimal treatment planning problem for VMAT. First, we formulate a

mixed-integer linear program minimizing total radiation dose intensity subject to clinical requirements embedded

within the constraints. Then, we develop efficient solution procedures combining Benders decomposition with certain

acceleration strategies. We investigate their performance on a large set of test instances obtained from an anonymous

real prostate cancer data.
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1. Introduction

Radiation therapy (radiotherapy) sends high-energy particles or waves on to cancerous tissues in order to damage

the deoxyribonucleic acid (DNA) of cancer cells, which destroys their ability to reproduce. Radiation can also harm

healthy cells, which can repair themselves unless they are exposed to doses beyond their tolerance limits. Hence, the

success of the treatment depends on the ability to deliver the proper amount of radiation to the malignant region while

sparing healthy tissues so that they are exposed a minimal amount of radiation.

External-beam radiation and internal radiation therapy (brachytherapy) are two modes of radiotherapy. In the

former one, a machine delivers radiation to the patient from outside the body; on the other hand radiation sources
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like implants or liquids are placed inside the patient’s body in the latter. Three-Dimensional Conformal Radiation

Therapy (3D-CRT), Image Guided Radiation Therapy (IGRT), Intensity Modulated Radiation Therapy (IMRT), To-

motherapy, and Volumetric Modulated Arc Therapy (VMAT) are being tested and applied forms of external-beam

radiation therapy.

External-beam radiation therapy process starts with the determination of tumors and surrounding normal structures

after the diagnosis of the patient with cancer. The oncologist contours the cancerous target volumes (TVs) and

surrounding organs at risk (OARs) on the computed tomography (CT) scans of the patient and prescribes the radiation

doses best conforming to TVs and OARs. There may be more than one TV with different dose requirements as well

as OAR depending on the cancer type and patient’s anatomy. The treatment to be applied to the patient is planned by

medical physicists.

1.1. IMRT and VMAT

In both IMRT and VMAT, a linear accelerator (see Figure 1) rotates around the patient’s body and sends high-

energy beams from different angles by keeping the cancer volume on the target. The gantry of the linear accelerator

is generally equipped with a multileaf collimator (MLC), which consists of a number of parallel metal leaf pairs.

The leaves can move horizontally and shape the opening that the radiation beam passes through. Namely, they can

block some fraction of the beam (see Figure 2). In this way, the conformity of dose distribution to the planning

target volume (tumor plus some margin) and normal tissue sparing is much superior compared to earlier techniques

(Cambazard et al., 2012). Hovewer, IMRT and VMAT requires higher amount of radiation (in monitor units, MUs)

to deliver a given fraction size compared with 3D-CRT (Teoh et al., 2011; Palma et al., 2008). The increase in MU

causes higher integral body dose, which increases the risk of secondary malignancy (Hall and Wuu, 2003). Although

IMRT has been used very extensively in radiation therapy since 1990s (Ehrgott et al., 2010), VMAT is the state-of-

the-art technology. In VMAT, not only the MLC’s leaves can move without stopping, but also the radiation delivery

is continuous during the rotation of the gantry. Thus, high conformal dose distributions are obtained by generating

and delivering less radiation (Teoh et al., 2011), and treatment times become significantly shorter (Otto, 2008; Peng

et al., 2012). On the other hand, there are typically only a few discrete angles (5-9) in IMRT plans (Romeijn et al.,

2006) (see Figure 3). Furthermore, the linear accelerator stops delivering radiation while moving its gantry between

different beam angles in both dynamic (sliding window technique) and static (step-and-shoot technique) types of

IMRT, and during the change of MLC shapes at a beam angle in the latter one (Ehrgott et al., 2010). In addition to

the clinical benefits of delivering less radiation to the patient, there are several other advantages of short treatments.

The discomfort of patients and the risk of negative effects that may result from patient movements decrease. Also, it

is possible to treat more people since resource utilization becomes more efficient (Peng et al., 2012).

Treatment planning processes for IMRT and VMAT have similarities, which is not surprising since they are closely

related technologies. There are three main phases in IMRT planning. The first phase deals with the beam angle

optimization (BAO), where the number and orientation of the beam angles for irradiation are determined. The second
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Figure 1: A linear accelerator (de Araújo Montagno and Sabbatini, 1997)

Figure 2: (a) A linear accelerator (Varian, 2017a) (b) A multileaf collimator system (Varian, 2017b).

phase is the fluence map optimization (FMO) (or intensity problem), in which a fluence map is obtained for each of

the beam angles determined in the first phase. A fluence map is represented by a two-dimensional nonnegative integer

matrix that gives the radiation intensity profile. The third phase is the MLC leaf sequencing (MLS) (or realization

problem): a given fluence map is decomposed into a number of disjoint MLC openings, called apertures, and their

radiation intensities. In other words, deliverable radiation beams are obtained in the last phase and the union of these

beams realizes the corresponding fluence maps. Each of the three phases of IMRT planning can be dealt independently

and solved sequentially, or the integration of two consecutive phases can be considered simultaneously. The possibility

of handling the three phases independently makes IMRT planning relatively simpler.

Unlike IMRT, there is a large number of evenly spaced discrete beam angles on a co-planar arc (i.e. trajectory) of

the gantry in VMAT, since the radiation delivery is continuous. The term control point is often used interchangeably

with beam angle since aperture shape, dose rate, and gantry speed are controlled at each one of the specified beam
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Figure 3: (a) IMRT (SIMBALLC, 2013) (b) VMAT (VCU Massey Cancer Center, 2017)

angles. An aperture can be represented by means of a binary matrix. Each entry of the matrix is called a beamlet. In

Figure 4, an example of an aperture and its binary matrix representation is illustrated. Note that the two dark columns

on the left figure are the home positions of the leaves and if a beamlet is open then the corresponding entry of the

matrix is 1; it is 0 otherwise. Each aperture must satisfy the consecutive ones property of the MLC: there can be

at most one open beamlet chain in a row of an aperture. During the rotation of the gantry the leaves can move and

change the shape of the aperture. However, this movement is limited and depends on the speed of the gantry. The

apertures of neighboring control points are similar and cannot be handled independently because of the limitations

on the movement; and it is not possible to decompose VMAT planning problem into independent subproblems. As a

result, designing a VMAT treatment plan is significantly harder since total number of control points is large and the

adjacent ones are interconnected. Even if the delivery time is fixed, the resulting problem is a large-scale nonconvex

optimization problem, which makes VMAT planning a challenging goal that requires much more computational effort

than IMRT planning (Craft et al., 2012).

A treatment plan must satisfy the treatment related requirements, such as the dose prescriptions, and the mechan-

ical limitations of the linear accelerator and MLC system. In order to calculate dose distributions on the structures,

the body of the patient is discretized into small cubes called voxels (see Figure 5 for an example) using CT scans, and

the amount of radiation each of these voxels absorbs during the treatment is calculated. Absorbed radiation amounts

can be obtained if, how many Gray (Gy) a voxel absorbs when it is exposed to one MU of radiation from a beamlet

at a control point, is known. It is possible to determine these amounts using by one of the dose calculation algorithms

such as Pencil Beam Algorithm (PBA) or Analytical Anisotropic Algorithm (AAA) (Oelkfe U., 2006). In this study

we use the dose influence matrix (D) of a real prostate cancer case, which is obtained from Craft et al. (2014). The

entries of D are in Gy per MU (Gy/MU).
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Figure 4: An aperture and its binary matrix representation

Figure 5: A voxel resolution for a head (Pocket Dentistry, 2015)

1.2. Motivation and Contributions

As mentioned previously, the main advantage of VMAT is its ability to deliver radiation continuously, which

causes a very thin slicing of the gantry’s rotational arc at many beam angles increasing the number of control points

considerably. As a consequence, adjacent ones become very close, and this makes them interdependent with respect

to the movement of MLC leaves. Then, the determination of radiation dose, gantry speed and their control become

harder; and this directly effects the structure of the related mathematical optimization models. First of all, the number

of decision variables increases not only for dealing with the controllability issues, but also for linearizing the nonlin-

earities that the dependencies introduce. Besides, the few existing mathematical optimization formulations either do

not include hard constraints for many of the radiation dose related dependencies, or these constraints are relaxed so

that the relaxed formulations are solvable. An exception is the work by Akartunalı et al. (2015), which is explained in

the next section. We aim to close this gap by including constraints that model radiation dose related interdependencies

in our mixed-integer linear programming (MILP) formulation. In other words, instead of relaxing the constraints
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associated with the dose distributions and penalizing the deviations from the dose limits (i.e. thresholds) in the ob-

jective function, we formulate and include them in the MILP formulation as hard constraints, which are validated by

the oncologists and medical physicists affiliated with Istanbul University Oncology Institute (Bilge et al., 2017). The

resulting formulation is new, also in terms of decision variables required to define the mechanical constraints of the

MLC system.

It is known that treatment delivery time and total MU need are low in VMAT plans compared with those of IMRT.

It is also known that decreasing total MU of a plan decreases the risk of secondary radiation-induced malignancies

and also the total body dose due to radiation leakage. To the best of our knowledge there is no work that takes

into account total MUs for VMAT plans. The models proposed so far generally minimize dose deviations from the

prescribed limits and treat two different treatment plans with similar dose deviations but with different total MUs as

being equivalent; they just do not distinguish between the feasible plans with respect to their radiation requirements.

Therefore, it is not possible to benefit from VMAT’s whole potential in radiation treatment if one of these models is

used to determine optimal treatment plans. We also consider this point and formulate the objective function of our

MILP model to minimize the total radiation amount (in MUs) delivered during a fraction.

When the total deviation of a treatment plan is not zero, it is not guaranteed that the resulting plan is feasible

according to the dose constraints (Akartunalı et al., 2015). In reality, in the planning departments, each time the

resulting treatment plan is checked by the planner and the oncologist, if it is not feasible then the plan is re-optimized

after modifying the weights penalizing the deviations in the objective. This re-optimizing process continues until a

feasible plan is obtained; and this clearly increases the treatment planning time for patients.

The solution of our new MILP formulation, which we call VMAT Planning (VMATP) model, is computationally

challenging as we have shown in our earlier work (Dursun et al., 2016). However, it produces VMAT plans with small

MUs satisfying dosimetric quality levels, and this is desired very much in real clinic applications (Bilge et al., 2017).

To the best of our knowledge, our study is the first attempt to solve exactly a model in which all VMAT’s treatment

related constraints are forced to be satisfied. Our experiments show that solving our VMATP as a single MILP

formulation quickly becomes intractable as the problem size increases. Benders decomposition is an exact large-scale

optimization method that has been used to improve solvability of a wide range of difficult optimization problems

(Rahmaniani et al., 2017). A large problem is partitioned into smaller problems each considering only a subset of

variables and constraints. Since computational difficulty of solving optimization problems increases significantly

with the number of variables and constraints, solving these smaller problems iteratively can be more efficient than

solving a single large-scale problem (Taşkın, 2010). We observe that VMATP consists of two main types of decision

variables: geometry variables modeling aperture shapes, and dose variables determining the amount of radiation to

be delivered through each aperture. This model structure provides a basis for our Benders decomposition approach,

which iteratively solves a master problem to find optimal aperture shapes and a subproblem to calculate optimal doses.

In this paper, we have used Benders decomposition and developed an efficient solution algorithm after improving its

naive form by means of computational strategies.
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The rest of the paper is organized as follows. Next section summarizes the related literature concentrating on

optimization methods for IMRT and VMAT planning. In Section 3, we give the mathematical formulation of the new

MILP formulation VMATP, in detail, which is followed by Section 4 where we develop a Benders decomposition

method and explain its improvements. In Section 6, we explain the results of the application of the improved Benders

decomposition method using real prostate cancer data, and assess the efficiency of the new algorithms. Finally, we

conclude the paper in Section 7.

2. Related Works

Beam angle optimization (BAO), which is the first phase in IMRT planning, is often done manually by medical

physicists based on their experience. There are also studies where a function is defined to determine the quality of

a set of directions and this function is optimized to find the best one (Ehrgott et al., 2008). After determining the

beam angles (i.e. control points) it is possible to solve the fluence map optimization (FMO) problem, the second

phase, as a convex optimization model; it can be solved efficiently using one of the existing algorithms for convex

optimization (Papp and Unkelbach, 2014). The third phase, namely MLC leaf sequencing (MLS) problem is closely

related with VMAT treatment planning. The fluence map at a control point is decomposed into a number of apertures

with intensities, namely a nonnegative integer matrix is re-expressed as a linear combination of binary matrices with

positive integer weights. All of the binary matrices should satisfy the properties of the MLC system as the consecutive

ones property. During the decomposition of the fluence map, total delivery time (i.e. beam on time) and/or the total

number of apertures (i.e. total machine setups) are minimized (Baatar et al., 2007; Ernst et al., 2009; Mason et al.,

2012; Boland et al., 2004; Guta, 2003; Taşkın et al., 2010; Cambazard et al., 2012; Mason et al., 2015). The problem

of minimizing total delivery time, which is the time that the radiation delivery is on, consists of the minimization of

the sum of the individual intensities determined for each aperture, and it is polynomially solvable. However, in the

cardinality problem the total number of apertures is minimized and this problem is shown to be strongly NP-hard

(Baatar et al., 2005). There are also studies in the literature that integrates BAO and FMO and solve a monolithic

non-convex optimization problem to determine the beam angles and fluence maps simultaneously (Lee et al., 2003;

Bertsimas et al., 2013). Direct aperture optimization (DAO) is the name given to the integration of the last two phases

FMO and MLS. Romeijn et al. (2005); Men et al. (2007); Carlsson (2008); Salari and Unkelbach (2013); Preciado-

Walters et al. (2006) directly finds an optimal number of apertures with intensities at each one of the given beam

angles instead of finding a fluence map and then solving the realization problem sequentially. We refer the interested

reader to the excellent survey of Ehrgott et al. (2010) for more details on IMRT planning.

Rotational arc therapy was first introduced in 1995 to the literature with name Intensity Modulated Arc Therapy

(IMAT) (Yu, 1995). This method had been stagnant until VMAT technique appeared in the study of Otto (2008).

VMAT is a single-arc IMAT. It is more flexible since there are additional degrees of freedom: gantry speed and dose

rate are also variables to be optimized. There are mainly two categories of studies dealing with VMAT treatment
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planning. The members of the first group use a two-phase approach that generally starts by first identifying an optimal

IMRT treatment plan, which is comprised of fluence intensity maps at evenly spaced control points. Then this plan

is converted into a deliverable VMAT plan with an arc-sequencing approach (Cameron, 2005; Wang et al., 2008;

Luan et al., 2008; Shepard et al., 2007; Cao et al., 2009; Bzdusek et al., 2009). Converting an IMRT plan, where the

fluence maps are optimized at a small number of control points, may cause deviation in dose distribution quality of

the resulting VMAT plan, since VMAT planning problem has its own constraints on MLC movement, and during the

conversion these constraints must be satisfied. However, Craft et al. (2012), Salari et al. (2012), Wala et al. (2012)

first obtain a fine sample IMRT plan with a large number of equally spaced control points, which is then coarsened to

reduce the delivery time by maintaining the dose distribution’s quality requirements.

The studies of the second category directly optimize the leaf positions and intensities of the apertures at control

points, instead of converting a set of optimized fluence intensity maps; they are called DAO methods similar to the

ones one can face in the IMRT planning literature. The algorithms proposed in the studies of Earl et al. (2003), Otto

(2008), and Zhang et al. (2010) start with a relatively coarse sampling of the control points, and heuristic methods

are used to find the final treatment plan. Men et al. (2010) formulate a large-scale convex programming problem and

solve it by a column generation heuristic that adds aperture shapes at control points one by one while taking into

account their compatibility with the previously added ones. Peng et al. (2012) extend their formulation and approach

considering some additional physical restrictions. Papp and Unkelbach (2014) enforce unidirectional leaf motion over

an arc segment, and determine the apertures by solving a sequence of convex optimization problems. In a recent study

Mahnam et al. (2017) develop a heuristic for the VMAT planing problem where a full treatment arc is decomposed

into a number of partial arcs with the same length, and a set of apertures for each partial arc is generated as new

columns. They formulate the pricing problem as a shortest path problem and solve it using a standard shortest path

algorithm. They also assume that the MLC leaves move unidirectionally from left to right and analyze two leaf-

motion strategies. Gozbasi (2010), Akartunalı et al. (2015), and Song et al. (2015) formulate MILP models for the

VMAT planning problem in which an aperture and radiation intensity are optimized at each control point subject to the

clinical requirements. Akartunalı et al. (2015) embed the treatment requirements, except the partial volume constraints

of TVs, to their mathematical model as hard constraints, and they try to maximize total number of voxels that absorbs

at least the prescribed amount of radiation. Moreover, although they make the first step towards the development of

exact methods, they finally suggest heuristics to obtain good feasible treatment plans, which are clinically acceptable

as well. Finally, in our recent work Dursun et al. (2016) we propose two new MILP formulations for the VMAT

planning problem. They essentially differentiate in how the aperture related constraints are formulated.

3. Mathematical Formulation

A VMAT treatment plan must satisfy both radiation therapy dose prescriptions and mechanical limitations of the

linear accelerator and MLC system. Our VMAT planning model VMATP, whose preliminary version can be found
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in (Dursun et al., 2016), consists of the constraints related to these requirements and minimizes the total radiation

dose delivered during the treatment. First, we discretize continuous radiation delivery by assuming that there is a

large number of evenly spaced control points (i.e. 180) on a co-planar rotational arc. VMATP determines the aperture

shape and the amount of radiation to be delivered at each of the control points. Parameters and decision variables used

to formulate VMATP are summarized in Table 1 and Table 2, respectively. We introduce integer and binary decision

Table 1: Parameters of VMATP
Parameter Definition

i Index for an MLC row (i=1,...,m).
j Index for an MLC column ( j=0,...,n+1), 0 and n+1 are home positions of the left and the right leaves, respectively.
k Index for a control point (k=1,...,K).
t Index for a target volume (TV) (t=1,...,T ).
o Index for an organ at risk (OAR) volume (o=1,...,O).
v Index for a voxel in a volume.

VTV
t Set of voxels in TV t.

VTV Set of all voxels in all TVs, VTV =
T⋃

t=1
VTV

t .

VOAR
o Set of voxels in OAR volume o.

VOAR Set of all voxels in all OAR volumes, VOAR =
O⋃

o=1
VOAR

o .

V Set of all voxels, V = VTV ∪ VOAR.
LTV

t Lower bound for total absorbed radiation dose amount of a target voxel in TV t (in Gy).
UTV

t Upper bound for total absorbed radiation dose amount of a target voxel in TV t (in Gy).
UOAR

o Tolerance radiation dose amount of OAR volume o (in Gy).
dt The prescribed dose for TV t (in Gy).

Di jkv Dose influence matrix (in Gy/MU).
δ The maximum allowable distance (in beamlet(s)) that a leaf can move between two consecutive control points.
αTV

t The minimum ratio of voxels in TV t that receive radiation at least the prescribed dose dt .
αOAR

o The minimum ratio of voxels in OAR volume o that receive radiation at most the tolerance dose UOAR
o .

Lmu Lower bound of dose intensity at a control point (in MU).
Umu Upper bound of dose intensity at a control point (in MU).

Table 2: Variables of VMATP
Variable Definition

lik Nonnegative integer variable that represents the position of the left leaf (i.e. the last (rightmost) closed beamlet on the left side of
row i at control point k).

rik Nonnegative integer variable that represents the position of the right leaf (i.e. the first (leftmost) closed beamlet on the right side
of row i at control point k).

zi jk Binary variable, whose value is 1 if the jth beamlet of row i at control point k is open, 0 otherwise ( j=1,...,n).
muk Nonnegative continuous variable, which stands for radiation dose intensity (in MU) at control point k.
dv Nonnegative continuous variable, which represents total absorbed dose by voxel v (in Gy).

ai jk Nonnegative continuous variable used for linearization.
ξTV

t Continuous variable, which represents absorbed radiation amount by the ((1-αTV
t )|VTV

t |)th voxel in TV t receiving the lowest
radiation. The use of the variable is described in detail in constraint (19).

ξOAR
o Continuous variable, which represents absorbed radiation amount by the ((1-αOAR

o )|VOAR
o |)th voxel in OAR volume o receiving the

highest radiation. The use of the variable is described in detail in constraint (24).
xtv Artificial variable for voxel v in TV t.
yov Artificial variable for voxel v in OAR volume o.

variables to the model to represent an aperture as a binary matrix. For each row i of an aperture at control point k, lik

and rik are nonnegative integer variables that define positions of the left and right leaves respectively. Also, for each

beamlet j of row i at control point k there is a binary variable zi jk; it is set to 1 if this beamlet is open, 0 otherwise. In

Figure 6 the second row of the aperture given at Figure 4 and the corresponding decision variables are illustrated. The
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Figure 6: Row i of the aperture at control point k with decision variable values

left leaf blocks the first three beamlets and takes the value of 3, and the right leaf is at its home position so it takes the

value of n + 1 = 11 + 1 = 12.

The first mechanical constraint is associated with the MLC system. In a row of an aperture there can be at most

one open beamlet chain, which is called consecutive ones property that must be satisfied by almost all MLC systems.

We only consider this property, and refer the reader to the study of Gören and Taşkın (2015) for detailed information

about other mechanical properties of different MLC systems. Similar to the studies both in VMAT planning (e.g.

(Akartunalı et al., 2015)) and IMRT planning (e.g. Mason et al. (2012)), to ensure the consecutive ones property we

introduce the following constraints:

rik − lik ≥ 1 i = 1, . . . ,m; k = 1, . . . ,K (1)

rik − jzi jk ≥ 1 i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . ,K (2)

(n + 1 − j)zi jk + lik ≤ n i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . ,K (3)

rik − lik −
n∑

j=1

zi jk = 1 i = 1, . . . ,m; k = 1, . . . ,K (4)

l ∈ Zm×K
+ ; r ∈ Zm×K

+ ; z ∈ {0, 1}m×n×K . (5)

For a given row i at control point k, constraint (1) prevents the left and right leaves from overlapping. Constraints

(2)–(4) force all zi jk variables associated with the open beamlets between the left and right leaves to be 1. Also, as a

consequence of these constraints, the left leaf can be between 0 and n and the right leaf can be between 1 and n + 1.

Another mechanical limitation of the MLC system, which is generally taken into account in VMAT studies (e.g.

(Akartunalı et al., 2015; Song et al., 2015), is that during the rotation of the gantry, between two adjacent control

points of the arc, a leaf cannot move more than a certain distance, depending on the speed of the gantry. Namely, the

aperture shapes at two adjacent control points must be similar. We introduce the following constraints to formulate
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similarites:

li(k+1) − lik ≤ δ i = 1, . . . ,m; k = 1, . . . ,K − 1 (6)

lik − li(k+1) ≤ δ i = 1, . . . ,m; k = 1, . . . ,K − 1 (7)

ri(k+1) − rik ≤ δ i = 1, . . . ,m; k = 1, . . . ,K − 1 (8)

rik − ri(k+1) ≤ δ i = 1, . . . ,m; k = 1, . . . ,K − 1. (9)

These constraints restrict the leaves to move no more than δ beamlets between control points k and k + 1. To sum up,

as the speed of the gantry increases the amount of δ decreases and the apertures at the adjacent control points become

similar.

We have explained the geometry constraints (1)–(9) that generate a feasible aperture for each control point so far.

Now, we continue by introducing radiation delivery and treatment constraints. During the rotation of the gantry, the

linear accelerator delivers radiation continuously to the patient’s body through the aperture formed by the MLC. We

assume that the radiation delivery is realized at the control points only and lasts for a certain time. This is reasonable,

because not only the effect of radiation but also the apertures at adjacent control points are similar due to the similarity

constraints (6)–(9). In addition to the aperture shape, VMATP determines the radiation dose intensity at each control

point. Note that there is a relation between the dose rate of the linear accelerator and radiation dose intensity. The dose

rate is in monitor unit (MU) per unit time, and the dose intensity at a control point is a function of the dose rate and

gantry rotation speed (i.e. if the gantry is slow then it is possible to deliver more radiation). Dose rate and intensity

may change at control points. However, they must be within mechanical limits of the linear accelerator, which also

depends on the rotation speed. Also, we assume that the speed of the gantry is constant. We introduce a nonnegative

continuous variable muk to represent the radiation dose intensity at each control point k. We also introduce constraints

muk ≥ Lmu k = 1, . . . ,K (10)

muk ≤ Umu k = 1, . . . ,K (11)

mu ∈ RK
+ , (12)

where parameters Lmu and Umu are calculated using dose rate limits and gantry speed.

A VMAT treatment plan should also satisfy the clinical requirements, which are prescribed by the oncologists,

depending on the tumor’s type and patient’s anatomy. Generally, two types of constraints are defined for a given target:

partial volume constraints and full volume constraints. For an OAR, only partial volume constraints are prescribed.

For example, a partial volume constraint defined for a TV must satisfy that at least 95% of the volume must absorb

radiation at least as the prescribed dose. The coverage rate becomes 100% in a full volume constraint: 100% of the

volume must absorb radiation within the prescribed bounds. The body of the patient is discretized into voxels in order
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to be able to formulate these restrictions. The amount of radiation (dv) absorbed by each voxel v is calculated using

equality

dv −

K∑
k=1

m∑
i=1

n∑
j=1

Di jkvzi jkmuk = 0 v ∈ V = VTV ∪ VOAR. (13)

Note that V is the set of all voxels, namely it is union of all TVs (VTV ) and OARs (VOAR). Note also that (13)

includes nonlinear terms created by the product of binary variables z with the continuous variables mu. We use the

linearization method by McCormick (1976), which eventually forms the convex envelop of general bilinear terms, to

linearize constraint (13). We introduce auxiliary variable ai jk for each beamlet and obtain

dv −

K∑
k=1

m∑
i=1

n∑
j=1

Di jkvai jk = 0 v ∈ V = VTV ∪ VOAR (14)

ai jk ≤ Umuzi jk i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . ,K (15)

ai jk ≥ muk − Umu(1 − zi jk) i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . ,K (16)

ai jk ≤ muk i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . ,K (17)

d ∈ R|V |+ ; a ∈ Rm×n×K
+ . (18)

Now it is possible to include the clinical requirements using the total absorbed radiation dose amounts of voxels.

Similar to Romeijn et al. (2006) and Gozbasi (2010), we use Conditional Value At Risk (CVaR) approach, which

is popular in risk management (Sarykalin et al., 2008), to formulate partial-volume constraints. For each TV t the

following partial volume constraints are introduced:

ξTV
t −

1
(1 − αTV

t )|VTV
t |

∑
v∈VTV

t

xtv ≥ dt t = 1, . . . ,T (19)

xtv ≥ ξ
TV
t − dv t = 1, . . . ,T ; v ∈ VTV

t (20)

x ∈ R|V
TV |

+ ; ξTV ∈ RT . (21)

The average dose of the (1-αTV
t )|VTV

t | voxels receiving the lowest dose in TV t, namely the lower mean tail dose at

level αTV
t is forced to be at least the prescription dose. In other words, at least αTV

t |V
TV
t | voxels absorb radiation more

than or equal to dt. Furthermore, there are full volume constraints for each TV:

dv ≥ LTV
t t = 1, . . . ,T ; v ∈ VTV

t (22)

dv ≤ UTV
t t = 1, . . . ,T ; v ∈ VTV

t . (23)

Full volume constraints (22) and (23) ensure that each voxel in TV t receives radiation within its prescribed limits.
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There are only partial volume constraints for OAR volumes in VMATP. Similar to the ones defined for TVs we

introduce the following inequalities for each OAR:

ξOAR
o +

1
(1 − αOAR

o )|VOAR
o |

∑
v∈VOAR

o

yov ≤ UOAR
o o = 1, . . . ,O (24)

yov ≥ dv − ξ
OAR
o o = 1, . . . ,O; v ∈ VOAR

o (25)

y ∈ R|V
OAR |

+ ; ξOAR ∈ RO. (26)

The average dose of the (1-αOAR
o )|VOAR

o | voxels absorbing the highest doses in OAR o, namely the upper mean tail

dose at level αOAR
o is forced to be at most its tolerance dose limit UOAR

o . For details about CVaR method we refer the

reader to the study of Romeijn et al. (2006) where it is applied for developing a linear-programming-based approach

to solve FMO problem in IMRT treatment planning. Finally, the objective function

min
∑
k∈K

muk (27)

minimizes total radiation intensity (in MU) the patient receives during his/her treatment. VMATP finds an optimal

plan minimizing total dose intensity among all feasible treatment plans.

Finally, we should point out that the formulations by Gozbasi (2010), Akartunalı et al. (2015), and Song et al.

(2015) have relations with the new formulation given above. They all provide treatment plans for VMAT; but they are

all different and incomparable since they are not based on a common problem definition.

4. Benders Decomposition

Benders decomposition was proposed by Benders (1962), and has been widely used in the solution of large-scale

mathematical optimization problems. It is particularly effective for solving problems having a subset of variables that

are complicating in the sense that the problem becomes significantly easier to solve if such complicating variables are

fixed. Its ability to exploit the structure of the problem and distribute the overall computational work are key facts

behind the many successful applications of Benders decomposition (Rahmaniani et al., 2017).

The methodological frame of Benders decomposition is quite direct. Once the mathematical formulation is ob-

tained and the set of complicating variables is determined, the formulation is first projected onto the subspace of the

complicating variables. This alternative formulation, which contains only the complicating variables, is known as the

Benders reformulation of the original problem, and it can be constructed by means of the extreme points and direc-

tions of the (dual) formulation obtained by fixing the complicating variables. Since the number of extreme points and

rays of a polyhedron is exponential in general, the resulting Benders reformulation has a huge set of constraints and its

solution, when possible, is computationally very demanding. Therefore, a relaxation strategy based on the dynamic

constraint generation is applied. At each iteration a relaxation of Benders reformulation is obtained by including a

13



subset of the inequalities, namely the relaxed master problem (RMP), and solved. Then, whether the optimal solution

of the current restricted master is also optimal with respect to the rest of the inequalities that are not explicitly consid-

ered yet is tested by solving a (dual) subproblem. In case of an unfavorable response, a Benders cut is generated and

added to the restricted master. This cut is an optimality cut, if the subproblem has a finite optimum solution, since it is

constructed using the optimal solution of the subproblem. Otherwise, the subproblem is unbounded and a feasibility

cut is constructed using an extreme direction proving that it is unbounded. At every iteration a new inequality is added

to the restricted master problem until the addition of a new cut is not possible; an optimal solution of the restricted

master is also optimal for Benders reformulation.

Benders decomposition was initially proposed for MILPs, which becomes a linear program (LP) after fixing the

integer variables (i.e. complicating variables). Then, it is possible to use standard duality theory to generate the

optimality and feasibility cuts. In fact, the nature of the radiotherapy is very suitable from this perspective since

the variables used to shape the apertures in order to determine the geometry of the beam, are integer valued and the

variables used to determine the prescribed dose requirements are continuous. Once the geometry variables are fixed,

the geometry of the apertures are set and the resulting LP can be solved to determine optimal beam intensities subject

to dose inequalities. As can be observed, this partitioning strategy of the variables is also possible for our MILP

formulation for VMAT planning, i.e. VMATP. We should point out that a similar partitioning strategy is also used by

Taşkın (2010) for the MLS problem in IMRT planning, where the MLC can only form rectangular apertures.

4.1. Benders Reformulation of VMATP

We identify the binary integer variables z, which represent the beamlets of the apertures, as the complicating

variables in our model. If they are fixed, namely if we know the shape of each aperture at each control point, the dose

constraints do not include integer variables (LP). Using this observation we decompose the original problem into a

relaxed master problem and a subproblem. The relaxed master problem produces a feasible aperture at each control

point; and the subproblem calculates the optimum intensity for each one of them, namely the optimum radiation dose

that the linear accelerator delivers at each control point while considering the feasibility of the treatment plan with

respect to the clinical requirements.

Given a vector ẑ that denotes values assigned to z variables, the subproblem SP(ẑ) and its dual DSP(ẑ) can be

14



formulated as

SP (ẑ):

min
∑
k∈K

muk (27)

s.t.

dv −

K∑
k=1

m∑
i=1

n∑
j=1

Di jkvai jk = 0 v ∈ V = VTV ∪ VOAR : πv (14)

ai jk ≤ Umuẑi jk i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . ,K : β1
i jk (15)

ai jk ≥ muk − Umu(1 − ẑi jk) i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . ,K : β2
i jk (16)

ai jk ≤ muk i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . ,K : β3
i jk (17)

ξTV
t −

1
(1 − αTV

t )|VTV
t |

∑
v∈VTV

t

xtv ≥ dt t = 1, . . . ,T : θ1
t (19)

xtv ≥ ξ
TV
t − dv t = 1, . . . ,T ; v ∈ VTV

t : τ1
tv (20)

dv ≥ LTV
t t = 1, . . . ,T ; v ∈ VTV

t : ε1
tv (22)

dv ≤ UTV
t t = 1, . . . ,T ; v ∈ VTV

t : ε2
tv (23)

ξOAR
o +

1
(1 − αOAR

o )|VOAR
o |

∑
v∈VOAR

o

yov ≤ UOAR
o o = 1, . . . ,O : θ2

o (24)

yov ≥ dv − ξ
OAR
o o = 1, . . . ,O; v ∈ VOAR

o : τ2
ov (25)

muk ≥ Lmu k = 1, . . . ,K : µ1
k (10)

muk ≤ Umu k = 1, . . . ,K : µ2
k (11)

(12), (18), (21), (26),
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and

DSP (ẑ):

max
K∑

k=1

m∑
i=1

n∑
j=1

Umu(−ẑi jkβ
1
i jk + (ẑi jk − 1)β2

i jk) −
O∑

o=1

θ2
oUOAR

o +

T∑
t=1

θ1
t dt +

T∑
t=1

∑
v∈VTV

t

(LTV
t ε1

tv − UTV
t ε2

tv) +

K∑
k=1

(Lmuµ1
k − Umuµ2

k) (28)

s.t.

πv + τ1
tv + ε1

tv − ε
2
tv ≤ 0 t = 1, . . . ,T ; v ∈ VTV

t : dv (29)

πv − τ
2
ov ≤ 0 o = 1, . . . ,O; v ∈ VOAR

o : dv (30)

−
∑
v∈V

Di jkvπv − β
1
i jk + β2

i jk − β
3
i jk ≤ 0 i = 1, . . . ,m; j = 1, . . . , n;

k = 1, . . . ,K : ai jk (31)

−

m∑
i=1

n∑
j=1

(β2
i jk − β

3
i jk) + µ1

k − µ
2
k ≤ 1 k = 1, . . . ,K : muk (32)

− θ2
o +
∑

v∈VOAR
o

τ2
ov = 0 o = 1, . . . ,O : ξOAR

o (33)

θ1
t −
∑

v∈VTV
t

τ1
tv = 0 t = 1, . . . ,T : ξTV

t (34)

−
1

(1 − αOAR
o )|VOAR

o |
θ2

o + τ2
ov ≤ 0 o = 1, . . . ,O; v ∈ VOAR

o : yov (35)

−
1

(1 − αTV
t )|VTV

t |
θ1

t + τ1
tv ≤ 0 t = 1, . . . ,T ; v ∈ VTV

t : xtv (36)

π ∈ R|V |;β1
∈ Rm×n×K

+ ;β2
∈ Rm×n×K

+ ;β3
∈ Rm×n×K

+ ; (37)

θ1 ∈ RT
+; θ2 ∈ RO

+ ; τ1 ∈ R|V
TV |

+ ; τ2 ∈ R|V
OAR |

+ ;

ε1 ∈ R|V
TV |

+ ; ε2 ∈ R|V
TV |

+ ;µ1 ∈ RK
+ ;µ2 ∈ RK

+ .

Extreme points and extreme directions of the dual polyhedron are used to construct Benders reformulation of

the original problem. Suppose that ∆ and Ω denote the set of extreme points and the set of extreme directions of

the dual polyhedron, respectively. We further define f (β1,β2, θ1, θ2, ε1, ε2,µ1,µ2) =
∑K

k=1
∑m

i=1
∑n

j=1 Umu(−zi jkβ
1
i jk +

(zi jk − 1)β2
i jk) −

∑O
o=1 θ

2
oUOAR

o +
∑T

t=1 θ
1
t dt +

∑T
t=1
∑

v∈VTV
t

(LTV
t ε1

tv − UTV
t ε2

tv) +
∑K

k=1(Lmuµ1
k − Umuµ2

k) and the Benders
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reformulation of VMATP becomes

min η (38)

s.t.

(1) − (9) and

f (β1,β2, θ1, θ2, ε1, ε2,µ1,µ2) ≤ η β1,β2, θ1, θ2, ε1, ε2,µ1,µ2 ∈ ∆ (39)

f (β1,β2, θ1, θ2, ε1, ε2,µ1,µ2) ≤ 0 β1,β2, θ1, θ2, ε1, ε2,µ1,µ2 ∈ Ω (40)

η ≥ 0. (41)

We introduce a new variable η representing the total radiation intensity, which is the objective function of the subprob-

lem. Since 0 is a feasible solution of the dual problem, the lower bound of η is set to 0. Constraints (1)–(9) determine

a feasible aperture shape for each control point. Constraints (39) are Benders optimality cuts and constraints (40) are

Benders feasibility cuts and they all represent the subproblem. In the naive form of Benders decomposition, initially

all Benders cuts are relaxed and the resulting RMP is solved iteratively. In each iteration either an optimality cut or

feasibility cut is added to the RMP, which is re-solved until the stopping condition is satisfied.

Our preliminary results show that the naive form is inferior according to the computation time and solution quality.

The most important reason of the time consumption is that in each iteration RMP is solved from scratch after adding

a new inequality (i.e. a new Benders cut). Even though solving RMP optimally and generating a cut for the optimal

solution may yield strong cuts, solution time increases as the number of Benders cuts, and thus the size of RMP,

increases. Another drawback of the naive implementation is that the lower bound improves very slowly. A feasible

solution for the whole problem may not be obtained within a reasonable amount of time, since the number of feasible

RMP solutions, namely feasible MLC combinations according to aperture shape (i.e. geometry) constraints, is very

large.

5. Algorithmic and Modeling Improvements

5.1. Valid Inequalities

In the Benders reformulation the objective function (27) is removed since it belongs to the subproblem. Also,

initial lower bound of the master objective value is set to zero since 0 is a trivial feasible solution of the dual problem.

This causes a large optimality gap at the beginning, which slowly gets smaller as Benders cuts are added. To address

this issue, we aim to discard some of the master solutions that are infeasible for the whole problem. We observe that,

if a master solution (an aperture per control point) does not have enough capacity to deliver enough radiation such that

each voxel of TV t absorbs at least LTV
t amount of radiation, this solution cannot be feasible for the whole problem.
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Hence, we can eliminate such solutions at the beginning by adding inequalities

K∑
k=1

m∑
i=1

n∑
j=1

zi jkDi jkvUmu ≥ LTV
t t = 1, . . . ,T ; v ∈ Vt (42)

to the RMP. Recall that the parameter Umu is the maximum radiation intensity that linear accelerator can deliver at a

control point. However, according to our preliminary experiments, we note that the improvement due to these valid

inequalities is not significant. Thus, we introduce to RMP new surrogate decision variables (a continuous variable

a per beamlet and a continuous variable mu per control point), and related constraints similar to those in the whole

problem. As a result, we add the following inequalities instead:

ai jk ≤ Umuzi jk i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . ,K (43)

ai jk ≤ muk i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . ,K (44)
K∑

k=1

m∑
i=1

n∑
j=1

ai jkDi jkv ≥ LTV
t t = 1, . . . ,T ; v ∈ Vt (45)

η ≥

K∑
k=1

muk. (46)

Note that constraints (43) and (44) are similar to the linearization constraints (15) and (17) in the VMATP, however

(16) is relaxed. The addition of inequalities (45) to RMP guarantees that in any master solution each target voxel

absorbs radiation no less than the prescribed lower bound. Benders optimality cuts ensure that η is at least as large as

the objective function value of DSP for a given master solution, namely the minimum total radiation dose intensity

in a feasible treatment. Constraint (46) is valid, and it improves lower bound effectively, since the minimum total

radiation dose is found considering only target voxels in this extended master problem, and this amount can be at

most the minimum total radiation dose calculated by solving DSP. Finally, we do not have to add constraint set (42)

anymore, since it is replaced by (45), which is tighter. These extensions make the master problem harder to solve.

However, according to our preliminary observations, they significantly improve the lower bound and performance of

the Benders decomposition algorithm as a consequence. Thus, in the final form of the method we add constraints

(43)–(46) to the master problem. These inequalities contain some information about the original objective function

that we project out, and cuts some of the master solutions that are not feasible for the whole treatment.

5.2. Strong Benders Cuts

Stronger Benders cuts may improve the lower bound faster and help for the rapid convergence to optimality. For

the optimization problem miny∈Y,w∈R{w : f (u) + yg(u) ≤ w,u ∈ U} the cut w ≥ f (u1) + yg(u1) (is stronger than) and

dominates the cut w ≥ f (u2) + yg(u2), if f (u1) + yg(u1) ≥ f (u2) + yg(u2), y ∈ Y and there is at least one y ∈ Y which

makes this inequality strict. A cut is called strong or pareto-optimal if it is not dominated by any other cut (Magnanti
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and Wong, 1981). Note that it is possible to generate multiple Benders optimality cuts for a given master problem

solution, because DSP may have alternative optimal solutions. Van Roy (1986) indicates that a cut derived from a

particular dual optimal solution is strong if it is not dominated by a cut derived from any other dual optimal solution,

and presents a two-phase approach to strengthen a Benders cut. We apply this approach to our problem. Observe

that given a master solution ẑ, the value of dual variable β1
i jk with zero coefficient does not have any impact on the

optimum objective value of DSP. Hence, we can modify β1
i jk without changing the value of the objective function

(28) when ẑi jk = 0. We can modify β2
i jk similarly when ẑi jk = 1. Note that feasibility must be maintained during

these modifications. Let Z be the index set of all beamlets at all control points, namely the set of all (i, j, k) index

combinations. Also let Z0 ⊆ Z be the index set of beamlets where ẑi jk = 0 and Z1 ⊆ Z be the index set of beamlets

where ẑi jk = 1 in the master solution ẑ. First, we solve DSP and find an optimal dual solution. Then, dual variables are

fixed at their optimal values except β1 and β2 with zero coefficients in the optimal objective, and β3. In other words,

we determine new values of β1
i jk, (i, j, k) ∈ Z0, and β2

i jk, (i, j, k) ∈ Z1 by solving the following reduced DSP

RDSP (π̂, µ̂1, µ̂2, β̂
1
, β̂

2
):

max
K∑

k=1

m∑
i=1

n∑
j=1

(−β1
i jk − β

2
i jk) (47)

s.t.

−
∑
v∈V

Di jkvπ̂v − β
1
i jk + β2

i jk − β
3
i jk ≤ 0 i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . ,K (48)

−

m∑
i=1

n∑
j=1

(β2
i jk − β

3
i jk) + µ̂1

k − µ̂
2
k ≤ 1 k = 1, . . . ,K (49)

β1
i jk = β̂1

i jk (i, j, k) ∈ Z1 (50)

β2
i jk = β̂2

i jk (i, j, k) ∈ Z0 (51)

β1
∈ Rmn|K|

+ ;β2
∈ Rmn|K|

+ ;β3
∈ RmnK

+ . (52)

In other words, we lift some of the z variables in the associated Benders cut without changing the objective function

of DSP or violating the feasibility. Therefore, we obtain a strong Benders cut, since none of the cuts derived from

an alternative optimal solution dominates (or is stronger than) this resulting one (Van Roy, 1986; Üster and Agrahari,

2011). It is worth noting that, in these studies, after setting unmodifiable dual variables to their optimal values, the

remaining problem can be decomposed into subproblems and solved efficiently. Unfortunately, this is not possible in

our case. Constraints (49) do not allow such decomposition. There exist other studies in the literature considering the

use of strong cuts in Benders decomposition (Adulyasak et al., 2015; Lin, 2014).
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5.3. Minimal Infeasible Subsystems and New Benders Cut Selection Strategy

We observe that it can take a long time to generate a feasibility cut during the initial iterations for large problem

instances. There is a relatively new approach in the literature for generating Benders cuts (Fischetti et al., 2010) and

stronger combinatorial cuts (Codato and Fischetti, 2006; Taşkın and Cevik, 2013). According to this approach it is

possible to determine unbounded directions of a problem using an alternative polyhedron that is bounded. Fischetti

et al. (2010) show that Benders subproblem can be converted into a pure feasibility problem, and that it is possible

to obtain both feasibility and optimality cuts solving an alternative problem derived from this extended subproblem.

Given a master solution (ẑ, η̂), the pure feasibility subproblem (PFSP) becomes

PFSP (ẑ, η̂):∑
k∈K

muk ≤ η̂ : π0 (53)

(10) − (12), (14) − (26),

where π0 is the dual variable associated with (53). Observe that if (ẑ, η̂) is feasible for PFSP, then it is optimal for

VMATP problem. Thus, a violated cut can be generated if and only if PFSP is infeasible, or equivalently, if its dual

problem is unbounded. The dual of PFSP (DPFSP) can be written as

DPFSP (ẑ, η̂):

max
K∑

k=1

m∑
i=1

n∑
j=1

Umu(−ẑi jkβ
1
i jk + (ẑi jk − 1)β2

i jk) −
O∑

o=1

θ2
oUOAR

o + (54)

T∑
t=1

θ1
t dt +

T∑
t=1

∑
v∈VTV

t

(LTV
t ε1

tv − UTV
t ε2

tv) +

K∑
k=1

(Lmuµ1
k − Umuµ2

k) − π0η̂

s.t.

−

m∑
i=1

n∑
j=1

(β2
i jk − β

3
i jk) + µ1

k − µ
2
k − π0 ≤ 0 k = 1, . . . ,K (55)

π0 ∈ R+ (56)

(29) − (31), (33) − (37).

Note that 0 is the trivial solution of DPFSP. Therefore, for a given master solution (ẑ, η̂) if PFSP is infeasible, then

associated DPFSP is unbounded. Given a ray (π̂, β̂
1
, β̂

2
, β̂

3
, θ̂

1
, θ̂

2
, τ̂1, τ̂2, ε̂1, ε̂2, µ̂1, µ̂2, π̂0) of DPFSP the associated
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cut is:

K∑
k=1

m∑
i=1

n∑
j=1

Umu(−zi jkβ̂
1
i jk + (zi jk − 1)β̂2

i jk) −
O∑

o=1

θ̂2
oUOAR

o + (57)

T∑
t=1

θ̂1
t dt +

T∑
t=1

∑
v∈VTV

t

(LTV
t ε̂1

tv − UTV
t ε̂2

tv) +

K∑
k=1

(Lmuµ̂1
k − Umuµ̂2

k) − π̂0η ≤ 0.

Furthermore, the unbounded objective function is set to 1 for normalization as done by Gleeson and Ryan (1990), and

K∑
k=1

m∑
i=1

n∑
j=1

Umu(−ẑi jkβ
1
i jk + (ẑi jk − 1)β2

i jk) −
O∑

o=1

θ2
oUOAR

o + (58)

T∑
t=1

θ1
t dt +

T∑
t=1

∑
v∈VTV

t

(LTV
t ε1

tv − UTV
t ε2

tv) +

K∑
k=1

(Lmuµ1
k − Umuµ2

k) − π0η̂ = 1

(29) − (31), (33) − (37), (55) − (56)

is the resulting alternative polyhedron. The alternative problem (AP)

AP (ẑ, η̂):

min π0 (59)

s.t.

(29) − (31), (33) − (37), (55) − (56), (58)

minimizes π0 over this polyhedron and we solve AP instead of DSP in Benders iterations to generate Benders cuts.

Fischetti et al. (2010) state that when the objective of this problem is to minimize only π0 then the original Benders’

dual problem (DSP) arises. They also state that a feasibility cut or an optimality cut is generated depending on the

optimal value of π0: π̂0 = 0 implies a feasibility cut since DSP(ẑ) is unbounded. Observe that an optimal solution

(π̂, β̂
1
, β̂

2
, β̂

3
, θ̂

1
, θ̂

2
, τ̂1, τ̂2, ε̂1, ε̂2, µ̂1, µ̂2, π̂0 = 0) of AP that satisfies constraints (55) and (58) provides an unbounded

direction for DSP(ẑ). It can be shown that for any λ > 0, (λπ̂, λβ̂
1
, λβ̂

2
, λβ̂

3
, λθ̂

1
, λθ̂

2
, λτ̂1, λτ̂2, λε̂1, λε̂2, λµ̂1, λµ̂2) re-

mains feasible for DSP(ẑ) (since constraint (32) remains feasible in addition to other constraints of DSP(ẑ)) and objec-

tive value becomes λ. If π̂0 > 0 then (π̂/π̂0, β̂
1
/π̂0, β̂

2
/π̂0, β̂

3
/π̂0, θ̂

1
/π̂0, θ̂

2
/π̂0, τ̂

1/π̂0, τ̂
2/π̂0, ε̂

1/π̂0, ε̂
2/π̂0, µ̂

1/π̂0, µ̂
2/π̂0)

is an optimal solution for DSP(ẑ) with optimal objective value 1/π̂0 + η̂. Observe that we can derive a feasible solution

for DSP(ẑ) from each one of the feasible solutions of AP(ẑ, η̂) where π̄0 > 0 dividing this solution by π̄0. The optimal

(minimum) objective value of AP(ẑ, η̂) is π̂0, hence we reach an optimal solution with maximum objective value of

DSP(ẑ). Additionally, we can solve RDSP using this optimal solution and generate pareto-optimal cuts.
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5.4. Combinatorial Benders Cut

Combinatorial Benders decomposition is an extension of traditional Benders decomposition method, where the

problem is again decomposed into an integer programming master problem and a linear programming subproblem.

Rahmaniani et al. (2017) explain the difference between the two methods and state that combinatorial Benders de-

composition does not use the dual information to generate cuts. The master problem is a binary integer programming

problem (BIP) and when the subproblem is infeasible a combinatorial Benders cut similar to (60) is derived and used

as a feasibility cut.

Assume that for a given feasible master solution ẑ, it is not possible to find a feasible treatment, which means

the subproblem is infeasible. In this case, another valid inequality may be generated according to the following

observation: the subproblem may be infeasible with respect to partial-volume constraints (19)–(20) associated with a

TV, OAR (24)–(25), or both. For these cases, to repair infeasiblity, we should do at least one of the following: open at

least one of the closed beamlets, close at least one of the open beamlets, or both. Furthermore, the candidate beamlet

(ẑi jk) to open or close must have positive effect on at least one voxel. Namely, the entries of the D matrix must be

“strictly” positive for at least one v (otherwise, they will be all zero for a specific combination of i, j, k and hence can

be removed). Let I ⊆ Z be the index set of the beamlets having strictly positive effect on at least one voxel, namely

I = {(i, j, k) : Di jkv > 0, v ∈ V}. Hence, we can add the combinatorial cut

∑
ẑi jk=0

(i, j,k)∈I

zi jk +
∑

ẑi jk=1
(i, j,k)∈I

(1 − zi jk) ≥ 1. (60)

to the RMP each time an infeasible solution is obtained.

This cut is not tight according to our preliminary results obtained on random samples. Thus, as in the study of

Taşkın and Cevik (2013), we find a minimal infeasible system (MIS) of the subproblem when an infeasible solution is

detected. Gleeson and Ryan (1990) show that there is one-to-one correspondence between MISs of an infeasible linear

system and the supports of vertices of the related alternative polyhedron. Thus, solving AP instead of the original dual

problem not only provides Benders cuts, but also detects an MIS each time π0 is found to be zero. Let Z∗ ⊆ Z be the

index set of the beamlets that are associated with the MIS corresponding to ẑ. The cut (60) is revised so that it only

has z variables in I ∩ Z∗:

∑
ẑi jk=0

(i, j,k)∈I∩Z∗

zi jk +
∑

ẑi jk=1
(i, j,k)∈I∩Z∗

(1 − zi jk) ≥ 1. (61)

In the final version of our Benders decomposition algorithm, each time a Benders feasibility cut is added to the master

problem we also add a constraint of type (61). The resulting Benders algorithm including the improvement strategies

explained so far is given in Figure 7 within the dotted frames. We refer to this algorithm as Improved Benders

Algorithm 1.
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In addition to these strategies, we also use a single branch-and-bound tree, which has received widespread attention

in the literature recently (Lin, 2014; Taşkın and Cevik, 2013). Even though it is not proved theoretically that using

this strategy outperforms the naive form, practical results reveal its superiority. In the naive form, each time a Benders

cut is added to RMP it is solved from scratch. This makes Benders decomposition more and more expensive as the

number of cuts increases. Instead, we solve RMP using only one branch and bound tree using the solver’s callback

mechanism. In our implementation each time a new incumbent is found a new Benders cut is generated and added to

RMP or otherwise the incumbent is accepted.

We observe an important difference between in the implementation of the new cut selection strategy explained

in Section 5.3. In the naive form of Benders decomposition, if RMP returns a solution (ẑ, η̂) which is found to be

feasible for SP, an optimality cut is added to RMP and the upper bound of the entire algorithm is updated. Thus, if the

same solution is chosen by RMP for the second time with the updated objective value (ẑ, η̄), the lower bound and the

upper bound of the problem are equal. The reason is that RMP is solved to optimality in each iteration and its optimal

objective value always provides a lower bound for the whole problem. Therefore, when PFSP becomes feasible, AP

becomes infeasible, the optimality gap becomes zero and the algorithm stops. On the other hand, in the callback

implementation when an incumbent solution (ẑ, η̂) is obtained for the first time, which is found to be feasible for SP

also, similarly an optimality cut is added to RMP. However, an incumbent solution does not provide a lower bound for

the whole problem, if it is not optimal, as in the naive implementation; but if it is returned one more time, it is certain

that the current upper bound in the branch and bound is higher than the objective value of this solution. Otherwise,

the associated search node of the branch and bound tree would have been pruned. Re-obtaining an incumbent solution

means that the callback can accept it and update the upper bound. In summary if PFSP is feasible, AP is infeasible,

then the algorithm does not stop and continues until the optimality gap falls below a certain level.

5.5. A Relaxation of VMATP

According to the results of the algorithm obtained by implementing the improvement strategies explained so far

we can say that the lower bound is not strong. To rectify this, we relax VMATP model by removing the geometry

constraints and solve the resulting relaxation (RVMATP)

RVMATP:

min
∑
k∈K

muk (27)

(10) − (12); (14); (17) − (26).

Note that RVMATP is an LP model. As we also discuss in Section 6, the lower bound obtained solving this relaxation

is remarkably stronger and improves the optimality gap. However, since we relax the geometry constraints, it is not

possible to obtain the exact information about the aperture shapes. Hence, the lower bound obtained by this relaxed

model can only be used to calculate the optimality gap. Nevertheless, the optimal solution of RVMATP gives the
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radiation dose intensity at each of the control points, given these radiation intensities we can try to determine a feasible

solution for the LP relaxation of VMATP (LPVMATP). If LPVMATP is feasible for the given radiation intensities, we

have enough information about the aperture shapes (i.e. values for ẑ variables) to generate a cut. Notice that these ẑ

variables can be fractional; but still given fractional ẑ values, we solve DSP to obtain an optimality cut (39), which we

add to RMP at the beginning of the callback implementation. The fractional ẑ vector changes the objective function

of DSP only and gives another extreme point in its feasible region. The optimality cut obtained using this extreme

point is valid for the LP relaxation of RMP, thus it is also valid for RMP. We call the resulting algorithm as Improved

Benders Algorithm 2, which we illustrate in Figure 7 by appending the steps remaining outside the dotted frames.

6. Computational Results

6.1. Test Bed

We use a real data set belonging to an anonymous prostate patient from the Common Optimization for Radiation

Therapy (CORT) datasets provided by Craft et al. (2014). The dataset contains beams for 180 equispaced co-planar

beam angles (control points). There are 13 rows and 16 columns in the MLC. The size of each beamlet is 1 cm2,

and there are 25,404 beamlets in total. Furthermore, there are 9 different volumes: 2 TVs (PTV 68 and PTV 56), 5

OARs (bladder, left femoral head, right femoral head, penile bulb, and rectum), and 2 other tissues (prostate bed and

lymph), which are not taken into consideration in the experiments, since they are covered by target and irradiated.

The prescription doses of the TVs are different; the highest prescription dose target is called PTV 68 and the lowest

prescription dose target is called PTV 56. The total number of voxels in the patient is 690,373 and the voxels are of

size 3x3x3 mm3. The size of the original data is very large and none of the optimization models and algorithms we

discuss in this paper is able to find feasible solutions. Therefore, we reduce the size of the problem. To this end we

only change the size of the patient’s body and keep other parameters such as the total number of control points, the

total number of beamlets, etc. same as in the original data. We assume that there is only one TV (PTV 68) and one

OAR. Instead of considering only one of them we combine all OARs into a single volume. Another approach for

reducing the size of the problem is to use down-sampled voxels. We randomly select a number of voxels from each

of the structures as given in Table 3 and obtain the sampled data sets used in the computational experiments.

Table 3: Number of voxels in the complete data set and reduced data sets

REGION Complete Data v-22 v-44 v-66 v-88 v-220 v-660 v-880 v-1100 v-1301 v-1501 v-1701
PTV 68 6770 10 20 30 40 100 300 400 500 600 700 800
Bladder 11596 4 8 12 16 40 120 160 200 240 280 320
Left f. h. 5857 2 4 6 8 20 60 80 100 120 140 160
Right f. h. 5974 2 4 6 8 20 60 80 100 120 140 160
Penile b. 101 2 4 6 8 20 60 80 100 101 101 101
Rectum 1764 2 4 6 8 20 60 80 100 120 140 160
TOTAL 32062 22 44 66 88 220 660 880 1100 1301 1501 1701
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Figure 7: Improved Benders decomposition algorithms
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There are 11 different data sets with different names. For example, the data set v-22 consists of two structures

and there are 22 voxels: 10 voxels are randomly selected from PTV 68 and 12 voxels are randomly selected from

the OARs as shown in the third column of Table 3. Note that we select the voxels from the regions of the OARs that

do not intersect with PTVs. There are 180 control points and 25,404 beamlets as in the original data. We generate 5

different instances for each size, which makes 55 instances in total, to be used in the computational experiments.

6.2. Computational Experiments

We implemented all algorithms and optimization models in Python 2.7 programming language (Python, 2015)

and used Gurobi 6.5 solver (Gurobi, 2016) running on a computer with Windows Server 2012 R2 Standard 64-bit PC

with 2.00 GHz Intel Xeon CPU, 46 GB RAM. For each size of data sets we generated 5 different samples from the

real data, and solved VMATP by Gurobi, naive Benders algorithm, and the two improved Benders algorithms. We

report CPU time and optimality gap for each run. We set a limit of 3600 seconds on the running time and executed

all algorithms on one thread. We changed the default method for the RVMATP and AP models in improved Benders

algorithms and solved them by barrier algorithm. Also we set the “MIPFocus” parameter value of the master model

in all Benders algorithms to 3 to focus on the bound. We executed Gurobi solver with the default settings and did not

perform any parameter tuning while solving VMATP.

We assume that between two consecutive control points a leaf can move at most 2 beamlets and set δ = 2. αOAR
1

and αTV
1 are set to be 0.40 and 0.95, respectively. We also set the number of fractions of radiation therapy 34, where

for one fraction d1, UTV
1 , LTV

1 , and UOAR
1 are set to 2 Gy, 2.14 Gy, 1.9 Gy, and 1.47 Gy respectively (i.e. total values

for 34 fractions are 68 Gy, 72.76 Gy, 64.6 Gy, and 50 Gy). We also assume that the gantry speed is constant and let a

tour be completed in 3 minutes. The maximum dose rate of a linear accelerator is generally 600 MU/min, therefore

dose rate can be at most 10 MU/second, and dose intensity can be at most 10 MU at a control point.

Table 4 summarizes the computational results; it includes the average optimality gap (%) and the average CPU

time (second) of five instances of each size. Also, the column with title “S/T” shows the number of instances that

the corresponding method finds a feasible solution out of five instances. It is not possible to calculate optimality gap

whenever a method cannot find a lower bound and/or an upper bound for a test instance. In order to be able to calculate

average optimality gaps we assume that the lower bound of the objective value is 0. This is reasonable because the

radiation intensity at a control point is within (0, 10). We accept the optimality gaps of such instances be 100%.

Similarly, the upper bound on the objective value is 1800 since total number of control points is 180. Thus, whenever

a method cannot provide an upper bound for a test instance we calculate the optimality gap by setting its upper bound

to 1800. Detailed results including bounds, optimality gap (%) and CPU time (second) of each instance can be found

in Appendix 1. According to the results naive Benders decomposition fails in both performance measures compared

to others. It can only find a feasible solution with high total radiation for some instances. For all instances the

lower bound remains at zero level, which means an optimality gap of 100%. On the other hand, Gurobi outperforms

naive and improved Benders algorithms in both performance measures when the size of instances are small (i.e. total
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number of voxels is less than or equal to 220). Note that the difference between the average optimality gaps obtained

by Gurobi and Improved Benders Algorithm 2 is not significant. As the size of the problem increases Gurobi cannot

find a feasible solution for some of the instances within the given time limit. For example, it can compute a feasible

solution only two out of five instances having 880 voxels to optimality, but it can neither find a feasible solution nor

a lower bound for the remaining three instances. On the other hand, improved Benders algorithms can find feasible

solutions for all instances with small average optimality gaps (3.12% and 3.23%, respectively), which indicates that a

high-quality plan is found for each instance. Furthermore, for only one instance (out of five) with size 1501 voxels,

the improved Benders algorithms cannot find a feasible solution.

When we compare improved Benders algorithms, we observe that finding a better lower bound by solving the

relaxation (RVMATP) and also introducing the initial optimality cut derived from an optimal solution of LPVMATP

improves the performance of Benders algorithm. The CPU times are similar and neither one outperforms the other.

However, optimality gaps decrease in almost all problems in the Improved Benders Algorithm 2. For instance, the

average gap is 13.59% for the problem having 1701 voxels and decreases down to 0.49%. The reason is that in almost

all problems the lower bound is close to the optimal objective value in the Improved Benders Algorithm 2. Also, it

can provide feasible solutions that are very close to the optimal value for almost all large problems, but still it cannot

solve them to optimality within the time limit. Nevertheless, we can conclude that Improved Benders Algorithm 2 is

capable of finding good treatment plans even for larger problem instances. There are also other studies that use CORT

datasets in VMAT planning within a different settings such as (Mahnam et al., 2017; Balvert et al., 2017; Balvert and

Craft, 2017)). They all provide treatment plans satisfying different set of constraints and minimizing or maximizing

different objective functions, which makes them incomparable.

Table 4: Average results

Gurobi Naive Benders A. Impr. Benders A. 1 Impr. Benders A. 2
# OF VOXELS GAP CPU S/T* GAP CPU S/T* GAP CPU S/T* GAP CPU S/T*

22 0.00 62.4 5/5 100 3600 4/5 0.00 1502.3 5/5 0.00 112.2 5/5
44 0.00 63.1 5/5 100 3600 5/5 0.00 245.6 5/5 0.00 627.8 5/5
66 0.01 809.8 5/5 100 3600 3/5 2.33 2330.8 5/5 0.14 1884.2 5/5
88 0.00 104.8 5/5 100 3600 1/5 0.00 243.4 5/5 0.00 826.9 5/5

220 0.00 1455.0 5/5 100 3600 2/5 0.61 1661.9 5/5 0.02 1187.1 5/5
660 20.00 2437.2 4/5 100 3600 2/5 6.12 3333.7 5/5 0.22 3585.9 5/5
880 66.67 3067.1 2/5 100 3600 0/5 3.12 3600 5/5 3.23 3600 5/5
1100 40.00 2690.6 3/5 100 3600 0/5 4.64 3600 5/5 0.96 3600 5/5
1301 40.00 2930.6 3/5 100 3600 1/5 3.21 3600 5/5 0.34 3600 5/5
1501 60.00 2861.8 2/5 100 3600 0/5 19.38 3600 4/5 18.43 3600 4/5
1701 40.00 2286.3 3/5 100 3600 0/5 13.59 3600 5/5 0.49 3600 5/5

7. Conclusions

VMAT treatment planning is an important but difficult issue in cancer treatment. It is challenging to develop good

formulations and efficient methods that solve the problem exactly and find good treatment plans. To this end we first
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formulate a MILP model, which is new in a couple of aspects. First of all the decision variables to formulate an

aperture and structure of the corresponding technical constraints are new. Also, it has all partial-volume and full-

volume constraints, and does not try to find a feasible treatment by minimizing total overdose of OAR or underdose of

TV. Instead, our objective is to find a solution that delivers as little radiation as possible to the patient. To the best of

our knowledge, this objective has not been used before in any VMAT planning. Furthermore, we propose two efficient

Benders decomposition algorithms for the exact solution of the model. A real clinical data is used to compare Gurobi

with the naive and improved Benders algorithms regarding solution time and optimality gap. Since, it is not possible

to solve the problem either by Gurobi or Benders decomposition algorithms using original size of data, we coarse

it by randomly sampling voxels in all volumes. We generated a data set consisting of 55 instances, 5 for each of 11

different sample sizes. Our improved Benders algorithms are able to find feasible solutions almost for all instances and

Improved Benders Algorithm 2 provides smaller optimality gap than Improved Benders Algorithm 1 in all instances

(with the notable exception of 880-5), within the time limit of 3600 seconds. However, Gurobi can neither provide

a finite lower bound nor find a feasible solution in many instances. Our results point out that VMAT planning is a

promising new research area for the application of mathematical optimization techniques and there is possibility to

develop exact methods which can determine optimal treatment plans. The problems are large scale, which makes the

use of the new decomposition strategies and their contributions with heuristic approaches as potential future research.
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