
Constructing extremal triangle-free graphs using integer

programming

Ali Erdem Banak, Tınaz Ekim, Z. Caner Taşkın
Boğaziçi University, Department of Industrial Engineering

August 20, 2023

Abstract

The maximum number of edges in a graph with matching number m and maximum degree
d has been determined in [1] and [2], where some extremal graphs have also been provided.
Then, a new question has emerged: how the maximum edge count is affected by forbidding some
subgraphs occurring in these extremal graphs? In [3], the problem is solved in triangle-free graphs
for d ≥ m, and for d < m with either Z(d) ≤ m < 2d or d ≤ 6, where Z(d) is approximately
5d/4. The authors derived structural properties of triangle-free extremal graphs, which allows us
to focus on constructing small extremal components to form an extremal graph. Based on these
findings, in this paper, we develop an integer programming formulation for constructing extremal
graphs. Since our formulation is highly symmetric, we use our own implementation of Orbital
Branching to reduce symmetry. We also implement our integer programming formulation so that
the feasible region is restricted iteratively. Using a combination of the two approaches, we expand
the solution into d ≤ 10 instead of d ≤ 6 for m > d. Our results endorse the formula for the
number of edges in all extremal triangle-free graphs conjectured in [3].

Keywords: Extremal graphs; factor-critical; integer programming; orbital branching.

1 Introduction

Extremal graph theory studies how big or small a graph parameter (usually the number of edges
or vertices) can be under some local constraints. A graph that is an optimal solution of such a
maximization or minimization problem is called an extremal graph. Turan’s graphs are one of the best
known examples of extremal graph theory results [4]. The extremal problem of maximizing the number
of edges in a graph while limiting the size of a maximum matching and the maximum degree has been
first posed by Erdös and Rado [5] in a more general context. This question has been first answered by
Chvátal and Hanson in [1] using some optimization techniques and Berge’s matching formula. Later,
Balachandran and Khare [2] provided a constructive proof for the same problem. The authors describe
some extremal graphs having three types of components, namely star graphs, complete graphs, and
almost complete graphs (which contain C4’s, that is induced cycles of length 4). This construction
paves the way for new variants of the problem; how the maximum number of edges will be affected if
we exclude one type of component described in [2]? Accordingly, one can consider the same extremal
problem for graphs (independently) restricted to be claw-free, which forbids the smallest star graph;
triangle-free, which forbids the smallest complete graph; or C4-free, which forbids almost-complete
graphs.

Dibek, Ekim, and Heggernes studied claw-free graphs and settled the discussion by showing the
cases where the maximum number of edges achieves the maximum number for general graphs and
where it is strictly less (than for the general case) [6]. Blair, Heggernes, Lima, and Lokshtanov worked
on chordal graphs, which exclude C4’s and therefore almost-complete graphs. They show that the
maximum edge count in chordal graphs is the same as the general graphs [7]. Similarly, Maland [8]
answers the question on bipartite graphs, split graphs, disjoint union of split graphs, and unit interval
graphs.

Triangle-free graphs have been considered from the same perspective by Ahanjideh, Ekim, and
Yıldız in [3]. In their study, the authors provided some partial answers to the extremal problem, which

1

is thus not completely solved yet. The authors constructed extremal graphs for all d ≥ m. For the cases
with d < m, they solved the problem for either d ≤ 6 or Z(d) ≤ m < 2d where Z(d) is approximately
5d/4. Consequently, the cases with d ≥ 7 for either m ≥ 2d or d < m < Z(d) are left open in [3].
Nevertheless, the authors derived some structural results that shed light on these open cases: For all
natural numbers d ≥ 2 and m, there exists an extremal graph whose components are either star graphs
or factor-critical triangle-free extremal graphs with maximum degree d and matching number between
d and Z(d). This result implies that to construct extremal graphs for 2d ≤ m, it is sufficient to find
extremal components, that is, extremal graphs with matching number between d and Z(d) and decide
how many of each one of those components and how many star graphs should be taken. This problem
is then expressed as a Knapsack Formulation where the total volume is m, individual volumes are
the matching numbers of each extremal component, and utilities are maximum edge counts in each
extremal component.

Following the above observation, in this paper, we focus on the computation of maximum edge
counts in extremal components and propose integer programming approaches to find them. To the best
of our knowledge, the use of integer programming formulations in the construction of extremal graphs
is rather new. A few exceptions are the recent paper on Ramsey numbers to improve the known lower
bounds [9] and the construction of (small) extremal chemical graphs with given number of vertices
and/or degrees optimizing some invariants [10], [11]. In Section 2, we introduce the notation and
mention the known results for general graphs and triangle-free graphs. We also provide the knapsack
formulation in [3] to compute the max edge counts for d ≥ 7 and m ≥ 2d. We state Conjecture
2.1 and Conjecture 2.2, giving the formula for the max edge counts of extremal components and all
triangle-free extremal graphs respectively. In particular, we exhibit the results in [3], which allows us
to restrict our study to the construction of extremal factor-critical triangle-free components with d > 6
and d < m < Z(d). In Section 3, we explain our methodology to construct the extremal components
via four different exact methods. Our Basic Formulation exploits the structural information provided
in [3] to bound the matching number without explicitly including it in the formulation. Noting that the
Basic Formulation is highly symmetric, we propose various methods to reduce symmetry. In particular,
we utilize Orbital Branching [12], which identifies equivalent variables and sets the value of more than
one of them in a branch to reduce the symmetry within the branch-and-cut algorithm. Next, Iterative
Method solves the Basic Formulation by considering only a portion of the feasible region at each
iteration. In this approach, we set all the degrees of vertices to d and check if the problem is feasible.
If not, we iteratively check the existence of graphs with the next possible upper bound for the edge
count. Finally, we combine both methods, applying Orbital Branching within the Iterative Method.
In Section 4, we discuss our implementation, where we used CPLEX 20.1.0 for integer programming
and nauty for calculating the orbits.

In Section 5, we provide our computational results. We show that the Orbital Branching and the
Iterative Method are both better than the Basic Formulation using the default branching strategy;
moreover, their combination gives us the best results. Our method allows us to construct all extremal
components for d = 7, 8, 9, 10 and d < m < Z(d). Subsequently, we use the maximum edge counts for
these extremal components as the parameters of the Knapsack Formulation proposed in [3]. We solve
the Knapsack Formulation for d = 7, 8, 9, 10 within 0.2 seconds even for m = 2000. Therefore, the
edge counts of edge-extremal graphs for all possible m values are found for d = 7, 8, 9, 10. We could
also construct some (but not all) extremal components for d = 11, 12 and 13 with d < m < Z(d).
Our findings support the conjectures suggested by Ahanjideh, Ekim, and Yıldız in [3] and explained
in Section 2. In particular, we now have a stronger evidence that the formula provided in [3] (see
Theorem 2.2 and Conjecture 2.2) gives the maximum number of edges in a triangle-free graph with
maximum degree at most d and matching number at most m for all natural numbers d ≥ 2 and m.
Yet, a formal proof remains as a future research.

2 Notation and Preliminaries

In this paper, undirected graphs are represented with G = (V (G), E(G)) where V (G) is the set of
vertices and E(G) is the set of edges of the graph G. The degree of a vertex v, denoted by d(v), is
the number of vertices adjacent to v. The maximum degree of a graph G is the maximum degree of a
vertex in G, denoted by ∆(G). A matching of a graph G is defined as a set of edges with no common
vertices. The size of a maximum matching of a graph G is denoted by ν(G).

2

Maximum edge count for a general graph with maximum degree at most d and matching number
at most m is shown with fGEN (d,m). It can be observed that if we do not limit either ∆(G) or ν(G),
a graph can have an unlimited number of edges; such examples are a central vertex with an unbounded
number of neighbors, and an unbounded number of independent edges respectively. Therefore, we are
interested in the number of edges in a graph where ν(G) is bounded by m and ∆(G) is bounded by d.

Triangle-free graphs are defined as graphs with no cycle on three vertices. In other words, the size
of the largest complete subgraph in a (non-empty) triangle-free graph is two. Let ∆ denote the class of
all triangle-free graphs. Then, the maximum number of edges in a triangle-free graph with maximum
degree at most d and maximum matching size at most m is denoted by f∆(d,m).

An ℓ-star K1,ℓ is a bipartite graph with one (central) vertex on one side, which is adjacent to ℓ
vertices on the other side. If all the vertices of a graph have the same degree d, we call it d-regular. If
only one vertex has degree d− 1 and the rest of the vertices have degree d, we call it almost d-regular.
A graph is called factor-critical if removing any vertex from G leaves a graph that admits a perfect
matching, that is, a matching saturating all vertices.

The following theorem in [2] gives the formula for fGEN (d,m) for all d and m along with a con-
struction for extremal graphs.

Theorem 2.1. [2] For general graphs with ∆(G) ≤ d and ν(G) ≤ m, the maximum number of edges
in an extremal graph is

fGEN (d,m) = dm+ ⌊d/2⌋⌊m/⌈d/2⌉⌋.

Moreover, an extremal graph with fGEN (d,m) edges can be obtained by taking the disjoint union
of r copies of d-star and q copies of {

Kd+1 if d+1 is odd

K
′

d+1 if d+1 is even,

where q is the largest integer such that m = q⌈d/2⌉+r and r ≥ 0 and where K
′

d+1 is the graph obtained
by removing a perfect matching from the complete graph Kd+1 on d+ 1 vertices, adding a new vertex
v, and making v adjacent to d of the other vertices.

The same extremal problem when restricted to triangle-free graphs has been addressed by Ahan-
jideh, Ekim, and Yıldız in [3]. The authors settle all the cases for d ≥ m, and for d < m with either
d ≤ 6 or Z(d) ≤ m < 2d where Z(d) is defined as follows.

Definition 2.1. [3] For any d ≥ 2, let Z(d) be the smallest natural number n such that there exists a
d-regular (if d is even) or almost d-regular (if d is odd) triangle-free and factor-critical graph G with
ν(G) = n.

Since Z(d) plays a crucial role in the description of triangle-free extremal graphs, the authors first
describe a graph construction that proves the existence of Z(d), then investigate further the value of
Z(d).

Lemma 2.1. [3] We have Z(d) = d for d ∈ {2, 3} and Z(d) = d+ 1 for d ∈ {4, 5}.

Lemma 2.2. [3] For d ≥ 2, if d is even then we have Z(d) = ⌊5d/4⌋; if d is odd then we have
⌊5(d− 1)/4⌋ ≤ Z(d) ≤ ⌈5(d+ 1)/4⌉.

The main result in [3] provides the following formula for f∆(d,m) in all solved cases along with a
description of extremal graphs, which we omit here for the sake of brevity.

Theorem 2.2. [3] Let d and m be natural numbers with d ≥ 2, and let k and r be non-negative
integers such that m = kZ(d)+ r with 0 ≤ r < Z(d). Then, for all cases with d ≥ m, and for the cases
d < m with either d ≤ 6 or Z(d) ≤ m < 2d, we have

f∆(d,m) =

{
dm+ k⌊d/2⌋, if r < d

dm+ k⌊d/2⌋+ r − d+ 1, if r ≥ d.

3

It follows from Theorem 2.2 that the remaining open cases are d ≥ 7 with either m ≥ 2d or
d < m < Z(d). Apart from the formula for f∆(d,m), an important contribution in [3] is the following
result, which shows that there is a triangle-free extremal graph with a special structure. This structural
property expressed as a combination of several results (namely Corollary 2.2 and Lemma 4.4) in [3],
is crucial in building our integer programming formulations.

Lemma 2.3. [3] Let d and m be natural numbers with d ≥ 2, and let G be an edge-extremal graph
with maximum number of connected components isomorphic to a d-star. Then, for every connected
component H of G, one of the following is true:
(i) H is a d-star.
(ii) H is factor-critical with |E(H)| = f∆(d, ν(H)) and |V (H)| = 2ν(H)+ 1 where d ≤ ν(H) ≤ Z(d).

Now, consider the open case for m ≥ 2d and d ≥ 7. Lemma 2.3 states that there is a triangle-free
edge-extremal graph whose components which are not d-stars are edge-extremal factor-critical triangle-
free graphs with matching number between d and Z(d). Let us call the latter extremal components
throughout the paper. This information is used in [3] to formulate the open cases with m ≥ 2d and
d ≥ 7 as a knapsack problem where the utility parameters are f∆(d, i) for d ≤ i ≤ Z(d), which are yet
to be calculated. Let xi be the number of extremal components of G with matching number i. Then
an extremal graph for d and m can be obtained as follows. For d ≤ i ≤ Z(d), take xi many extremal
components with matching number i; their contribution to the total number of edges f∆(d,m) is the

second summation on the left-hand side of Equation (1), and they contribute
∑Z(d)

i=d ixi to the matching
number of the graph. Complete the matching number to m using d-stars, each of which adding d to
f∆(d,m); this is expressed by the first term on the left-hand side of Equation (1). Then we have the
following:

f∆(d,m) = d(m−
Z(d)∑
i=d

ixi) +

Z(d)∑
i=d

f∆(d, i)xi = dm+

Z(d)∑
i=d

(f∆(d, i)− di)xi. (1)

Based on these observations, Ahanjideh, Ekim, and Yıldız propose the following bounded knapsack
formulation where the utility of item i is (f∆(d, i)− di) and its volume is i [3].

(Knapsack Formulation) max dm+

Z(d)∑
i=d

(f∆(d, i)− di)xi (2)

s.t.

Z(d)∑
i=d

ixi ≤ m (3)

xi ≥ 0, xi ∈ Z (4)

With this formulation, if the edge counts of the extremal components are known for a fixed d,
then edge extremal graphs for all m can be found. Therefore, in this paper, our effort is focused
on finding the extremal components, that is the edge-extremal graphs H for d < m with d > 6 and
d < ν(H) < Z(d). Note that the extremal components with matching number d and Z(d) follow from
Theorem 2.2; we have f∆(d, d) = d2 + 1 and f∆(d, Z(d)) = dZ(d) + ⌊d

2⌋. However, Z(d) is not known
when d is odd.

Although the authors in [3] leave the development of further methods to solve this knapsack for-
mulation, they still provide some insights about its solution. In particular, they conjecture that its
unknown parameters, namely f∆(d, i) for 7 ≤ d < i < Z(d) follow the formula given in Theorem 2.2,
which simplifies as follows in this case:

Conjecture 2.1. [3] For 7 ≤ d < i < Z(d), we have f∆(d, i) = di+ i− d+ 1.

The authors also show that if Conjecture 2.1 holds then the Knapsack Formulation admits a special
optimal solution having as many extremal components as possible with matching number Z(d), and
at most one extremal component with smaller matching number.

4

Proposition 2.1. [3] If Conjecture 2.1 is true, then for 7 ≤ d < m < Z(d), the Knapsack Formulation

admits an optimal solution with
∑Z(d)−1

i=d xi ≤ 1. In other words, xZ(d) is maximized and there is at
most one other xi which is 1 (all the rest being zero).

Based on the observation that the description of the extremal graphs in Proposition 2.1 is similar
to those provided in Theorem 2.2 (which we omitted in our paper), the authors also conjecture that
the formula in Theorem 2.2 holds in general (including the open cases).

Conjecture 2.2. [3] For all natural numbers d ≥ 2 and m, let m = kZ(d) + r. Then we have

f∆(d,m) =

{
dm+ k⌊d/2⌋, if r < d

dm+ k⌊d/2⌋+ r − d+ 1, if r ≥ d.

Next, we develop integer programming formulations to construct extremal components. Our
method allows us to construct all extremal components for d = 7, 8, 9, 10 and consequently to solve
the Knapsack Formulation for these d values (and any m). All our findings support Conjecture 2.1,
Proposition 2.1, and Conjecture 2.2; and therefore strengthen them. As a byproduct, we also obtain
some new values for Z(d), namely, Z(7) = 9, Z(9) = 13, Z(11) = 15, and Z(13) = 17.

3 Methodology

We formulate the construction of an edge extremal triangle-free graph with a matching number at
most m and degree at most d as an integer programming problem. Let V be the vertex set and let xij

be a binary variable defined for i ̸= j that takes on value 1 if there is an edge between i, j ∈ V and 0
otherwise. We work with undirected graphs; therefore, we only use one of xij and xji variables. For
notational simplicity in the models, ij in xij should be considered an unordered set while the edges
are only defined for i > j.

(Basic Formulation) max
∑
i,j∈V

xij (5)

s.t. xij + xjk + xik ≤ 2 ∀i, j, k ∈ V (6)∑
j∈V

xij ≤ d ∀i ∈ V (7)

xij ∈ {0, 1} ∀i, j ∈ V (8)

The objective function (5) maximizes the edge count. Constraint (6) ensures that the resulting
graph is triangle-free and Constraint (7) limits the maximum degree. We do not bound the matching
number explicitly; instead, we make use of Lemma 2.3, which guarantees the existence of an edge-
extremal triangle-free graph that is factor-critical and fix |V | = 2m + 1 accordingly. Clearly, this
bounds the matching number with m. Since there is a triangle-free graph with 2m + 1 vertices and
degree bounded by d for every d and m, an optimal solution of the Basic Formulation describes an
extremal triangle-free graph having f∆(d,m) edges. The graph resulting from the Basic Formulation
might or might not be factor-critical; however, Lemma 2.3 guarantees that it has f∆(d,m) edges
because there is at least one extremal component which is factor-critical.

The Basic Formulation is highly symmetric since all xij ’s are interchangeable. To overcome this
problem, we propose two approaches and combine them as a third approach. Our first approach is
Orbital Branching, which modifies the branching decisions during the solution of Basic Formulation
via the branch-and-cut algorithm. Orbital Branching helps us eliminate symmetric solutions in the
branch-and-cut tree. Our second approach is solving the problem with minor modifications iteratively,
which we call the Iterative Method. In the first iteration, all the vertex degrees are set to d. If there
is no feasible solution, all the degrees are set to d but one, which is constrained to be less than d,
reducing the upper bound of the solution. As long as there is no feasible solution, the degree of one
more vertex is constrained to be less than d at every iteration. This approach basically restricts the
feasible region of the problem.

5

3.1 Orbital Branching

We use Orbital Branching to modify the branching decisions while solving the Basic Formulation.
The idea is to branch simultaneously on multiple variables on the same symmetry group instead of
branching on a single variable at every node of the branch-and-cut tree.

Before explaining the symmetry groups and equivalency of variables in formal terms, let us first
investigate the structure of our Basic Formulation. All xij ’s are interchangeable since nothing dis-
tinguishes one edge from others in the formulation. Assume that we create a branch for each vari-
able x12 = 1, x13 = 1, and so on, as well as a branch where all variables are 0 to cover the feasi-
ble region. This is a legitimate branching strategy since the entire feasible region is covered, even
if there are intersections between branches. However, we can observe that each child node with
x1j = 1, j ∈ V \{1} yields the same subproblem. Therefore, instead of branching on |V | nodes, we can
branch on only two nodes by selecting a representative node, say x12 = 1, and creating another branch
with x12 = x13 = ... = 0. This is the main idea behind Orbital Branching. In the root node, it is easy
to see the equivalent variables; but after the first branching, it gets more complicated. Now, x13 is
not equivalent to x34 since they are creating different subproblems due to the already fixed variable
x12 = 1 at that stage. Therefore, we need a formal definition of symmetry groups to identify them.
To this end, let us consider the following problem:

max
x∈{0,1}n

{cTx|Ax ≤ b}. (9)

A symmetry group of matrix A is defined as the set of permutations which leaves A invariant [13].
This means that there exists a permutation of variables (columns) and constraints (rows) such that
applying them consecutively on A creates the same matrix A [12]. If the permutation of columns also
creates the same c and the permutation of rows creates the same b; the new problem is equivalent to the
first one. Symmetry groups of an IP can be determined via graph automorphism. The IP is converted
into a bipartite graph B(V,M,E), where V represents variables and M represents constraints. There is
an edge (vi,mj) if only if Aij ̸= 0, that is, variable i occurs in constraint j with a non-zero coefficient.
To account for the differences in c, b, and A values, a color code is used to show interchangeable
vertices in B [14]. In general, for every cost coefficient ci value, a different color is used for vertex
vi ∈ V . Similarly, vertex mj ∈ M is colored according to bj and the inequality type of the constraint.
In this setting, changing the order of columns is equivalent to changing the labels of vertices in V , and
changing the order of rows is equivalent to changing the labels of vertices in M . Note that we should
prevent interchanging a vertex from V with a vertex from M , so they are also assigned different colors.
Then, the symmetry groups of the IP and the automorphism groups of the graph B(V,M,E) are the
same. If there exists an automorphism assigning xi to xi′ , they are deemed equivalent and part of the
same orbit. Orbits consist of equivalent variables and they are used for branching decisions in Orbital
Branching.

Calculating automorphism groups divides the vertices into orbits, which are set of equivalent ver-
tices. There are two sets of orbits, variable orbits, and constraint orbits. For our Orbital Branching
approach, we use the variable orbits and prioritize the orbit having the maximum number of elements
to branch on.

In Figure 2 an illustrative example of Orbital Branching is provided for the model below.

max x+ y + z + t (10)

s.t. x+ y ≥ 1 (11)

x+ y ≥ 1 (12)

x+ y ≥ 1 (13)

x, y, z, t ∈ {0, 1} (14)

In the graph representation of the model (10)-(14) in Figure 1, the vertices x, y, z, t represent the
variables and vertices c1, c2, c3 represent the constraints. Let the graph on the left side of Figure 1 be
the original bipartite graph. Then, we can see that interchanging vertex labels y, z, and c1, c2 create the
same incidence matrix. This is equivalent to saying that the graph on the right is obtained by relabeling
the vertices of the graph on the left differently, thus the two graphs in Figure 1 are isomorphic. This
procedure is represented with (y, z)(c1, c2) and it is an automorphism group of the bipartite graph.

6

x

y

z

t

c1

c2

c3

x

z

y

t

c2

c1

c3

x

t

y

z

c3

c1

c2

(y, z)(c1, c2) (z, t)(c2, c3)

Figure 1: An automorphism of the bipartite graph corresponding to the model (10)-(14)

S

S1 S2

y = z = t = 0 y = 1

1 4

1 1 2 4

Figure 2: Branch-and-cut tree using Orbital
Branching

z

t

c1

c2

c3

x

Figure 3: Bipartite graph for S2

Another automorphism group is (z, t)(c2, c3). The application of automorphism groups consecutively
yields also an automorphism group. Therefore, we can see that y, z, t are interchangeable and share
the same orbit. Consequently, Orbital Branching suggests the branching shown in Figure 2, where the
upper and lower bounds for each node are written over the right and left of each node respectively.
In each node of at depth 1 of the branch-and-cut tree, an optimal solution is found and the orbits are
recalculated based on the new graph. The bipartite graph representing the subproblem S2 is given in
Figure 3 as an example. Let F a

0 and F a
1 denote the variables set to 0 and 1 in node a of a branch-

and-cut tree respectively. Then the Orbital Branching algorithm can be summarized as in Algorithm
1:

Algorithm 1 Orbital Branching

Step 1: Given a branch-and-cut node a = (F a
0 , F

a
1), calculate the set of orbits Oa at node a

Step 2: Pick an arbitrary orbit O ∈ Oa

Step 3: Pick an arbitrary variable vi ∈ O, return new nodes l = (F a
0 ∪{O}, F a

1), r = (F a
0 , F

a
1 ∪{vi})

We note that all c values are 1 in our Basic Formulation; therefore we do not need to color variable
vertices.

3.2 Iterative Method

Since the maximum degree of a vertex and the number of vertices are limited, the precomputed upper
bound of the objective function value of the Basic Formulation is ⌊(2m+ 1) ∗ d/2)⌋. This bound can
only be achieved if all vertices have the maximum degree d. If exactly one of them has degree d − 1
and all the others have degree d, then the upper bound may decrease since the expression value before
rounding down decreases by 1/2. It is possible to use this information to decrease iteratively the upper
bound of the Basic Formulation. For instance, let d = 8 and m = 9; thus there are 2 ∗ 9 + 1 = 19
vertices. We have (8 ∗ 19)/2 = 76 as an upper bound. We can set all degrees to 8 and check if there is
a feasible solution. If there is a feasible solution, it is an optimal solution for the Basic Formulation.
If the problem is infeasible, we know that an upper bound of the problem is 75 and at least one of the
vertices has a degree at most d− 1.

Our Iterative Method starts by fixing all the degrees to the degree bound d, solving the resulting
integer program, and decreasing the upper bound one by one. Each iteration works on a portion of
the original feasible region and decreases the upper bound iteratively. The idea is to obtain an optimal
solution to the Basic Formulation by solving the formulation in a restricted feasible region. We can

7

consider different formulations of this approach, enumerating all possible degree combinations for each
objective value or simply decreasing the upper bound by setting the degrees of some vertices to be less
than d while the rest are equal to d. We adopt the latter formulation since enumerating all possible
degrees would imply an exponential number of iterations.

We distinguish two sets of vertices; let Vd be the set of vertices of degree equal to d and Vd−1 be
the set of vertices of degree at most d− 1. The formulation can be given as:

(Iterative Formulation) max
∑
i,j∈V

xij (15)

s.t. xij + xjk + xik ≤ 2 ∀i, j, k ∈ V (16)∑
j∈V

xij = d ∀i ∈ Vd, (17)

∑
j∈V

xij ≤ d− 1 ∀i ∈ Vd−1, (18)

xij ∈ {0, 1} ∀i, j ∈ V (19)

It should be noted that an optimal solution to the Iterative Formulation with |Vd−1| = 1 might
not be an optimal solution for the Basic Formulation. Indeed, a graph where all vertices have degree
d but one which has degree d − 4 has fewer edges than a graph with |V (G)| − 2 vertices of degree
d, and two vertices of degree d − 1. Consequently, the optimal solution of the Iterative Formulation
with |Vd−1| = 1 gives a lower bound, which can possibly be improved later by adding more vertices in
Vd−1. In each iteration, sets Vd and Vd−1 are updated, and the Iterative Formulation is solved. The
Iterative Method summarized in Algorithm 2 solves the Iterative Formulation successively by updating
the upper bounds until the upper bound is equal to the lower bound obtained by the best feasible
solution. Let N = 2m+ 1 be the number of vertices in what follows.

Algorithm 2 Iterative Method

Input: Vd−1 = ∅, Vd = V
LB = 0, UB = ⌊((Nd)/2⌋
while UB > LB do

Solve Iterative Formulation D with Vd and Vd−1.
if D is feasible then

LB = max(z∗, LB) where z∗ is the optimal objective function value of D
end if
Pick u ∈ Vd

Vd = Vd \ {u}
Vd−1 = Vd−1 ∪ {u}
UB = max(⌊((Nd)/2− 0.5|Vd−1|⌋, LB)

end while
return UB and the optimal solution of the Iterative Formulation giving the best LB.

Our Iterative Method does not primarily focus on reducing symmetry, instead, it focuses on reducing
the size of the feasible region. In the first iteration, where Vd−1 = ∅, all variables are equivalent. Still,
in each iteration, one of the degree constraints for a vertex changes, reducing the symmetry. To reduce
the symmetry further, we can order the vertices of Vd−1 lexicographically so that their degrees are
non-increasing.

3.3 Iterative Method with Orbital Branching

Orbital Branching exploits the symmetry for branching decisions, and the Iterative Method reduces the
size of the feasible region while keeping most of the symmetry intact. Besides, the Orbital Branching
interferes with the default branch-and-cut decisions of the solver while the Iterative Method modi-
fies the problem formulation. Therefore it is possible to use these methods jointly so that the same
iterations as in the Iterative Method are done, but branching decisions are made with Orbital Branch-
ing. The Iterative Formulation is less symmetric than the Basic Formulation since Equations (17) are
equalities.

8

4 Computational Experiments

Computations have been conducted on Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz with 32 GB RAM
using CPLEX 20.1.0 on 10 threads. We used CPLEX 20.1.0 with C++ to implement the methods.
We enforce a limit of 1800 seconds for each run. In the following tables that show our computational
results, “PreUB” stands for the precomputed upper bound, “LB” stands for the lower bound found by
CPLEX, “UB” stands for the upper bound found by CPLEX, “Gap” represents the relative optimality
gap, “Time” is the execution time, and “Node” is the number of nodes in the branch-and-cut tree. In
Tables 1,2, and 3, lines corresponding to optimality are marked with a dark background. We tested
instances with 7 ≤ d ≤ 13 and d < m ≤ Z(d). When d is odd, Z(d) is not known beforehand. However,
by definition of Z(d), a graph with matching number m = Z(d) is almost d-regular. Accordingly, we
find Z(d) based on the degrees in the resulting edge-extremal graph. More precisely, Z(d) is the value
of the matching number m for which the LB is equal to the precomputed UB and the resulting extremal
graph is factor-critical, which we check by computation. When d is even, we have Z(d) = ⌊5d/4⌋ by
Lemma 2.2. This implies Z(8) = 10, Z(10) = 12 and Z(12) = 15. Then, it follows from Theorem
2.2 that f∆(8, 10) = 84, f∆(10, 12) = 125 and f∆(12, 15) = 186. From the computations, we learned
the Z(d) values for the new d values 7, 9, 11, and 13; namely Z(7) = 9, Z(9) = 12, Z(11) = 15,
Z(13) = 17. Overall, if we check the solved instances, the edge counts align with the Conjecture 2.2
given in Ahanjideh, Ekim, and Yıldız [3].

For solving the Basic Formulation (5)-(8), we started with CPLEX with default parame-
ters and CPLEX with symmetry breaking parameter set to its most aggressive setting (IloC-
plex::Param::Preprocessing::Symmetry = 5). The results are shared in Table 1. Both of the
approaches solved only 7 of the instances to optimality. Overall, CPLEX with symmetry breaking is
slightly better due to a lower average time. Gaps are equivalent for both of the approaches. Note that
the upper bound levels are equivalent to precomputed upper bound values that can be achieved by the
maximum degree constraint. For example, when d is 7 and m is 8, there are 17 vertices since we can
assume that an extremal graph is factor-critical. Since d is odd, the maximum edge count is achieved
via an almost d-regular graph (the sum of all the degrees should be even). 16 vertices with degree 7
and one vertex with degree 6, yielding 59 edges in total. This explains why the only solved instances
are for m = Z(d) values. When m = Z(d), the resulting graph is d-regular or almost d-regular, which
has an equivalent edge count to the bound we discussed. From an inspection of the results, we can
conclude that our initial approaches are not good enough for decreasing the upper bound found by
CPLEX, but they are promising for finding feasible solutions. This might be due to symmetry. In our
next experiment, we test the efficacy of using Orbital Branching with Basic Formulation (Subsection
3.1).

We implemented Orbital Branching using the callback mechanism of CPLEX. For finding orbits,
we used nauty 2.7r3, a software library for computing automorphism groups of graphs by McKay
and Piperno [15]. At each branch-and-cut node, we find the variables set to 0 and 1 from CPLEX
and update the constraints accordingly. Then, we construct the updated bipartite graph using binding
constraints. The resulting graph (and coloring) is sent to nauty. For calculating orbits, nauty calculates
the automorphism groups utilizing graph isomorphism problem, which is a GI−complete problem [16].
This implies that the problem of calculating orbits is neither known to be NP-complete nor known
to be polynomial-time solvable. For large instances, run time can be as high as 150 seconds, while
it is around 0.1 seconds for small instances. This can be seen in Figure 4, where instance 7 8 means
instance with d = 7 and m = 8. Since there can be tens of thousands of nodes in a branch-and-cut
tree, even a runtime of one second for orbit calculation results in an excessive CPU time. Therefore,
we analyze the average orbit size for each depth in a branch-and-cut tree. Orbits tend to get smaller
as we go deeper in the branch-and-cut tree, which can be seen from Figure 5. For example, using
Orbital Branching after depth 20 only adds overhead to the instance with d = 7 and m = 8. Due to
this, we run Orbital Branching until a certain depth. This depth is initialized as a large number in
the beginning. When we find a node with orbit size 1, the depth of that node becomes the limit; for
deeper nodes, orbits are not calculated. After that depth, the default CPLEX branching strategy is
used. Branching is done on the orbit with the maximum number of vertices since it sets the values
for more variables in the child nodes. If the largest orbit only has a single variable, we use the default
CPLEX branching strategy.

9

Parameters Basic Formulation Basic Formulation + Symmetry Breaking
d m PreUB LB UB Gap Time Node LB UB Gap Time Node
7 8 59 58 59 1.72% 1800 8412700 58 59 1.72% 1800 4657959
7 9 66 66 66 0.00% 0 0 66 66 0.00% 0 0
8 9 76 74 76 2.70% 1800 4605513 74 76 2.70% 1800 3012473
8 10 84 84 84 0.00% 0 0 84 84 0.00% 0 0
9 10 94 92 94 2.17% 1800 2952258 92 94 2.17% 1800 1836200
9 11 103 102 103 0.98% 1800 1356502 102 103 0.98% 1800 1122091
9 12 112 112 112 0.00% 2 428 112 112 0.00% 3 465
10 11 115 112 115 2.68% 1800 2049077 112 115 2.68% 1800 1274473
10 12 125 125 125 0.00% 0 0 125 125 0.00% 0 0
11 12 137 134 137 2.24% 1800 530890 134 137 2.24% 1800 809227
11 13 148 146 148 1.37% 1800 293767 146 148 1.37% 1800 311019
11 14 159 158 159 0.63% 1800 257540 158 159 0.63% 1800 257540
11 15 170 170 170 0.00% 0 0 170 170 0.00% 0 0
12 13 162 158 162 2.53% 1800 471193 158 162 2.53% 1800 392793
12 14 174 171 174 1.75% 1800 271165 171 174 1.75% 1800 218547
12 15 186 186 186 0.00% 53 6077 186 186 0.00% 707 82348
13 14 188 184 188 2.17% 1800 326937 184 188 2.17% 1800 292989
13 15 201 198 201 1.52% 1800 265385 198 201 1.52% 1800 173732
13 16 214 212 214 0.94% 1800 148400 212 214 0.94% 1800 144746
13 17 227 227 227 0.00% 1200 45158 227 227 0.00% 21 311

Avg 138.45 140 1.12% 1233 1099650 138.45 140 1.12% 1207 729346

Table 1: Basic formulation performance summary.

Figure 4: nauty runtime with depth. Figure 5: Orbit sizes with depth.

10

Parameters Orbital Branching
d m PreUB LB UB Gap Time Node
7 8 59 58 58 0.00% 14 57945
7 9 66 66 66 0.00% 0 0
8 9 76 74 74 0.00% 61 236040
8 10 84 84 84 0.00% 0 0
9 10 94 92 92 0.00% 558 1781858
9 11 103 102 103 0.98% 1800 2651099
9 12 112 112 112 0.00% 21 193
10 11 115 112 114 1.79% 1800 1838556
10 12 125 125 125 0.00% 0 0
11 12 137 134 137 2.24% 1800 1223806
11 13 148 146 148 1.37% 1800 1142867
11 14 159 158 159 0.63% 1800 428121
11 15 170 170 170 0.00% 0 0
12 13 162 158 162 2.53% 1800 567720
12 14 174 171 174 1.75% 1800 444420
12 15 186 186 186 0.00% 361 4769
13 14 188 184 188 2.17% 1800 278258
13 15 201 198 201 1.52% 1800 85467
13 16 214 212 214 0.94% 1800 33132
13 17 227 225 227 0.89% 1800 2756

Avg 138.4 139.7 0.98% 1041 538850

Table 2: Orbital branching performance summary.

Figure 6: Branch-and-cut node count vs branch-and-cut node depth

The results for Orbital Branching are shared in Table 2. Orbital Branching solves 9 instances.
Comparing Tables 1 and 2, we observe that while the Basic Formulation fails to find a solution to
instances other than m = Z(d), Orbital Branching solves all instances for d = 7 and d = 8. The
difference can be attributed to how Orbital Branching prunes the initial nodes, which can be seen
from Figure 6. Orbital Branching prunes all nodes but one until depth 10 for the instance with d = 7
and m = 8. This enables it to work on a significantly smaller feasible region. Yet, when the problem
size increases, its performance deteriorates. For d = 13 and m = 17, it fails to find a provably optimal
solution, while CPLEX with aggressive symmetry breaking finds in fewer nodes. Some difference is

11

Parameters Iterative Iterative + Orbital Branching
d m PreUB LB UB Gap Time Node LB UB Gap Time Node
7 8 59 58 58 0.00% 0 145 58 58 0.00% 0 57
7 9 66 66 66 0.00% 0 0 66 66 0.00% 0 0
8 9 76 74 74 0.00% 3 12880 74 74 0.00% 4 2794
8 10 84 84 84 0.00% 0 0 84 84 0.00% 0 0
9 10 94 92 92 0.00% 2 5149 92 92 0.00% 11 1990
9 11 103 102 102 0.00% 5 12459 102 102 0.00% 36 4170
9 12 112 112 112 0.00% 1 33 112 112 0.00% 368 229
10 11 115 112 112 0.00% 100 208001 112 112 0.00% 79 10114
10 12 125 125 125 0.00% 1 0 125 125 0.00% 2 0
11 12 137 134 134 0.00% 176 253162 134 134 0.00% 146 15106
11 13 148 146 146 0.00% 206 362834 146 146 0.00% 355 371215
11 14 159 158 159 0.63% 1800 1087900 158 159 0.63% 1800 706832
11 15 170 170 170 0.00% 2 38 170 170 0.00% 1 0
12 13 162 158 159 0.63% 1800 2264281 158 158 0.00% 1623 2020924
12 14 174 171 172 0.58% 1800 1579790 171 172 0.58% 1800 1101510
12 15 186 186 186 0.00% 0 0 186 186 0.00% 0 0
13 14 188 184 185 0.54% 1800 1495811 184 185 0.54% 1800 2294463
13 15 201 198 200 1.01% 1800 1313790 198 200 1.01% 1800 935875
13 16 214 212 213 0.47% 1800 690328 212 213 0.47% 1800 577438
13 17 227 227 227 0.00% 56 5696 227 227 0.00% 72 543
Avg 138.45 138.8 0.25% 568 464615 138.45 138.75 0.22% 585 402163

Table 3: Iterative Formulation performance summary.

Method Solved Gap Time Node
Basic Formulation 7 1.12% 1233 1099650

Basic Formulation + Symmetry Breaking 7 1.12% 1207 729346
Orbital Branching 9 0,98% 1041 538850
Iterative Method 14 0,25% 568 464615

Iterative Method + Orbital Branching 15 0.22% 585 402163

Table 4: Performance summary of all methods.

due to nauty iterations running over 50 seconds. Yet, for all methods, most instances are unsolved,
and the problem of decreasing the upper bound continues.

In our next experiment, we explore the performance of Iterative Methods (Subsections 3.2 and
3.3). In the Iterative Method, we use the global callback mechanism of CPLEX. Instead of waiting for
an iteration to end, we use the lower bound information from previous iterations to stop the current
iteration if needed. We share the results for both the Iterative Method and the Iterative Method with
Orbital Branching in Table 3. The Iterative Method optimally solves 14 instances, and the Iterative
Method with Orbital Branching solves one more instance to optimality. These numbers are significantly
higher than methods using Basic Formulation. The Iterative Method has slightly less run time, while
the combined method solves the problem using significantly fewer nodes.

The overall performance summary is shared in Table 4. We can see an increase in instances solved
as we use more elaborate approaches. The number of solved instances for the Basic Formulation is 7,
but all of them are for m = Z(d) values; therefore, there is a significant increase in the performance
with the new approaches. Especially, both Iterative Methods are significantly better than the others.

It is important to note that Iterative Methods do not only solve some new instances that support
Conjecture 2.1, but also provide us with graphs that follow a pattern. This trend allows us to suggest
a general construction for graphs claimed to be extremal in Conjecture 2.1 for all maximum degree
d and matching number i with 7 ≤ d < i < Z(d). For 0 ≤ t < Z(d) − d, let us describe the graph
Bd,d+t, where i = d+ t as follows (see Figure 4): take a complete bipartite graph Kd+t,d+t with d+ t
vertices in each side. Consider d− 1 vertices of each side (the set denoted F in Figure 4) and remove
t disjoint perfect matchings between them. Note that this is possible because since t < Z(d)− d and
Z(d) ≤ ⌈5(d+ 1)/4⌉ by Lemma 2.2, we have t < ⌈(d+ 1)/4⌉ + 1 < d. Then, consider the remaining
t + 1 vertices of each side (the set denoted H in Figure 4), remove all edges between, introduce one

12

additional vertex v, and make it adjacent to all the t+1 vertices of each side. With this construction,
all the vertices except v have degree d. Let us remark that for t = 0, the graph Bd,d+t corresponds
to the graph Ad given in [3] as an extremal graph for the case d = m with f∆(d, d) = d2 + 1 edges.
The graph Ad, or equivalently Bd,d, can be seen as a 5-cycle whose two adjacent vertices are replaced
with independent sets of size d − 1 each and edges between these sets and other vertices (or set) are
replaced with complete links. From this perspective, our construction of the graph Bd,d+t can be seen
as a generalization of Ad for matching numbers between d+ 1 and Z(d)− 1.

F

H

d-1

t+1

v

Figure 7: The graph Bd,d+t where the set H induces an independent set and the set F induces a
complete bipartite graph from which t distinct perfect matchings are removed. The deletion of the
vertex v leaves a bipartite graph that has complete links between the opposite parts of the sets F and
H. Bold edges show a maximum matching of size d+ t.

Proposition 4.1. For all i = d+ t such that d < i < Z(d), the graph Bd,d+t has di+ i− d+ 1 edges,
∆(Bd,d+t) = d and ν(Bd,d+t) = d+ t = i; thus, it is an extremal graph if Conjecture 2.1 holds.

Proof. First, we note that t < Z(d) − d and thus the graph Bd,d+t has one vertex of degree 2t + 2
(the additional vertex) and 2d + 2t vertices each one of degree d. Since t < ⌈(d+ 1)/4⌉ + 1, we have
2t + 2 ≤ d for d ≥ 7, it follows that ∆(Bd,d+t) ≤ d. Moreover, we have ν(Bd,d+t) ≤ d + t = i since
it has 2d + 2t + 1 vertices. More precisely a matching of size d + t = i can be obtained as shown in
Figure 4 by bold edges; set a matching of size d− t− 2 in F , match v with one vertex in H, leave one
vertex from the other side of H unmatched, now since t+ 1 ≤ d/2 < d− 1, all vertices of H but these
two can be matched with the remaining vertices of F (recall that each side of F is completely joined
to the opposite side of H). Now, counting the number of edges using the degrees yields d2 + dt+ t+1
edges which is, for i = d+ t, equal to di+ i− d+ 1 as suggested in Conjecture 2.1.

Finally, we use the above mentioned results to construct an extremal graphs for all d values 7, 8, 9, 10
with the Knapsack Formulation. For these d values, there are at most 4 components in the Knapsack
Formulation; therefore, even for d = 10 and m = 10000, it takes 0.2 seconds to obtain an optimal
solution. The number of each extremal component in an optimal solution and resulting edge counts
are shared in Table 5. In Table 5, edge counts are shared for 2d < m ≤ 3d. The column “#star”
denotes the number of d-stars, “#Z(d)” denotes the number of graphs with matching number Z(d),
and “#other” denotes the number of other components. In Table 6, more extensive results are shared
for d = 8 where “comp i” denotes the number of components with matching number i in an extremal
graph. When m increases by 10, the only difference is an additional component with matching number
Z(8) = 10. Tables 5 and 6 show that Proposition 2.1, which is conditional to Conjecture 2.1, holds
for d = 7, 8, 9 and 10. Proposition 2.1 describes a pattern on the construction of an edge-extremal
graph; it suggests that there is an extremal graph having as many extremal components as possible
with matching number Z(d), completed with at most one extremal component with matching number
between d and Z(d), and d-stars; all of our results are compatible with this foresight and support

13

d m edge count #d-star #Z(d) #other
7 15 108 6 1 0
7 16 116 0 1 1
7 17 124 0 1 1
7 18 132 0 2 0
7 19 139 1 2 0
7 20 146 2 2 0
7 21 153 3 2 0
8 17 140 7 1 0
8 18 148 8 1 0
8 19 158 0 1 1
8 20 168 0 2 0
8 21 176 1 2 0
8 22 184 2 2 0
8 23 192 3 2 0
8 24 200 4 2 0
9 19 175 7 1 0
9 20 184 8 1 0
9 21 194 0 1 1
9 22 204 0 1 1
9 23 214 0 1 1
9 24 224 0 2 0
9 25 233 1 2 0
9 26 242 2 2 0
9 27 251 3 2 0
10 21 215 9 1 0
10 22 226 0 1 1
10 23 237 0 1 1
10 24 250 0 2 0
10 25 260 1 2 0
10 26 270 2 2 0
10 27 280 3 2 0
10 28 290 4 2 0
10 29 300 5 2 0
10 30 310 6 2 0

Table 5: Knapsack Formulation results.

therefore both Conjecture 2.1 and 2.2. It follows that the edge numbers of extremal graphs for all m
values and for d ∈ {7, 8, 9, 10} are equal to the formula given in Conjecture 2.2.

14

d m edge count d-star comp 8 comp 9 comp 10
8 15 124 5 0 0 1
8 16 132 6 0 0 1
8 17 140 7 0 0 1
8 18 149 0 1 0 1
8 19 158 0 0 1 1
8 20 168 0 0 0 2
8 21 176 1 0 0 2
8 22 184 2 0 0 2
8 23 192 3 0 0 2
8 24 200 4 0 0 2
8 25 208 5 0 0 2
8 26 216 6 0 0 2
8 27 224 7 0 0 2
8 28 233 0 1 0 2
8 29 242 0 0 1 2
8 30 252 0 0 0 3
8 31 260 1 0 0 3
8 32 268 2 0 0 3
8 33 276 3 0 0 3
8 34 284 4 0 0 3
8 35 292 5 0 0 3
8 36 300 6 0 0 3
8 37 308 7 0 0 3
8 38 317 0 1 0 3
8 39 326 0 0 1 3
8 40 336 0 0 0 4
8 41 344 1 0 0 4
8 42 352 2 0 0 4
8 43 360 3 0 0 4
8 44 368 4 0 0 4
8 45 376 5 0 0 4
8 46 384 6 0 0 4
8 47 392 7 0 0 4

Table 6: Knapsack Formulation results for d = 8.

5 Conclusion

In this paper, we studied the open cases for the problem of finding the maximum number of edges in a
triangle-free graph with maximum degree at most d and matching number at most m. We suggested
several integer programming methods, which is, to the best of our knowledge, a new approach for this
extremal problem.

Since our Basic Formulation is highly symmetric, most of our efforts have been about breaking the
symmetry. We proposed two different approaches, first exploiting symmetry for branching decisions
using Orbital Branching and then an Iterative Method exploiting the closeness of the precomputed
upper bound and the optimal solution value. As we used a combination of the Iterative Method and
Orbital Branching, we observed an increase in the number of instances optimally solved and an overall
decrease in solution time. Our approach extends the known cases from d ≤ 6 in [3] to d ≤ 10 (both for
all m > d). We could also identify some extremal components for d = 11, 12 and 13. The only missing
extremal component for d = 11 is for m = 14; if this extremal component is found then the Knapsack
Formulation can compute all extremal graphs for d = 11 and any m > d.

It is important to note that although integer programming approaches will be limited in finding
extremal components for higher d and m values, they give us more evidence on Conjectures 2.1, 2.2
and Proposition 2.1. Indeed, all our findings support the claim that there is an extremal triangle-free

15

graph with as many factor-critical extremal components with matching number Z(d) as possible , at
most one factor-critical extremal component with matching number less than Z(d), and some d-stars.
Thus, our results provide additional motivation to search for a formal (structural) proof of Conjectures
2.1 and 2.2, which will most probably require more powerful tools.

Finally, we pose the following question. We note that our integer programming formulations exploit
the fact that extremal components are factor-critical by using the implied vertex number in their
formulations. However, they do not explicitly force the constructed graphs to be factor-critical. Clearly,
a factor-critical graph with matching number m has 2m+1 vertices, but a graph with 2m+1 vertices
is not necessarily factor-critical. However, it turns out that all extremal components resulting from
our integer programming formulations are factor-critical. This observation suggests that it might be
interesting to investigate the following question: is it true that a triangle-free extremal graph G with
matching number m and maximum degree d such that d < m < Z(d) and having 2m + 1 vertices is
factor-critical?

Acknowledgments

This work has been supported by the Scientific and Technological Research Council of Turkey
(TÜBİTAK) under the grant number 122M452.

References

[1] V. Chvátal and D. Hanson, “Degrees and matchings,” Journal of Combinatorial Theory, Series
B, vol. 20, no. 2, pp. 128–138, 1976.

[2] N. Balachandran and N. Khare, “Graphs with restricted valency and matching number,” Discrete
Mathematics, vol. 309, no. 12, pp. 4176–4180, 2009.

[3] M. Ahanjideh, T. Ekim, and M. A. Yıldız, “Maximum size of a triangle-free graph with bounded
maximum degree and matching number,” arXiv, preprint, 2022. arXiv: 2207.02271.

[4] P. Turan, “On an extremal problem in graph theory,” Középisk. Mat. és Fiz. Lapok, vol. 48,
pp. 436–452, 1941.

[5] P. Erdös and R. Rado, “Intersection theorems for systems of sets,” Journal of the London Math-
ematical Society, vol. 1, no. 1, pp. 85–90, 1960.

[6] C. Dibek, T. Ekim, and P. Heggernes, “Maximum number of edges in claw-free graphs whose
maximum degree and matching number are bounded,” Discrete Mathematics, vol. 340, no. 5,
pp. 927–934, 2017.

[7] J. Blair, P. Heggernes, P. Lima, and D. Lokshtanov, “On the maximum number of edges in
chordal graphs of bounded degree and matching number,” Algorithmica, vol. 84, pp. 3587–3602,
2022.

[8] E. K. Måland, “Maximum number of edges in graph classes under degree and matching con-
straints,” M.S. thesis, The University of Bergen, 2015.

[9] F. Furini, I. Ljubić, and P. S. Segundo, “A new bilevel optimization approach for computing
Ramsey numbers,” Manuscript, 2021. [Online]. Available: https://optimization- online.
org/?p=17323.

[10] P. Hansen, M. Aouchiche, G. Caporossi, A. Hertz, and C. Sellal, “Mixed integer programming
and extremal chemical graphs,” Journal of Chemistry and Chemical Engineering Systems, vol. 3,
pp. 22–30, 2018.

[11] R. Ito, N. A. Azam, C. Wang, A. Shurbevski, H. Nagamochi, and T. Akutsu, A novel method for
the inverse QSAR/QSPR to monocyclic chemical compounds based on artificial neural networks
and integer programming. Cham: Springer, 2021, pp. 641–655.

[12] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio, “Orbital branching,” Mathematical Pro-
gramming, vol. 126, no. 1, pp. 147–178, 2011.

[13] F. Margot, “Exploiting orbits in symmetric ILP,” Mathematical Programming, vol. 98, no. 1,
pp. 3–21, 2003.

16

https://arxiv.org/abs/2207.02271
https://optimization-online.org/?p=17323
https://optimization-online.org/?p=17323

[14] M. E. Pfetsch and T. Rehn, “A computational comparison of symmetry handling methods for
mixed integer programs,” Mathematical Programming Computation, vol. 11, no. 1, pp. 37–93,
2019.

[15] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” Journal of Symbolic Compu-
tation, vol. 60, pp. 94–112, 2014.

[16] D. S. Johnson, “The NP-completeness column,” ACM Transactions on Algorithms (TALG),
vol. 1, no. 1, pp. 160–176, 2005.

17

	Introduction
	Notation and Preliminaries
	Methodology
	Orbital Branching
	Iterative Method
	Iterative Method with Orbital Branching

	Computational Experiments
	Conclusion

