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Department of Industrial Engineering
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Abstract

Benders decomposition is a solution method for solving certain large-scale optimization

problems. Instead of considering all decision variables and constraints of a large-scale

problem simultaneously, Benders decomposition partitions the problem into multiple

smaller problems. Since computational difficulty of optimization problems increases

significantly with the number of variables and constraints, solving these smaller prob-

lems iteratively can be more efficient than solving a single large problem. In this

chapter, we first formally describe Benders decomposition. We then briefly describe

some extensions and generalizations of Benders decomposition. We conclude our chap-

ter by illustrating how the decomposition works on a problem encountered in Intensity

Modulated Radiation Therapy (IMRT) treatment planning and giving a numerical

example.
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An important concern regarding building and solving optimization problems is that the

amount of memory and the computational effort needed to solve such problems grow sig-

nificantly with the number of variables and constraints. The traditional approach, which

involves making all decisions simultaneously by solving a monolithic optimization problem,

quickly becomes intractable as the number of variables and constraints increases. Multi-

stage optimization algorithms, such as Benders decomposition [1], have been developed as

an alternative solution methodology to alleviate this difficulty. Unlike the traditional ap-

proach, these algorithms divide the decision-making process into several stages. In Benders

decomposition a first-stage master problem is solved for a subset of variables, and the values

of the remaining variables are determined by a second-stage subproblem given the values of

the first-stage variables. If the subproblem determines that the proposed first-stage decisions

are infeasible, then one or more constraints are generated and added to the master prob-

lem, which is then re-solved. In this manner, a series of small problems are solved instead

of a single large problem, which can be justified by the increased computational resource

requirements associated with solving larger problems.

The remainder of this chapter is organized as follows. We will first describe Benders

decomposition formally in Section 1. We will then discuss some extensions of Benders de-

composition in Section 2. Finally, we will illustrate the decomposition approach on a problem

encountered in IMRT treatment planning in Section 3, and give a numerical example.

1 Formal Derivation

In this section, we describe Benders decomposition algorithm for linear programs. Consider

the following problem:

Minimize cTx+ fTy (1a)

subject to: Ax+By = b (1b)

x ≥ 0, y ∈ Y ⊆ Rq, (1c)
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where x and y are vectors of continuous variables having dimensions p and q, respectively,

Y is a polyhedron, A,B are matrices, and b, c, f are vectors having appropriate dimensions.

Suppose that y-variables are “complicating variables” in the sense that the problem becomes

significantly easier to solve if y-variables are fixed, perhaps due to a special structure inherent

in matrix A. Benders decomposition partitions problem (1) into two problems: (i) a master

problem that contains the y-variables, and (ii) a subproblem that contains the x-variables.

We first note that problem (1) can be written in terms of the y-variables as follows:

Minimize fTy + q(y) (2a)

subject to: y ∈ Y, (2b)

where q(y) is defined to be the optimal objective function value of

Minimize cTx (3a)

subject to: Ax = b−By (3b)

x ≥ 0. (3c)

Formulation (3) is a linear program for any given value of y ∈ Y . Note that if (3) is

unbounded for some y ∈ Y , then (2) is also unbounded, which in turn implies unboundedness

of the original problem (1). Assuming boundedness of (3), we can also calculate q(y) by

solving its dual. Let us associate dual variables α with constraints (3b). Then, the dual of

(3) is

Maximize αT (b−By) (4a)

subject to: ATα ≤ c (4b)

α unrestricted. (4c)

A key observation is that feasible region of the dual formulation does not depend on the value

of y, which only affects the objective function. Therefore, if the dual feasible region (4b)–(4c)

is empty, then either the primal problem (3) is unbounded for some y ∈ Y (in which case the

original problem (1) is unbounded), or the primal feasible region (3b)–(3c) is also empty for
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all y ∈ Y (in which case (1) is also infeasible.) Assuming that the feasible region defined by

(4b)–(4c) is not empty, we can enumerate all extreme points (α1
p, . . . , α

I
p), and extreme rays

(α1
r , . . . , α

J
r ) of the feasible region, where I and J are the numbers of extreme points and

extreme rays of (4b)–(4c), respectively. Then, for a given ŷ-vector, the dual problem can be

solved by checking (i) whether (αj
r)

T (b − Bŷ) > 0 for an extreme ray αj
r, in which case the

dual formulation is unbounded and the primal formulation is infeasible, and (ii) finding an

extreme point αi
p that maximizes the value of the objective function (αi

p)
T (b−Bŷ), in which

case both primal and dual formulations have finite optimal solutions. Based on this idea,

the dual problem (4) can be reformulated as follows:

Minimize q (5a)

subject to: (αj
r)

T (b−By) ≤ 0 ∀j = 1, . . . , J (5b)

(αi
p)

T (b−By) ≤ q ∀i = 1, . . . , I (5c)

q unrestricted. (5d)

Note that (5) consists of a single variable q and, typically, a large number of constraints.

Now we can replace q(y) in (2a) with (5) and obtain a reformulation of the original problem

in terms of q and y-variables:

Minimize fTy + q (6a)

subject to: (αj
r)

T (b−By) ≤ 0 ∀j = 1, . . . , J (6b)

(αi
p)

T (b−By) ≤ q ∀i = 1, . . . , I (6c)

y ∈ Y, q unrestricted. (6d)

Since there is typically an exponential number of extreme points and extreme rays of the dual

formulation (4), generating all constraints of type (6b) and (6c) is not practical. Instead,

Benders decomposition starts with a subset of these constraints, and solves a “relaxed master

problem,” which yields a candidate optimal solution (y?, q?). It then solves the dual sub-

problem (4) to calculate q(y?). If the subproblem has an optimal solution having q(y?) = q?,

then the algorithm stops. Otherwise, if the dual subproblem is unbounded, then a constraint
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of type (6b) is generated and added to the relaxed master problem, which is then re-solved.

(Constraints of type (6b) are referred to as “Benders feasibility cuts” because they enforce

necessary conditions for feasibility of the primal subproblem (3).) Similarly, if the subprob-

lem has an optimal solution having q(y?) > q?, then a constraint of type (6c) is added to the

relaxed master problem, and the relaxed master problem is re-solved. (Constraints of type

(6c) are called “Benders optimality cuts” because they are based on optimality conditions

of the subproblem.) Since I and J are finite, and new feasibility or optimality cuts are

generated in each iteration, this method converges to an optimal solution in a finite number

of iterations [1].

2 Extensions

Benders decomposition is closely related to other decomposition methods for linear program-

ming (see Section CROSS-REF 1.1.2.5 for relationships among Benders, Dantzig-Wolfe,

and Lagrangian optimization). Furthermore, Benders decomposition can be applied to a

broader class of problems, some of which we will describe in this section. We first observe

that only linear constraints are added to the master problem throughout the iterations of

Benders decomposition. Therefore, the master problem does not have to be a linear pro-

gram; but can take the form of an integer (e.g. [1] and Section 3), a nonlinear (e.g. [2]) or

a constraint programming problem (e.g. [3]). Also note that the subproblem is only used to

obtain dual information in order to generate Benders cuts. Therefore, the subproblem does

not have to be a linear program; but can also be a convex program since dual multipliers

satisfying strong duality conditions can be calculated for such problems [4]. (See Section

CROSS-REF 1.2.3.10 for detailed information about convex optimization.) The exten-

sion of Benders decomposition that allows for nonlinear convex programs to be used as sub-

problems is referred to as “generalized Benders decomposition” [5]. Similarly, “logic-based

Benders decomposition” generalizes the use of linear programming duality in the subproblem

to “inference duality,” which allows the use of logic-based methods for solving the subprob-

lem and generating Benders cuts. (See Section CROSS-REF 1.4.3.4 for more information
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about constraint programming and its relationships with mathematical programming.) In

some applications, subproblems can be solved efficiently by specialized algorithms instead of

the explicit solution of linear programs (e.g. [6, 7]). If the subproblem is a linear feasibility

problem (i.e. a linear programming problem having no objective function), cuts based on

irreducible infeasible subsets of constraints can be generated using a technique known as

“combinatorial Benders decomposition” [8].

It is often the case that decisions for several groups of second-stage variables can be

made independently given the first-stage decisions. In such cases, multiple subproblems can

be defined and solved separately. For instance, in stochastic programming models, some

action needs to be taken in a first stage, which is followed by the occurrence of a random

event (typically modeled by a number of scenarios) that affects the outcome of the first-stage

decision. A recourse decision can then be made in a second stage after the uncertainty is

resolved. (See Sections CROSS-REF 1.5.1 and CROSS-REF 1.5.2 for more information

about two-stage stochastic programming models.) In such problems, second-stage recourse

problems can be solved independently given the first-stage decisions, and hence are amenable

to parallel implementations [9]. (See also Section CROSS-REF 1.5.2.2.)

3 Illustrative Example

3.1 Problem Definition

In this section, we consider a matrix segmentation problem arising in Intensity Modulated

Radiation Therapy (IMRT) treatment planning, which is described in detail in [10]. (See

also Section CROSS-REF 4.3.1.1 for an introduction to optimization models in cancer

treatment.) The problem input is a matrix of intensity values that are to be delivered to a

patient from some given angle, under the condition that the IMRT device can only deliver

radiation through rectangular apertures. An aperture is represented as a binary matrix

whose ones appear consecutively in each row and column, and hence form a rectangular

shape. A feasible segmentation is one in which the original desired intensity matrix is equal
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to the weighted sum of a number of feasible binary matrices, where the weight of each binary

matrix is the amount of intensity to be delivered through the corresponding aperture. We

seek a matrix segmentation that uses the smallest number of aperture matrices to segment

the given intensity matrix. This goal corresponds to minimizing setup time in the IMRT

context [10]. The example below shows an intensity matrix and a feasible segmentation using

three rectangular apertures:
2 7 0

2 10 3

0 8 3

 = 2×


1 1 0

1 1 0

0 0 0

 + 3×


0 0 0

0 1 1

0 1 1

 + 5×


0 1 0

0 1 0

0 1 0

 .
We will denote the intensity matrix to be delivered by an m × n matrix B, where the

element at row i and column j, (i, j) requires bij ∈ Z+ units of intensity. Let R be the

set of all O(m2n2) possible rectangular apertures (i.e., binary matrices of size m× n having

contiguous rows and columns) that can be used in a segmentation of B. For each rectangle

r ∈ R we define a continuous variable xr that represents the intensity assigned to rectangle

r, and a binary variable yr that equals 1 if rectangle r is used in decomposing B (i.e., if

xr > 0), and equals 0 otherwise. We say that element (i, j) is “covered” by rectangle r if the

(i, j) element of r is 1. Let C(r) be the set of matrix elements that is covered by rectangle

r. We define Mr = min(i,j)∈C(r){bij} to be the minimum intensity requirement among the

elements of B that are covered by rectangle r. Furthermore, we denote the set of rectangles

that cover element (i, j) by R(i, j). Given these definitions, we can formulate the problem

as follows:

Minimize
∑
r∈R

yr (7a)

subject to:
∑

r∈R(i,j)

xr = bij ∀i = 1, . . . ,m, j = 1, . . . , n (7b)

xr ≤Mryr ∀r ∈ R (7c)

xr ≥ 0, yr ∈ {0, 1} ∀r ∈ R. (7d)

The objective function (7a) minimizes the number of rectangular apertures used in the

segmentation. Constraints (7b) guarantee that each matrix element receives exactly the
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required dose. Constraints (7c) enforce the condition that xr cannot be positive unless

yr = 1. Finally, (7d) states bounds and logical restrictions on the variables. Note that the

objective (7a) guarantees that yr = 0 when xr = 0 in any optimal solution of (7).

3.2 Decomposition Approach

Formulation (7) contains two variables and a constraint for each rectangle, resulting in a

large-scale mixed-integer program for problem instances of clinically relevant sizes. Further-

more, the Mr-terms in constraints (7c) lead to a weak linear programming relaxation due to

the “big-M” structure. These difficulties can be alleviated by employing a Benders decom-

position approach. Our decomposition approach will first select a subset of the rectangles

in a master problem, and then check whether the input matrix can be segmented using only

the selected rectangles in a subproblem. Let us first reformulate the problem in terms of the

y-variables.

Minimize
∑
r∈R

yr (8a)

subject to: y corresponds to a feasible segmentation (8b)

yr ∈ {0, 1} ∀r ∈ R, (8c)

where we will address the form of (8b) next. Given a vector ŷ that represents a selected

subset of rectangles, we can check whether constraint (8b) is satisfied by solving the following

subproblem:

SP(ŷ): Minimize 0 (9a)

subject to:
∑

r∈R(i,j)

xr = bij ∀i = 1, . . . ,m, j = 1, . . . , n (9b)

xr ≤Mrŷr ∀r ∈ R (9c)

xr ≥ 0 ∀r ∈ R. (9d)

If ŷ corresponds to a feasible segmentation then SP(ŷ) is feasible, otherwise it is infeasible.

Note that formulation (8) is a pure integer programming problem (since it only contains
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the y-variables), and SP(ŷ) is a linear programming problem (since it only contains the x-

variables). Furthermore, constraints (9c) reduce to simple upper bounds on x-variables for a

given ŷ, which avoids the “big-M” issue associated with constraints (7c). Given a ŷ-vector,

if SP(ŷ) has a feasible solution x̂, then (x̂, ŷ) constitutes a feasible solution of the original

problem (7). On the other hand, if SP(ŷ) does not yield a feasible solution, then we need to

ensure that ŷ is eliminated from the feasible region of (8). Benders decomposition uses the

theory of linear programming duality to achieve this goal.

Let us associate variables αij with (9b), and βr with (9c). Then, the dual formulation of

SP(ŷ) can be given as:

DSP(ŷ): Maximize
m∑
i=1

n∑
j=1

bijαij +
∑
r∈R

Mrŷrβr (10a)

subject to:
∑

(i,j)∈C(r)

αij + βr ≤ 0 ∀r ∈ R (10b)

αij unrestricted ∀i = 1, . . . ,m, j = 1, . . . , n (10c)

βr ≤ 0 ∀r ∈ R. (10d)

Our Benders decomposition strategy first relaxes constraints (8b) and solves (8) to optimality,

which yields ŷ. If SP(ŷ) has a feasible solution x̂, then (x̂, ŷ) corresponds to an optimal matrix

segmentation. On the other hand, if SP(ŷ) is infeasible, then the dual formulation DSP(ŷ)

is unbounded (since the all-zero solution is always a feasible solution of DSP(ŷ)). Let (α̂, β̂)

be an extreme ray of DSP(ŷ) such that
∑m

i=1

∑n
j=1 bijα̂ij +

∑
r∈RMrŷrβ̂r > 0. Then, all

y-vectors that are feasible with respect to (8b) must satisfy

m∑
i=1

n∑
j=1

bijα̂ij +
∑
r∈R

(Mrβ̂r)yr ≤ 0. (11)

We add (11) to (8), and re-solve it in the next iteration to obtain a new candidate optimal

solution.

Now let us consider a slight variation of the matrix segmentation problem, where the

goal is to minimize a weighted combination of the number of matrices used in the segmen-

tation (corresponding to setup time) and the sum of the matrix coefficients (corresponding
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to “beam-on-time”). In IMRT treatment planning context, this objective corresponds to

minimizing total treatment time [10]. In order to incorporate this change in our model, we

simply replace the objective function (7a) with

Minimize w
∑
r∈R

yr +
∑
r∈R

xr, (12)

where w is a parameter that represents the average setup time per aperture relative to the

time required to deliver a unit of intensity.

The Benders decomposition procedure discussed above needs to be adjusted accordingly.

We first add a continuous variable t to (8), which “predicts” the minimum beam-on-time that

can be obtained by the set of rectangles chosen. The updated formulation can be written as

follows:

Minimize w
∑
r∈R

yr + t (13a)

subject to: y corresponds to a feasible segmentation (13b)

t ≥ minimum beam-on-time corresponding to y (13c)

t ≥ 0, yr ∈ {0, 1} ∀r ∈ R. (13d)

Given a vector ŷ, we can find the minimum beam-on-time for the corresponding segmenta-

tion, if one exists, by solving:

SPTT(ŷ): Minimize
∑
r∈R

xr (14a)

subject to:
∑

r∈R(i,j)

xr = bij ∀i = 1, . . . ,m, j = 1, . . . , n (14b)

xr ≤Mrŷr ∀r ∈ R (14c)

xr ≥ 0 ∀r ∈ R. (14d)

Let αij and βr be optimal dual multipliers associated with constraints (14b) and (14c),
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respectively. Then, the dual of SPTT(ŷ) is:

DSPTT(ŷ): Maximize
m∑
i=1

n∑
j=1

bijαij +
∑
r∈R

Mrŷrβr (15a)

subject to:
∑

(i,j)∈C(r)

αij + βr ≤ 1 ∀r ∈ R (15b)

αij unrestricted ∀i = 1, . . . ,m, j = 1, . . . , n (15c)

βr ≤ 0 ∀r ∈ R. (15d)

Note that SPTT(ŷ) is obtained by simply changing the objective function of SP(ŷ), and

DSPTT(ŷ) is obtained by changing the right hand side of (10b) in DSP(ŷ). If DSPTT(ŷ)

is unbounded, then we add a Benders feasibility cut of type (11) as before, and re-solve

(13). Otherwise, let the value of t in (13) be t̂, and the optimal objective function value of

DSPTT(ŷ) be t?. If t̂ = t?, then (ŷ, t̂) is an optimal solution of (13), which minimizes the

total treatment time. However, if t̂ < t?, then we need to add a constraint that satisfies

the following properties: (i) the optimal value of t = t̂ if ŷ is generated by (13) in a future

iteration, and (ii) the optimal value of t ≤ t̂ for all y. Benders decomposition, once again, uses

linear programming duality theory to generate such a constraint. Let α̂ij and β̂r be optimal

dual multipliers. It can be seen that the following constraint satisfies both requirements.

t ≥
m∑
i=1

n∑
j=1

bijα̂ij +
∑
r∈R

(Mrβ̂r)yr. (16)

3.3 Numerical Example

In this section, we give a simple numerical example illustrating the steps of Benders de-

composition approach on our matrix segmentation problem. Consider the input matrix

B =

 8 3

5 0

 . The set of rectangular apertures that can be used to segment B is:

R =


 1 0

0 0

 ,
 0 1

0 0

 ,
 0 0

1 0

 ,
 1 0

1 0

 ,
 1 1

0 0


Let the average setup time per aperture relative to the time required to deliver a unit of

intensity be w = 7. Defining an xr and a yr-variable for each rectangle r = 1, . . . , 5, the
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problem of minimizing total treatment time can be expressed as the following mixed-integer

program:

Minimize 7× (y1 + y2 + y3 + y4 + y5) + x1 + x2 + x3 + x4 + x5 (17a)

subject to: x1 + x4 + x5 = 8 (17b)

x2 + x5 = 3 (17c)

x3 + x4 = 5 (17d)

x1 ≤ 8y1, x2 ≤ 3y2, x3 ≤ 5y3, x4 ≤ 5y4, x5 ≤ 3y5 (17e)

xr ≥ 0, yr ∈ {0, 1} ∀r = 1, . . . , 5. (17f)

For a given ŷ-vector, the primal subproblem SPTT(ŷ) can be given as

SPTT(ŷ): Minimize x1 + x2 + x3 + x4 + x5 (18a)

subject to: x1 + x4 + x5 = 8 (18b)

x2 + x5 = 3 (18c)

x3 + x4 = 5 (18d)

x1 ≤ 8ŷ1, x2 ≤ 3ŷ2, x3 ≤ 5ŷ3, x4 ≤ 5ŷ4, x5 ≤ 3ŷ5 (18e)

xr ≥ 0 ∀r = 1, . . . , 5. (18f)
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Associating dual variables α11 with (18b), α12 with (18c), α21 with (18d), and β1, . . . , β5 with

(18e), we get the dual subproblem DSPTT(ŷ).

DSPTT(ŷ): Maximize 8α11 + 3α12 + 5α21+

8ŷ1β1 + 3ŷ2β2 + 5ŷ3β3 + 5ŷ4β4 + 3ŷ5β5 (19a)

subject to: α11 + β1 ≤ 1 (19b)

α12 + β2 ≤ 1 (19c)

α21 + β3 ≤ 1 (19d)

α11 + α21 + β4 ≤ 1 (19e)

α11 + α12 + β5 ≤ 1 (19f)

α11, α12, α21 unrestricted (19g)

βr ≤ 0 ∀r = 1, . . . , 5. (19h)

Iteration 1: We first relax all Benders cuts in the master problem, and solve

Minimize 7× (y1 + y2 + y3 + y4 + y5) + t (20a)

subject to: t ≥ 0, yr ∈ {0, 1} ∀r = 1, . . . , 5. (20b)

The optimal solution of (20) is ŷ = [0, 0, 0, 0, 0], t̂ = 0. In order to solve the subproblem

corresponding to ŷ, we set the objective function (19a) to Maximize 8α11 + 3α12 + 5α21, and

solve DSPTT(ŷ). DSPTT(ŷ) is unbounded having an extreme ray α11 = 2, α12 = −1, α21 =

−1, β1 = −2, β2 = 0, β3 = 0, β4 = −1, β5 = −1, which yields the Benders feasibility cut

8− 16y1 − 5y4 − 3y5 ≤ 0.

Iteration 2: We add the generated Benders feasibility cut to our relaxed master problem,

and solve

Minimize 7× (y1 + y2 + y3 + y4 + y5) + t (21a)

subject to: 8− 16y1 − 5y4 − 3y5 ≤ 0 (21b)

t ≥ 0, yr ∈ {0, 1} ∀r = 1, . . . , 5. (21c)
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An optimal solution of (21) is ŷ = [1, 0, 0, 0, 0], t̂ = 0. We set the objective function (19a) to

Maximize 8α11 + 3α12 + 5α21 + 8β1, and solve DSPTT(ŷ). DSPTT(ŷ) is, again, unbounded.

An extreme ray is α11 = 0, α12 = 0, α21 = 1, β1 = 0, β2 = 0, β3 = −1, β4 = −1, β5 = 0, which

yields the following Benders feasibility cut: 5− 5y3 − 5y4 ≤ 0.

Iteration 3: We update our relaxed master problem by adding the generated Benders

feasibility cut:

Minimize 7× (y1 + y2 + y3 + y4 + y5) + t (22a)

subject to: 8− 16y1 − 5y4 − 3y5 ≤ 0 (22b)

5− 5y3 − 5y4 ≤ 0 (22c)

t ≥ 0, yr ∈ {0, 1} ∀r = 1, . . . , 5. (22d)

An optimal solution of (22) is ŷ = [0, 0, 0, 1, 1], t̂ = 0. We set the objective function (19a)

to Maximize 8α11 + 3α12 + 5α21 + 5β4 + 3β5, and solve DSPTT(ŷ). This time DSPTT(ŷ) has

an optimal solution α11 = 1, α12 = 1, α21 = 1, β1 = 0, β2 = 0, β3 = 0, β4 = −1, β5 = −1, and

the corresponding objective function value is t? = 8. Since t? > t̂, we generate the following

Benders optimality cut: 16− 5y4 − 3y5 ≤ t.

Iteration 4: The updated relaxed Benders master problem is:

Minimize 7× (y1 + y2 + y3 + y4 + y5) + t (23a)

subject to: 8− 16y1 − 5y4 − 3y5 ≤ 0 (23b)

5− 5y3 − 5y4 ≤ 0 (23c)

16− 5y4 − 3y5 ≤ t (23d)

t ≥ 0, yr ∈ {0, 1} ∀r = 1, . . . , 5. (23e)

An optimal solution of (23) is ŷ = [0, 0, 0, 1, 1], t̂ = 8. Note that ŷ is equal to the solution

generated in the previous iteration, and therefore t? = 8. Since t? = t̂, optimality has been

reached and we stop.
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