
A Decomposition Approach to Solve the Selective
Graph Coloring Problem in Some Perfect Graph

Families ∗

Oylum Şeker Tınaz Ekim Z. Caner Taşkın

July 16, 2018

Abstract

Graph coloring is the problem of assigning a minimum number of colors
to all vertices of a graph such that no two adjacent vertices receive the same
color. The Selective Graph Coloring Problem is a generalization of the stan-
dard graph coloring problem; given a graph with a partition of its vertex set
into clusters, the objective is to choose exactly one vertex per cluster so that,
among all possible selections, the number of colors necessary to color the ver-
tices in the selection is minimum. This study focuses on a decomposition based
exact solution framework for selective coloring in some perfect graph families:
in particular, permutation, generalized split, and chordal graphs where the
selective coloring problem is known to be NP-hard. Our method combines
integer programming techniques and combinatorial algorithms for the graph
classes of interest. We test our method on graphs with different sizes and
densities, present computational results and compare them with solving an
integer programming formulation of the problem by CPLEX, and a state-of-
the art algorithm from the literature. Our computational experiments indicate
that our decomposition approach significantly improves solution performance
in low-density graphs, and regardless of edge-density in the class of chordal
graphs.

Keywords: selective graph coloring; partition coloring; decomposition algo-
rithm; integer programming; permutation graphs; generalized split graphs;
chordal graphs

1 Introduction

1.1 Motivation and Literature Survey

Graph coloring is the problem of assigning a minimum number of colors to all vertices
of a graph such that no two adjacent vertices, i.e., vertices that are linked by an edge,

∗This study is supported by Boğaziçi University Research Fund (grant 11765); and T. Ekim is
supported by Turkish Academy of Sciences GEBIP award and Visiting Fulbright Scholar Program.

1

receive the same color. The problem arises in a variety of areas including scheduling
[18], register allocation used in compiler optimization [2], sudoku puzzles [16], and
many more. In the most general terms, a problem relevant to graph coloring is
comprised of entities, and incompatibilities among them. Entities are represented
by vertices, and incompatibilities between pairs of entities by edges, so that no two
entities posing incompatibility can result in a conflict when colored.

To embody the formal definition of the problem, a scheduling problem in its
simplest form can be considered. Assume a number of jobs, some of which share
common resources, are to be assigned to certain time slots. Denoting jobs with
vertices, and pairs of jobs that share a common resource with edges, the problem
can be expressed in the domain of graphs. When the vertices of such a graph
are colored, each color corresponds to a distinct time slot and hence the minimum
number of colors needed to color the vertices of such a graph gives the least number
of slots necessary to finish all the jobs [18].

The selective graph coloring problem, Sel-Col, is a generalization of the clas-
sical graph coloring problem. Given a graph and a partition of its vertex set into
clusters, Sel-Col aims to choose one vertex per cluster so that, among all possi-
ble selections, the number of colors necessary to color the vertices in the selection
is minimum. In a graph where each cluster consists of a single vertex, Sel-Col
becomes equivalent to the classical graph coloring problem [5].

1

2 3

4

5

6

7 8

9

10

V1 V2

V3 V4

(a)

1

7

4

10

V1 V2

V3 V4

(b)

3 5

7 10

V1 V2

V3 V4

(c)

Figure 1: (a) A graph G with a partition of its vertex set shown in dashed rectangles,
(b) a feasible selection in G with an optimal coloring of it, (c) an optimal selection
in G with an optimal coloring of it.

Sel-Col, or partition coloring as it is alternatively called in the literature, is
motivated by the wavelength routing and assignment problem, and was introduced
in [17]. There, a telecommunication network, which is a collection of terminal nodes
linked by optical fibers capable of carrying a certain number of wavelengths, and
a set of source-destination node pairs are given. The problem is concerned with
finding the minimum number of distinct wavelengths to assign to each route, i.e.,
paths connecting the given source-destination pairs, such that no two routes that
have a common link are assigned the same wavelength. In this setting, the set of all
possible routes and pairs of routes possessing a common link correspond to vertices
and edges respectively, and groups of routes connecting a given source-destination
pair constitute the clusters in the host graph. Then, selection of one vertex per
cluster achieves the goal of finding a route between each pair of terminals, and
coloring of the selection delivers a proper wavelength to each route.

2

In the standard graph coloring problem, assignments (colors) on the entities
(vertices) are done without any regard to alternative choices for them. However, as
the example applications reveal, there are cases where entities have their own set of
feasible options (clusters) and thus should be allocated one among those alternatives.
In such cases, where the basic graph coloring framework fails to suffice, Sel-Col
bridges the gap by offering the required flexibility.

Sel-Col has a wide range of applications, as the classical graph coloring problem
does. The authors in [4] elaborate on the selective graph coloring problem by re-
viewing some models from the literature and proposing some new ones from various
contexts including wavelength assignment (which is originally introduced in [17]),
frequency assignment, various types of scheduling problems, the travelling salesman
problem with multiple stacks (introduced in [21]), and more. For each domain of ap-
plication, they discuss the related model and the complexity of Sel-Col in classes
of graphs pointed out by the model. Also, analogies between models as well as new
solution approaches and open research directions are highlighted throughout the
paper.

The selective graph coloring problem is known to be NP-hard, and remains so in
many special classes of graphs [5, 17]. The work by Li and Simha [17] and that by
Noronha and Ribeiro [20] focus on partition coloring in the context of wavelength
routing and assignment, and offer heuristic methods to solve the problem.

To the best of our knowledge, there are three studies that primarily focus on
exact solution methods for Sel-Col. In the first one [8], Frota et al. present a
branch-and-cut algorithm for partition coloring problem. Their integer program-
ming formulation picks one vertex to be the representative of vertices having the
same color, instead of coloring all vertices in the selection. After some preprocessing
operations to reduce the graph size, they implement a branch-and-cut algorithm
with a branching rule custom-tailored for the partition coloring problem. The rule
is a modification of the classical one used in [19] that branches on two non-adjacent
vertices for the graph coloring problem. Also, a tabu search procedure is used to
obtain an upper bound on each node of the branch-and-cut tree. Another study
by Hoshino et al. [14] proposes a new integer programming model and a branch-
and-price algorithm to solve the partition coloring problem. In all instance classes
tested, their algorithm is said to demonstrate superior performance compared to
the one proposed in [8]. Finally, a very recent study by Furini et al. [10] proposes
a new formulation for Sel-Col with an exponential number of variables and de-
signs a branch-and-price algorithm to solve it, where the pricing phase is based
on a unique pricing problem, as opposed to the work by Hoshino et al., which re-
quires one to solve several pricing problems. Computational results indicate that
the proposed branch-and-price framework improves on the previous state-of-the-art
exact approaches from the literature and so we compare with this branch-and-price
implementation in our experiments.

1.2 Hardness of Sel-Col and Our Contribution

As mentioned in [4], the difficulty of Sel-Col is two-fold: it may be due to the exis-
tence of exponentially many selections and/or to the hardness of optimally coloring
the graph induced by the selection, even if the selection yielding the optimal solution

3

can be found trivially (for instance because there is only one selection as in the case
of classical graph coloring problem). It is well known that although the classical
graph coloring problem is NP-hard even in several restricted cases [11], it can be
solved in polynomial time when restricted to perfect graphs and efficient combinato-
rial algorithms exist for many of its subclasses [13]. Nevertheless, Sel-Col, being at
least as difficult as the classical coloring problem from a computational point of view
remains NP-hard in all these special cases. In particular, Sel-Col is NP-hard in
permutation graphs where the multiple stacks travelling salesman problem is mod-
eled as Sel-Col, in split graphs, and in interval graphs where several scheduling
and timetabling applications are modeled using Sel-Col [4]. Since chordal graphs
and generalized split graphs contain the class of split graphs, the problem is NP-hard
for chordal graphs and generalized split graphs. As in these examples, in many real
life problems, the application domain yields host graphs that admit characteristics
of certain graph families. The development of exact solution procedures for those
special graph families where sel-col remains NP-hard is explicitly emphasized as
an open question in [4].

In this paper, we focus on a decomposition based exact solution framework for
sel-col in certain perfect graph families. The decomposition approach utilized in
this study suggests solving sel-col by dealing with the selection and coloring tasks
separately, which naturally inclines us to be interested in graph classes where the
classical coloring problem can be solved efficiently, in order to facilitate the solution
procedure. In line with this idea and having in mind the aforementioned hardness
results, we conduct extensive computational studies on permutation graphs, gener-
alized split graphs (a subclass of perfect graphs containing split graphs) and chordal
graphs (a subclass of perfect graphs containing interval graphs). The computational
experiments that we have conducted on a large set of randomly generated graphs
from 100 to 1000 vertices with varying edge densities indicate that our decomposi-
tion method significantly improves solvability of the problem for low densities (see
Section 3.2). For permutation graphs, our method outperforms direct solution of
the integer programming formulation of the problem and the branch-and-price al-
gorithm by Furini et al. [10] at low densities, both in terms of the amount of time
spent and optimality gap percentages. In the case of generalized split graphs, the
decomposition method yields better performance in terms of average optimality gaps
and average times for low-density graphs having small clusters. The performance of
our algorithm manifests itself most noticeably in the class of chordal graphs; even
graphs on 1000 vertices can be optimally solved in under one second.

The remainder of this paper is organized as follows. Section 1.3 gives some
preliminary graph-theoretic definitions and information that relate to Sel-Col in
order to lay the foundation for forthcoming sections. In Section 2, we first present
an integer programming formulation for Sel-Col, then describe our decomposition
procedure and give details about the way it is applied in each one of the three graph
classes we consider. In Section 3, we explain how the test instances are generated
and present computational results for the decomposition approach in comparison to
those of the integer programming formulation and a state-of-the-art algorithm from
the literature [10]. Finally, Section 4 concludes the article with a brief summary and
presents possible future research directions.

4

1.3 Definitions

A graph is an ordered pair G = (V,E) with V being the set of vertices (or nodes)
and E being the set of edges, which are pairs of elements of V . It provides a
representation of a set of objects and their interrelations, where objects refer to
vertices, and the predefined relations between pairs of objects correspond to edges
in the graph.

Two vertices in a graph are called adjacent if they are connected by an edge. A
vertex u is called a neighbour of another vertex v if there exists an edge {u, v}. The
neighbourhood of a vertex v is the set of all vertices that are adjacent to it, and is
denoted by N(v).

The complement of a graph G = (V,E), denoted as Ḡ, is a graph on the same
vertex set V and such that two distinct vertices of Ḡ are adjacent if and only if they
are not adjacent in G. An induced subgraph is a graph formed by a subset V

′
of

V (G) and all edges connecting the pairs of vertices in V
′
. For a graph G = (V,E)

and V ′ ⊆ V , the subgraph induced by V ′ will be shown as G[V ′].
A clique in a graph is a subset of vertices such that every distinct pair of vertices

in the subset is adjacent. In a graph, a given clique is maximal if its size cannot be
extended with inclusion of some other vertex; in other words, if it is not a proper
subset of another clique. The clique number of a graph G is the size of a largest
clique in G and is denoted by ω(G). A stable set, or equivalently an independent
set, is a set of vertices in a given graph in which no two vertices are adjacent.

A (simple) cycle is comprised of a sequence of consecutively adjacent vertices
that starts and ends at the same vertex with no repetitions of vertices and edges. A
chord is an edge linking two non-consecutive vertices in a cycle.

A tree is a graph in which any two vertices are connected by exactly one path,
where a path is a sequence of edges that connects a series of vertices in a graph.

A coloring of a graph using at most k colors is called a (proper) k-coloring. A
graph is called k-colorable if its vertices can be assigned a k-coloring. The chromatic
number of a graph G, denoted by χ(G), is the minimum number of colors necessary
to color all vertices of the graph. Note that a graph G is k-colorable for all k ≥ χ(G).

Given a graph G = (V,E) with a partition of its vertex set into P clusters
V = {V1, ..., VP}, a selection is a subset of vertices of G that contains exactly one
vertex from each cluster in the partition; i.e., V ′ ⊆ V such that |V ′ ∩ Vp| = 1 for
all p ∈ {1, . . . , P}. A selective k-coloring of G is defined by a selection V ′ and a
k-coloring of G[V ′]. The smallest integer k for which G admits a selective k-coloring
is called the selective chromatic number of G and is denoted by χSEL(G,V) [4]. A
selective clique of G is a clique in the graph induced by a selection. A maximal
clique in the graph induced by a selection is called a maximal selective clique, and
a maximal selective clique of maximum size is called a maximum selective clique of
G.

A graph G is perfect if every induced subgraph G′ ⊆ G satisfies χ(G′) = ω(G′).
Permutation graphs, generalized split graphs and chordal graphs are subclasses of
perfect graphs [3,13] that we consider in this study. They will be formally introduced
in Sections 2.2.1, 2.2.2 and 2.2.3 respectively.

5

2 Sel-Col in Perfect Graph Families

In this section, we first give an integer programming formulation to solve Sel-Col
in general, then introduce our decomposition framework and give details about the
application of this method in the case of certain perfect graph families that we focus
on. We assume that we are given a graph G = (V,E) with V = {1, . . . , n} and a

partition of its vertex set into P clusters V1, ..., VP ; i.e.,
P⋃

p=1

Vp = V where Vp ⊂ V ,

Vp ∩ Vq = ∅, Vp 6= ∅ ∀ p, q ∈ {1, ...,P} and p 6= q.

2.1 Integer Programming Formulation

An integer programming (IP) formulation to solve Sel-Col is expressed by Model
1.

Model 1: min
P∑

k=1

yk (1)

s.t.

xik ≤ yk ∀(i, k) ∈ V × {1, ...,P} (2)

xik + xjk ≤ 1 ∀ (i, j) ∈ E, k ∈ {1, ...,P} (3)∑
i∈Vp

P∑
k=1

xik = 1 ∀p ∈ {1, ...,P} (4)

yk ∈ {0, 1} ∀k ∈ {1, ...,P} (5)

xik ∈ {0, 1} ∀(i, k) ∈ V × {1, ...,P}, (6)

where xik is a binary variable taking value 1 if vertex i is colored with color k and
0 otherwise, yk is another binary variable having value 1 if color k is used and 0
otherwise.

Constraint set (2) forces yk to be 1 if color k is used by some vertex, and (3) en-
sures that two adjacent vertices do not use the same color. Finally, the requirement
that exactly one vertex must be chosen and colored from each cluster is achieved
via constraint set (4). The fact that only one vertex must be selected from each
cluster makes the number of clusters P in the partition a natural upper bound on
the number of necessary colors: in the worst case the vertices in a selection would
form a clique and all P colors would be needed.

One important issue about this formulation is that, due to the way xik variables
are defined, a feasible solution can be equivalently expressed in a number of alter-
native ways by simply reindexing the colors used in that solution. Specifically, a
feasible n-coloring of a selection will have n! equivalent representations obtained by
merely permuting the indices of those n colors. Moreover, any n-subset of P colors
can equally be used in an n-coloring, and there are

(
P
n

)
different ways to select them.

Then, each feasible solution using n of the P available colors has P !
(P−n)! equivalent

alternative solutions. This symmetry inherent in the formulation, or existence of

6

“clones” in feasible space, poses additional burdens on branch-and-bound/cut pro-
cedures by causing them to explore and fathom these isomorphic copies of solutions
during the search [24]. Therefore, we add the constraint set (7) to Model 1 in order
to reduce symmetry.

yk ≥ yk−1 ∀k ∈ {2, ...,P} (7)

Constraints (7) place a hierarchy on available colors (similar to symmetry break-
ing constraints in [24]) by enforcing the program to use the colors in increasing order
of their indices; that is, by only allowing the lowest numbered n colors to be used in
an n-colorable feasible solution. This way, the subset of clone solutions that would
arise from selecting alternative combinations of the P available colors is eliminated.

Note that the y-variables can be relaxed as continuous since constraints (2) ensure
that the y-variables will take on binary values in an optimal solution. However,
Model 1 still contains O(|V | × P) binary variables and O(|E| × P) constraints. Its
solution time increases exponentially with the input size, and becomes intractable
in relatively small graphs. The next subsection offers a decomposition framework
as a promising alternative to the IP formulation.

2.2 Decomposition Approach

Let t denote an estimate of the number of colors needed. Sel-Col can alternatively
be formulated as follows:

Model 2: min t (8)

s.t. ∑
i∈Vp

xi = 1 ∀p ∈ {1, ...,P} (9)

t ≥ χ(G[x]) (10)

t ≥ 0 (11)

xi ∈ {0, 1} ∀i ∈ V, (12)

where xi is a binary variable taking value 1 if vertex i is selected and 0 otherwise,
and G[x] is the graph induced by the selection given by the variable vector x =
(x1, . . . , xn).

The nonnegative variable t is forced to be no smaller than the chromatic number
of an optimal selection by constraint set (10), which means that the minimum value
it takes is exactly the selective chromatic number χSEL(G,V) of the input graph G.
The constraint set (9) ensures that exactly one vertex is chosen from each of the
P clusters. The model is not well defined in its current form because of the χ(.)
operator in constraint set (10). In order to re-express (10) in a linear form, we need
to embed a set of linear inequalities to carry out the coloring task. This inclines us
to separate the problem into two parts, where the selection task is handled in one
and the coloring of the given selection in the other.

7

Let us first relax constraint set (10). Removal of (10) from Model 2 leaves an
integer programming formulation, which yields a feasible vertex selection for G.
This relaxed version of the model constitutes the initial master problem. At each
step, the master problem is solved to optimality and the vertex selection found
by it is passed to a subproblem, which computes the minimum number of colors
needed to color that selection. If the optimal objective value of the subproblem is
higher than the optimal t-value of the master, it means that the master problem
has under-estimated the chromatic number of the current vertex selection. In that
case, we add a constraint to the master that forces t to be at least as large as this
chromatic number, unless the particular selection is altered. One such constraint
can be expressed as follows:

t ≥ χ(G[x(j)])−
∑

{i∈V |x(j)
i =1}

(1− xi), (13)

where G[x(j)] denotes the graph induced by the selection found at iteration j given
by the variable vector x(j), and χ(G[x(j)]) the minimum number of colors needed to
color it.

The rightmost term in inequality (13) is equal to zero only when x = x(j); i.e.,
when exactly the same vertices as in x(j) are picked, and it increases by one with
each vertex removed from the selection given by x(j). This constraint depends on
the fact that chromatic number of a graph induced by a selection can decrease by
at most one for each vertex switch. Therefore, it decreases the lower bound by one
for each vertex we replace.

A natural lower bound on the chromatic number χ(G) of a graph G is the size
ω(G) of a maximum clique in it. If G contains a clique of size k, we need k colors to
color that clique, because each vertex is adjacent to all other vertices and therefore
receives a distinct color. Since this argument is valid for any clique in the graph,
we need at least ω(G) colors to color G. We can translate this relationship into an
inequality as given in (14), and use it as an additional cut within our decomposition
procedure.

t ≥
∑

i∈K(j)

xi (14)

where K(j) is a maximum clique of G[x(j)].

For a given selection, the cuts as given in (14) force the objective value t to be at
least as large as the cardinality of a maximum clique in it. In cases where the lower
bound on chromatic number is tight, (14) can replace (13). As mentioned before,
if we use (13), the lower bound on t reduces by one for each vertex differing from
the selection given by x(j). Changing one vertex from the selection that belongs
to a maximum clique of it will not necessarily decrease the lower bound in (14),
because the selection may contain other maximum cliques which remain intact after
this change. However, the lower bound in (13) would decrease by one in this case.

8

Therefore, constraint (14) is stronger than (13) because it does not decrease the
lower bound on t by each vertex switch; it does so only when the changed vertex
lies in a clique whose cut has been added before.

In this study, we focus on three graph classes where the chromatic number equals
maximum clique size for all induced subgraphs of the input graph, which means
that they are perfect graph families, and we make use of only (14) in our solution
procedure.

We note that constraints (14) can be interpreted from a combinatorial point
of view. In particular, each selective clique found in earlier iterations has a corre-
sponding constraint (14) added to the master problem. Each such constraint forces
the value of the t-variable to be greater than or equal to the number of vertices in
the intersection of its corresponding selective clique and the current vertex selection
(represented by the x-variables). Since the master problem minimizes t, it seeks a se-
lection that yields a smallest intersection with previously generated selective cliques,
and the subproblem finds a maximum clique in the induced subgraph identified by
the vertex selection. If the subproblem agrees on the same objective value with the
master problem, then it means that the union of selective cliques for which cuts (14)
have been added to the master problem contains a maximum clique of the current
selection. In this case, we conclude that a better selection cannot be achieved and
the process should be terminated. Pseudo-code of our decomposition algorithm for
perfect graphs is given below.

Decomposition Algorithm for Perfect Graphs

Input: A perfect graph G = (V,E), and a partition V of V

j ← 0, t(j) ← 0, z
(j)
sp ←∞

while true
j ← j + 1
Solve the master problem to optimality, find an optimal selection x(j),

having optimal objective value t(j)

Find a maximum clique K(j) of G[x(j)] in the subproblem

z
(j)
sp ← |K(j)|

if z
(j)
sp > t(j)

Add (14) to the master problem
else

break
x∗ ← x(j), z∗ ← t(j)

Output: An optimal selection x∗ with χSEL(G,V) = z∗.

The algorithm given above continues to search for a selection as long as the
objective value of the subproblem exceeds that of the master problem. At each
step j, the master problem is solved to optimality to obtain a selection x(j) with
associated optimal objective value t(j). If the subproblem finds a maximum clique
in G[x(j)] of size z

(j)
sp = t(j), then the process is terminated. At this point, the

incumbent solution x∗ and its corresponding objective value t∗ are optimal.

9

Permutation, generalized split and chordal graphs are all hereditary graph classes;
that is, induced subgraphs of a graph from any of those classes belong to the same
class as the original graph does. Therefore, polynomial-time combinatorial methods
tailored for these given classes also work on the subgraphs induced by selections
and thus can be employed in the subroutine of the decomposition procedure. As
already mentioned in Section 1.2, even though the solution procedure is facilitated
by making use of some efficient algorithms for the graph coloring problem in these
graph classes, Sel-Col still remains NP-hard because of the difficulty inherent to
the selection task. With constraints (14), it may be possible to reach an optimal so-
lution without having to evaluate every single selection, but the number of selections
to evaluate can be exponential in general.

In the next three subsections, we give details about how the proposed method is
applied for each one of the graph classes we concentrate on.

2.2.1 Permutation Graphs

Permutation graphs have many real world applications from flight altitude assign-
ment to the memory reallocation problem [13]. One specific domain of application
that motivates the study of the selective coloring problem in the class of permuta-
tion graphs is given by Demange et al. in [4]. The application is about allocating
items to tracks from their own pick-up points to their own delivery spots, where
both pick-up and delivery points have a predetermined sequence to be visited. Each
track has a first-in last-out structure and swapping of items on tracks is not allowed.
When each item has different possibilities of pick-up and/or delivery points, the
problem consists in selecting one pick-up and one delivery point per item in order
to minimize the total number of tracks required, which is shown to be equivalent to
Sel-Col in permutation graphs by representing each item with a set of properly
defined intervals on the real line [4].

Given a permutation π, π(i) denotes the number in position i of π, and π−1(i)
denotes the position of number i in π. A graph is a permutation graph if there is a
permutation π of its n vertices in such a way that vi and vj are adjacent if and only
if i < j and π−1(vi) > π−1(vj) (or equivalently i > j and π−1(vi) < π−1(vj)). Figure
2 shows two permutation graphs. Note that edge {2, 4} exists in both graphs since
position number of 4 is smaller than 2 in both permutations. Similarly, there is no
edge between vertices 2 and 5 in either graph since 2 is positioned earlier than 5 in
both permutations.

1

2

34

5

π = (3, 4, 2, 5, 1)

1 2

3

45

6

π = (4, 6, 2, 1, 5, 3)

Figure 2: Two example permutation graphs

In order to apply the decomposition idea presented previously, we need to find

10

maximum clique(s) in the graphs induced by the selections identified by the master
problem. Since each induced subgraph of a permutation graph is again a permuta-
tion graph, we will make use of a general polynomial-time algorithm given in [13]
to find maximum cliques in permutation graphs. It follows from the definition of
permutation graphs that vertices corresponding to a decreasing subsequence in a
given permutation form a clique. Then, a maximum clique in a permutation graph
can be found by identifying a longest decreasing subsequence in the corresponding
permutation. For this purpose, each number is considered in the order in which it
appears in π, and is enqueued to the end of the first available set. A set is avail-
able for some number π(i) if the last number in the set, say π(j) for some j < i,
is less than π(i). Otherwise, π(j) becomes the predecessor of π(i). The sets will
be complete after considering all numbers in π. It can be observed that each set
corresponds to an increasing subsequence in π and thus is a stable set of the re-
lated graph. One should note that the predecessor of a number must be greater
than itself. Moreover, it is known that such a partition of vertices into stable sets
yields a minimum coloring of G. Consequently, we can identify a maximum clique
(equivalently a longest decreasing subsequence) by starting from a number in the
last stable set and tracing back the predecessors all the way up to the first stable
set. Thus, the size of a maximum clique will be equal to the number of stable sets
constructed.

It is also possible to generate all maximum cliques in the graph. For this purpose,
we can list all predecessors of each number and trace back through each one to reveal
all maximum cliques in the graph. To list all predecessors of a number π(i), after
setting the first predecessor of it, we can simply search back from the index of
first predecessor in that stable set, and include all numbers that are greater than
π(i) [13]. Although the number of maximum cliques in a permutation graph can
be exponential, this algorithm to find all maximum cliques turned out to perform
quite efficiently in practice. However, in our preliminary experiments, we observed
that generating a single maximum clique and adding related cuts each time the
subproblem is called yields better results. Therefore, each time the subproblem is
called, we generate one maximum clique in the graph induced by that selection.

2.2.2 Generalized Split Graphs

An important characteristic of generalized split graphs is that they are shown to
comprise almost all perfect graphs [22]. Since it is such a large subclass of perfect
graphs, it is important to test the performance of our decomposition approach on
them.

A graph G is a k-partite graph if its vertex set can be partitioned into k different
stable sets. In a complete k-partite graph, all possible edges between each pair of k
stable sets exist. A graph G = (V,E) is a generalized split graph if there exists a
partition V = V1 ∪ V2 of the vertex set such that either G[V1] is a union of pairwise
disjoint cliques and V2 is a clique in G, in which case the graph is called unipolar,
or Ḡ[V1] is a union of pairwise disjoint cliques (in other words G[V1] is a complete
multi-partite graph) and V2 is a stable set in G, in which case it is called co-unipolar.
Figure 3 shows visual representations of generalized split graphs.

11

clique

clique

clique

H1

Hk

H

.

.

.

unipolar

stable

set

stable

set

stable
set

H1

Hk

H

.

.

.

co-unipolar

Figure 3: Two alternative forms of generalized split graphs

Let G = (V,E) be a generalized split graph with V = V1 ∪ V2 such that V1 =⋃k
i=1Hi and V2 = H. If G is unipolar, V1 is the union of k disjoint cliques H1, . . . , Hk

and V2 is a clique; if it is co-unipolar, V1 induces a complete k-partite graph with
k-partition H1, . . . , Hk and V2 is a stable set. In order to find maximum cliques
in a generalized split graph, we first need to know whether it is unipolar or co-
unipolar. When generating random generalized split graphs (the generation method
is explained in Section 3.1.2), we label the output graph as unipolar or co-unipolar
and also record its partition to make use of them later in our solution procedure.

In the unipolar case, we use the polynomial-time method that Eschen and Wang
utilize in [7]. The first observation is that since the His for i = 1, . . . , k are disjoint,
a clique cannot contain vertices from distinct Hi components. Hence, one should
identify a maximum clique in each one of the subgraphs G[H ∪ Hi] and find the
largest among the k cliques. In order to find a maximum clique in each one of these k
induced subgraphs easily, the authors in [7] remark that the complement of G[H∪Hi]
forms a bipartite graph with bipartition H,Hi. The well-known König–Egerváry
Theorem [6, 15] states that in a bipartite graph the size of a maximum matching
equals the size of a minimum vertex cover. Moreover, if V ′ is a minimum vertex
cover in G = (V,E), then V \ V ′ is a maximum stable set of G. So, in order to
find a maximum clique in a unipolar graph, we seek maximum stable sets in the
complement of each G[H∪Hi] to find a maximum clique in the entire graph because
a stable set in the complement corresponds to a clique in the original graph.

To find a maximum clique in a co-unipolar graph, we first explore a vertex v in H
that is connected to the maximum number of distinct Hi components. Since the His
form a complete k-partite graph, the neighbours in distinct Hi components together
with v form a clique. If the size of that clique is greater than k, then we are done.
Otherwise, we can arbitrarily select a single vertex from each Hi for i = 1, . . . , k and
output it as a maximum clique. This process takes polynomial time, in particular
O(|V |+ |E|).

As in permutation graphs, it is possible to list all maximum cliques in a given
generalized split graph. However, especially in cases where the graph is co-unipolar
and the maximum cliques turn out to be all combinations of vertices from each Hi,
the number of possible maximum cliques can be exponentially many. In our prelim-
inary experiments, we observed that it is not practical to enumerate all maximum
cliques. Hence, we confine ourselves to finding a single maximum clique each time

12

the subproblem is called. Furthermore, in the case of unipolar graphs, we extend
that single maximum clique of the selection to a maximal clique in the whole graph
to strengthen our cut (14).

2.2.3 Chordal Graphs

Chordal graphs generalize interval graphs, which are intersection graphs of a family
of intervals on a linearly ordered set (e.g., the real line) and play an important role
in scheduling applications [13]. In addition, exact solution methods for Sel-Col
in interval graphs are particularly emphasized as a research direction in [4]. Being
a generalized version of interval graphs, an efficient exact solution procedure for
chordal graphs will serve useful purposes in relevant application areas.

A graph is called chordal (or triangulated) if every cycle of length ≥ 4 contains
a chord where a chord is an edge between two non-consecutive vertices of a cycle.
Chordal graphs can alternatively be defined as graphs not containing induced cycles
of length at least 4.

1

2

34

5

(a)

1

2

34

5

(b)

Figure 4: (a) A chordal graph on five vertices, (b) A non-chordal graph due to the
induced cycle 2-3-4-5-2

A chordal graph on n vertices has at most n maximal cliques, with equality if
and only if the graph contains no edge [9]. Since the upper bound on the number
of maximal cliques is reasonably small and there exists a linear-time algorithm to
generate all maximal cliques in a given chordal graph [1], we generate all maximal
cliques of G beforehand and construct the associated cut set that is mathematically
expressed in (15).

t ≥
∑
i∈K

xi ∀K ∈ K, (15)

where K denotes the set of all maximal cliques for the given chordal graph G.

We tailored our decomposition procedure for the case of chordal graphs in a
slightly different (but equivalent) manner: The master problem starts with finding
an optimal selection without any clique constraints imposed. Given an optimal
selection identified by the master problem, the subproblem checks whether any of
the constraints from the set (15) are violated and incorporates such constraints, if
any, into the master. In other words, instead of generating the clique cuts one by
one at each step, we construct them beforehand and add as needed, because the

13

number of constraints to go through is linear in the size of the vertex set of the
input graph in the case of chordal graphs. If, at some iteration, the master finds
a selection which does not violate any of the constraints in (15), it means that the
current state of the master is able to produce an optimal solution that satisfies all the
clique constraints and hence an optimal solution for the entire problem is reached.
It should be noted that the constraint set (15) is defined for the maximal cliques on
the entire graph, not on selections. However, the formulation of the master already
involves constraints making the x-variables to take value 1 only for vertices in the
selection, which guarantees that the t-variable, equivalently the objective value, is
forced to be at least as large as the cardinality of the intersection of a maximal
clique with the selected set of vertices. Moreover, a maximal clique of a selection
can always be extended to a maximal clique in the whole graph, which means that
the set of all selective maximal cliques are covered by the set of all maximal cliques
of the whole graph. Since the constraint set (15) is defined for each one of the
maximal cliques in the graph, the minimum value that variable t ultimately takes
on for some given selection will be exactly the size of a maximum clique in that
selection.

3 Computational Study

3.1 Data Generation

For all the graph classes that we focus on, we need random instances to test the
performance of our solution approach. We briefly describe how the test instances
are obtained for each one of the three graph classes.

3.1.1 Random Permutation Graph Generation

Our algorithm to generate permutation graphs (PermGraphGen) simply implements
the definition of permutation graphs. Given n as the number of vertices and p as a
probability value to manipulate the edge density of the output graph, the algorithm
first generates a random ordering π of the numbers 1, . . . , n, where π(i) denotes
the number in position i in π. To produce a random ordering, each number π(i)
is considered to be swapped with an element at some randomly picked index later
than i. If the number at the randomly chosen index is greater than π(i), in which
case a swap would lead to a rise in the number of edges, the swap takes place with
probability p; otherwise, we interchange places of the two with probability 1 − p.
Thus, as p gets larger, density of the output graph tends to get higher. Finally, the
algorithm makes two vertices vi and vj adjacent only if i < j and π−1(i) > π−1(j).

14

Algorithm PermGraphGen

Input: An integer n and a probability value p

Let π be an array of size n with π(i) = i for i = 1, . . . , n
for i = 1 to n do

Pick a random index r greater than i
if π(r) > π(i)

Swap the two elements with probability p
else

Swap with probability 1− p
Let G = (V,E) be an edgeless graph with V = {v1, . . . , vn}
for i = 1 to n do

for j = i+ 1 to n do
if π−1(i) > π−1(j) then add an edge between vi and vj

Output: Permutation graph G = (V,E) on n vertices

3.1.2 Random Generalized Split Graph Generation

As discussed in Section 2.2.2, a generalized split graph is one such that either itself
or its complement is a unipolar graph. Our algorithm (GSGGen) takes the number
of vertices n, an upper bound on the number of vertices in V1, and a desired edge
density value ρ as input. It first creates a random partition of the vertex set, then
decides on the form of the graph to be unipolar or co-unipolar, and finally adds
random edges between V1 and V2 = H.

Algorithm GSGGen

Input: Two integers n and u, and a real number ρ between 0 and 1

Create a random ordering σ of the vertex set V = {v1, . . . , vn}
Let n1 be a random integer between l and u where l = f(n, u)
H ← {σn1+1, . . . , σn}
Let k be a random integer set as a function of ρ and n1

Randomly divide {σ1, . . . , σn1} into k disjoint sets H1, . . . , Hk

if unipolar
Add edges to make G[H] and G[Hi] ∀i ∈ {1, . . . , k} cliques each

else

Add edges to make G
[k⋃
i=1

Hi

]
complete k-partite

Add random edges between G[H] and G[
⋃k

i=1Hi] to (approximately) achieve
the desired edge density ρ

Output: Generalized split graph G on n vertices with (approximate)
edge density ρ

15

3.1.3 Random Chordal Graph Generation

We generated the random chordal graph instances via the method given in [23].
This method is shown to generate the most varied chordal graphs in terms of sizes
of maximal cliques and is based on a well-known characterization of chordal graphs
that states a graph is chordal if and only if it is the intersection graph of subtrees
of a tree [12].

3.2 Experimental Results

In this section, we present results of a series of experiments to evaluate the effi-
ciency of our decomposition procedure and compare them to those of the integer
programming formulation Model 1 and to the branch-and-price algorithm by Furini
et al. [10].

We implemented the algorithms described in the previous section in C++, and
executed them on a computer with 2.00-GHz Intel Xeon CPU. Throughout all the
experiments, we used CPLEX version 12.8, and set a time limit of 20 minutes for each
one. For the decomposition algorithms used for permutation and generalized split
graphs, we used the callback mechanism of CPLEX. In the case of chordal graphs,
we utilized the lazy constraint feature of CPLEX. We made our problem instances
and source code available at http://www.ie.boun.edu.tr/~taskin/data/scpgf/.

We randomly generated our test instances for different n values ranging from
100 to 1000, and four different average edge density values 0.1, 0.3, 0.5, and 0.7,
where the edge density of a graph is defined as m

n(n−1)
2

, with m denoting the number

of edges. For each pair of n and average edge density value, we used 10 graph
instances.

We need a partition of the vertex set into clusters for each problem instance. In
order to test the effect of cluster sizes on the performance of the suggested methods,
we generated three different partitions for each instance, where the sizes of clusters
uniformly vary between the lower and upper bounds that are chosen as {2, 5}, {4, 7},
and {6, 9}. Our procedure to set the partition takes lower and upper bounds on the
sizes of clusters and creates a random ordering of vertices. Then, according to the
bounds input, it sets the sizes of clusters and places separator points on the random
sequence one at a time, so that the set of vertices between two separator points
serves as one cluster.

To improve the performance of our decomposition approach for permutation
graphs and generalized split graphs, we applied some initial treatment before starting
the solution procedure. In particular, we initially searched for maximal cliques in
the entire graph by using the algorithms explained in Sections 2.2.1-2.2.2 and added
them as clique constraints to the master program beforehand. Since permutation
and generalized split graphs are hereditary, clique constraints generated on the entire
graph serve as valid inequalities. We also applied a heuristic method to find a
selection, found a maximum clique in it and used this as an initial solution to be used
as upper bound. Our heuristic method chooses a vertex from each cluster that has
the fewest number of neighbours in other clusters. These initial treatments are also
adapted to the IP formulation Model 1 in order to compare it to our decomposition
method on equal terms. We obtained slightly improved results with these in the

16

http://www.ie.boun.edu.tr/~taskin/data/scpgf/

initial treatment steps, and we report these in Tables 1–6.
In our first set of experiments, we test the performance of the IP formulation,

the B&P algorithm by Furini et al. [10] and our decomposition approach on permu-
tation graphs. Table 1 summarizes the computational results for permutation graph
instances with cluster sizes varying between 2 and 5. The first three columns in this
table present the number of vertices (“n”), average edge density (“avg density”),
and average number of clusters (“avg # clust”) across ten random instances. In
the next three groups of columns, we report the results of our experiments for the
three algorithms under “IP formulation”, “B&P”, and “Decomposition” headings,
respectively. For the IP formulation, columns 4–8 show the number of instances that
could be optimally solved among ten (“# opt”), average optimality gap percentages
(calculated as UB−LB

UB
× 100 where UB and LB denote the upper and lower bounds

respectively) over instances that could not be solved to optimality within the given
time limit of 20 minutes (“avg % gap in nonopt”) and over all instances (“avg % gap
overall”), average solution time in seconds over instances that are optimally solved
(“avg time in opt”) and over all instances (“avg time overall”). Columns 9–13 and
14–18 list the same set of results respectively for B&P of Furini et al. and our de-
composition method. Finally, the rightmost column shows the average time spent
in the subproblem of our decomposition algorithm in seconds across ten instances
(“avg time in subpr”). In each row of these tables, we report average values across
ten independent runs. The upper half of the table shows the results for low density
values 0.1 and 0.3, and the second for high density values 0.5 and 0.7. At the end of
each half, the total number of instances solved to optimality, and average time and
optimality gaps are reported for each one of the three methods.

For each one of the three methods, we used a time limit of 1200 seconds. If
an instance could not be solved optimally within the limit, the time spent for that
instance is taken as 1200 seconds. In our experiments, the B&P algorithm by Furini
et al. failed to report optimality gaps for some instances that could not be solved
optimally. For such cases, we take the optimality gap as 100%.

Our observation from the results listed in Table 1 is that in permutation graphs
with low density, i.e., 0.1 and 0.3, the decomposition algorithm clearly outperforms
the IP formulation and B&P method in terms of the number of instances solved
to optimality, average optimality gap, and average amount of time spent on in-
stances that are solved to optimality and in general. In permutation graphs with
high density, i.e., 0.5 and 0.7, performance of the IP formulation and our method
worsens in general, whereas that of B&P improves. As n grows, the performance of
all three methods deteriorates in general. Increasing edge density, however, results
in improved performance for the B&P method, while deteriorating that of the IP
formulation and the decomposition method. The results in the lower half of Table
1 indicate that the decomposition method outperforms the other two in terms of
average optimality gap and average time spent in instances that could be solved
optimally. However, although the decomposition method outperforms the IP for-
mulation in every aspect, B&P is able to solve the highest number of instances to
optimality.

We conducted two additional sets of experiments on permutation graphs in order
to test the effect of cluster sizes. Tables 2–3 show the results obtained on the same
set of graphs as before but with cluster sizes between 4–7 and 6–9, respectively.

17

T
ab

le
1:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
p

er
m

u
ta

ti
on

gr
ap

h
in

st
an

ce
s

w
it

h
sm

al
l

cl
u
st

er
s

IP
fo

rm
u
la

ti
on

B
&

P
D

ec
om

p
os

it
io

n

n
av

g
d
en

si
ty

av
g

#
cl

u
st

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

av
g

ti
m

e
in

su
b
p
r

10
0

0.
10

3
28

.7
10

0.
00

0.
63

0.
63

10
0.

00
0.

77
0.

77
10

0.
00

0.
23

0.
23

0.
03

0.
30

0
27

.2
10

0.
00

4.
83

4.
83

10
0.

00
35

.2
4

35
.2

4
10

0.
00

0.
32

0.
32

0.
05

20
0

0.
10

2
56

.3
10

0.
00

8.
23

8.
23

9
10

0.
00

10
.0

0
0.

48
12

0.
43

10
0.

00
0.

16
0.

16
0.

03
0.

30
4

56
.5

10
0.

00
20

7.
08

20
7.

08
10

0.
00

26
0.

33
26

0.
33

10
0.

00
0.

64
0.

64
0.

14

30
0

0.
10

3
85

.7
10

0.
00

36
.1

1
36

.1
1

9
10

0.
00

10
.0

0
38

0.
17

46
2.

15
10

0.
00

0.
18

0.
18

0.
05

0.
30

9
85

.0
0

90
.4

5
90

.4
5

12
00

.0
0

3
10

0.
00

70
.0

0
10

71
.5

8
11

61
.4

7
10

0.
00

7.
05

7.
05

0.
65

40
0

0.
10

5
11

5.
2

10
0.

00
32

8.
36

32
8.

36
2

10
0.

00
80

.0
0

3.
91

96
0.

78
10

0.
00

0.
30

0.
30

0.
12

0.
30

2
11

2.
7

0
96

.2
5

96
.2

5
12

00
.0

0
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
33

.3
2

33
.3

2
2.

51

50
0

0.
10

1
14

1.
1

7
80

.4
6

24
.1

4
38

3.
44

62
8.

41
1

10
0.

00
90

.0
0

14
.3

9
10

81
.4

4
10

0.
00

0.
26

0.
26

0.
12

0.
30

6
14

0.
4

0
99

.0
5

99
.0

5
12

00
.0

0
0

10
0.

00
10

0.
00

12
00

.0
0

8
20

.0
0

4.
00

23
6.

39
42

9.
11

9.
12

6
7

9
3
.9

0
3
0
.9

9
1
3
8
.3

9
4
8
1
.3

7
5
4

1
0
0
.0

0
4
6
.0

0
2
2
0
.8

6
6
4
8
.2

6
9
8

2
0
.0

0
0
.4

0
2
7
.8

9
4
7
.1

6
1
.2

8

10
0

0.
50

0
29

.4
10

0.
00

14
.0

8
14

.0
8

10
0.

00
19

.9
2

19
.9

2
10

0.
00

0.
56

0.
56

0.
07

0.
70

7
28

.1
10

0.
00

51
.4

6
51

.4
6

10
0.

00
18

.3
5

18
.3

5
10

0.
00

5.
97

5.
97

0.
13

20
0

0.
49

7
55

.9
7

76
.1

9
22

.8
6

62
4.

69
79

7.
29

10
0.

00
16

9.
24

16
9.

24
10

0.
00

10
0.

30
10

0.
30

1.
57

0.
70

3
57

.5
0

86
.9

1
86

.9
1

12
00

.0
0

10
0.

00
11

6.
00

11
6.

00
3

14
.2

9
10

.0
0

27
6.

96
92

3.
09

3.
35

30
0

0.
49

9
85

.5
0

98
.0

4
98

.0
4

12
00

.0
0

10
0.

00
48

9.
77

48
9.

77
4

20
.5

6
12

.3
3

13
6.

91
77

4.
77

7.
55

0.
70

1
85

.2
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
36

0.
35

36
0.

35
0

40
.9

7
40

.9
7

12
00

.0
0

29
.3

2

40
0

0.
49

7
11

4.
9

0
10

0.
00

10
0.

00
12

00
.0

0
4

10
0.

00
60

.0
0

10
28

.7
1

11
31

.4
8

0
24

.3
8

24
.3

8
12

00
.0

0
22

.1
1

0.
69

8
11

4.
9

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

79
9.

98
79

9.
98

0
48

.8
4

48
.8

4
12

00
.0

0
24

.8
0

50
0

0.
50

2
14

1.
9

0
10

0.
00

10
0.

00
12

00
.0

0
0

10
0.

00
10

0.
00

12
00

.0
0

0
34

.6
4

34
.6

4
12

00
.0

0
31

.7
5

0.
70

0
14

2.
8

0
10

0.
00

10
0.

00
12

00
.0

0
0

10
0.

00
10

0.
00

12
00

.0
0

0
62

.0
1

62
.0

1
12

00
.0

0
33

.5
6

2
7

9
6
.9

6
7
0
.7

8
2
3
0
.0

8
9
2
6
.2

8
7
4

1
0
0
.0

0
2
6
.0

0
3
7
5
.2

9
5
5
0
.5

1
3
7

3
7
.0

1
2
3
.3

2
1
0
4
.1

4
7
8
0
.4

7
1
5
.4

2

18

T
ab

le
2:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
p

er
m

u
ta

ti
on

gr
ap

h
in

st
an

ce
s

w
it

h
m

ed
iu

m
-s

iz
ed

cl
u
st

er
s

IP
fo

rm
u
la

ti
on

B
&

P
D

ec
om

p
os

it
io

n

n
av

g
d
en

si
ty

av
g

#
cl

u
st

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

av
g

ti
m

e
in

su
b
p
r

10
0

0.
10

3
17

.8
10

0.
00

0.
42

0.
42

10
0.

00
0.

03
0.

03
10

0.
00

0.
24

0.
24

0.
03

0.
30

0
18

.1
10

0.
00

1.
70

1.
70

10
0.

00
1.

93
1.

93
10

0.
00

0.
25

0.
25

0.
04

20
0

0.
10

2
36

.6
10

0.
00

5.
21

5.
21

10
0.

00
0.

21
0.

21
10

0.
00

0.
22

0.
22

0.
04

0.
30

4
36

.3
10

0.
00

37
.9

9
37

.9
9

10
0.

00
45

.1
5

45
.1

5
10

0.
00

0.
50

0.
50

0.
10

30
0

0.
10

3
54

.9
10

0.
00

15
.3

7
15

.3
7

10
0.

00
1.

23
1.

23
10

0.
00

0.
15

0.
15

0.
03

0.
30

9
54

.3
6

70
.8

3
28

.3
3

41
6.

25
72

9.
75

10
0.

00
28

9.
44

28
9.

44
10

0.
00

1.
63

1.
63

0.
25

40
0

0.
10

5
72

.6
10

0.
00

56
.1

9
56

.1
9

10
0.

00
3.

02
3.

02
10

0.
00

0.
22

0.
22

0.
09

0.
30

2
72

.3
0

84
.0

7
84

.0
7

12
00

.0
0

8
10

0.
00

20
.0

0
96

7.
45

10
13

.9
6

10
0.

00
4.

12
4.

12
0.

59

50
0

0.
10

1
90

.3
10

0.
00

11
7.

40
11

7.
40

10
0.

00
12

.4
3

12
.4

3
10

0.
00

0.
28

0.
28

0.
13

0.
30

6
89

.6
0

93
.7

1
93

.7
1

12
00

.0
0

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

30
.4

7
30

.4
7

1.
95

7
6

8
5
.8

8
2
0
.6

1
8
1
.3

2
3
3
6
.4

0
8
8

1
0
0
.0

0
1
2
.0

0
1
4
6
.7

6
2
5
6
.7

4
1
0
0

-
0
.0

0
3
.8

1
3
.8

1
0
.3

2

10
0

0.
50

0
18

.4
10

0.
00

6.
04

6.
04

10
0.

00
8.

76
8.

76
10

0.
00

0.
39

0.
39

0.
06

0.
70

7
18

.1
10

0.
00

21
.9

7
21

.9
7

10
0.

00
11

.4
9

11
.4

9
10

0.
00

3.
50

3.
50

0.
10

20
0

0.
49

7
35

.6
9

10
0.

00
10

.0
0

19
4.

64
29

5.
18

10
0.

00
98

.1
7

98
.1

7
10

0.
00

19
.5

4
19

.5
4

0.
59

0.
70

3
35

.8
7

75
.0

0
22

.5
0

56
5.

28
75

5.
70

10
0.

00
80

.8
8

80
.8

8
2

25
.0

0
20

.0
0

60
0.

30
10

80
.0

6
2.

90

30
0

0.
49

9
54

.3
0

97
.8

9
97

.8
9

12
00

.0
0

10
0.

00
37

6.
98

37
6.

98
7

33
.3

3
10

.0
0

33
1.

44
59

2.
01

3.
04

0.
70

1
54

.2
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
27

7.
88

27
7.

88
0

51
.3

8
51

.3
8

12
00

.0
0

26
.1

0

40
0

0.
49

7
72

.5
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
98

1.
12

98
1.

12
3

45
.4

8
31

.8
3

66
9.

48
10

40
.8

4
17

.8
5

0.
69

8
72

.1
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
65

8.
14

65
8.

14
0

65
.8

2
65

.8
2

12
00

.0
0

32
.2

9

50
0

0.
50

2
89

.2
0

98
.7

1
98

.7
1

12
00

.0
0

0
10

0.
00

10
0.

00
12

00
.0

0
0

46
.0

0
46

.0
0

12
00

.0
0

18
.3

1
0.

70
0

90
.4

0
10

0.
00

10
0.

00
12

00
.0

0
0

10
0.

00
10

0.
00

12
00

.0
0

0
72

.7
9

72
.7

9
12

00
.0

0
37

.9
4

3
6

9
8
.3

0
6
2
.9

1
1
9
6
.9

8
8
2
7
.8

9
8
0

1
0
0
.0

0
2
0
.0

0
3
1
1
.6

8
4
8
9
.3

4
4
2

5
1
.3

5
2
9
.7

8
2
7
0
.7

7
7
5
3
.6

3
1
3
.9

2

19

T
ab

le
3:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
p

er
m

u
ta

ti
on

gr
ap

h
in

st
an

ce
s

w
it

h
la

rg
e

cl
u
st

er
s

IP
fo

rm
u
la

ti
on

B
&

P
D

ec
om

p
os

it
io

n

n
av

g
d
en

si
ty

av
g

#
cl

u
st

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

av
g

ti
m

e
in

su
b
p
r

10
0

0.
10

3
13

.4
10

0.
00

0.
17

0.
17

10
0.

00
0.

03
0.

03
10

0.
00

0.
10

0.
10

0.
01

0.
30

0
12

.8
10

0.
00

0.
60

0.
60

10
0.

00
0.

04
0.

04
10

0.
00

0.
12

0.
12

0.
02

20
0

0.
10

2
26

.3
10

0.
00

2.
73

2.
73

10
0.

00
0.

09
0.

09
10

0.
00

0.
12

0.
12

0.
02

0.
30

4
26

.5
10

0.
00

7.
04

7.
04

10
0.

00
0.

28
0.

28
10

0.
00

0.
24

0.
24

0.
06

30
0

0.
10

3
39

.7
10

0.
00

14
.1

0
14

.1
0

10
0.

00
0.

82
0.

82
10

0.
00

0.
13

0.
13

0.
03

0.
30

9
40

.0
10

0.
00

21
7.

55
21

7.
55

10
0.

00
17

.2
0

17
.2

0
10

0.
00

0.
72

0.
72

0.
26

40
0

0.
10

5
53

.6
10

0.
00

33
.0

1
33

.0
1

10
0.

00
2.

40
2.

40
10

0.
00

0.
25

0.
25

0.
10

0.
30

2
52

.8
8

10
0.

00
20

.0
0

21
7.

56
41

4.
05

10
0.

00
24

2.
04

24
2.

04
10

0.
00

6.
53

6.
53

0.
98

50
0

0.
10

1
66

.4
10

0.
00

61
.2

7
61

.2
7

10
0.

00
5.

38
5.

38
10

0.
00

0.
25

0.
25

0.
10

0.
30

6
65

.9
7

77
.7

8
23

.3
3

83
7.

36
94

6.
15

9
10

0.
00

10
.0

0
28

7.
90

37
9.

11
10

0.
00

2.
35

2.
35

0.
82

9
5

8
6
.6

7
4
.3

3
1
3
9
.1

4
1
6
9
.6

7
9
9

1
0
0
.0

0
1
.0

0
5
5
.6

2
6
4
.7

4
1
0
0

-
0
.0

0
1
.0

8
1
.0

8
0
.2

4

10
0

0.
50

0
13

.0
10

0.
00

1.
94

1.
94

10
0.

00
0.

30
0.

30
10

0.
00

0.
17

0.
17

0.
03

0.
70

7
13

.1
10

0.
00

10
.3

6
10

.3
6

10
0.

00
6.

49
6.

49
10

0.
00

1.
13

1.
13

0.
07

20
0

0.
49

7
26

.4
9

10
0.

00
10

.0
0

76
.9

0
18

9.
21

10
0.

00
49

.1
8

49
.1

8
10

0.
00

10
.3

6
10

.3
6

0.
34

0.
70

3
26

.4
8

83
.3

3
16

.6
7

31
3.

96
49

1.
17

10
0.

00
45

.0
6

45
.0

6
7

38
.8

9
11

.6
7

41
4.

58
65

0.
21

1.
94

30
0

0.
49

9
39

.0
3

86
.9

0
60

.8
3

83
0.

53
10

89
.1

6
10

0.
00

19
6.

23
19

6.
23

10
0.

00
10

4.
04

10
4.

04
3.

22
0.

70
1

39
.6

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

16
6.

37
16

6.
37

0
54

.3
3

54
.3

3
12

00
.0

0
22

.8
8

40
0

0.
49

7
52

.9
0

95
.7

6
95

.7
6

12
00

.0
0

10
0.

00
53

6.
61

53
6.

61
5

40
.0

0
20

.0
0

22
2.

86
71

1.
43

15
.9

6
0.

69
8

53
.9

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

45
9.

61
45

9.
61

0
68

.8
8

68
.8

8
12

00
.0

0
29

.5
9

50
0

0.
50

2
66

.9
0

97
.5

0
97

.5
0

12
00

.0
0

5
10

0.
00

50
.0

0
11

51
.2

7
11

75
.6

4
0

39
.1

7
39

.1
7

12
00

.0
0

15
.7

3
0.

70
0

66
.3

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

79
4.

16
79

4.
16

0
75

.4
2

75
.4

2
12

00
.0

0
56

.9
9

4
0

9
6
.7

9
5
8
.0

8
2
4
6
.7

4
7
7
8
.1

8
9
5

1
0
0
.0

0
5
.0

0
3
4
0
.5

3
3
4
2
.9

7
5
2

5
6
.1

4
2
6
.9

5
1
2
5
.5

2
6
2
7
.7

3
1
4
.6

8

20

Comparing the results in Table 1 to those in Tables 2–3, we observe considerable
improvement in the performance of all methods. For a given n value, as the average
size of clusters increases, the total number of clusters and hence the number of
variables and constraints in Model 1 reduce. This reduction in the size of the
IP formulation leads to improved performance. Comparative performance of the
three methods is similar to the case with small clusters; the decomposition method
outperforms the other two in all respects for low density graphs, while B&P manages
to yield the highest number of optimally solved instances. The average time that the
decomposition method spends for optimally solved instances is again significantly
lower than those of the other two, regardless of edge density.

Next, we present the results of our computational experiments for generalized
split graphs in Tables 4–6 in the same order and structure as in the case of per-
mutation graphs. We observe from the upper half of Table 4 that for relatively
low-density graphs, the IP formulation was able to solve a slightly larger percentage
of test instances to optimality as compared to the decomposition method. How-
ever, the decomposition method yields better results in terms of all other measures
compared to both methods. As for the results obtained from high density instances
shown in the lower half of the table, B&P is able to solve slightly higher numbers
of instances optimally; but the decomposition approach is able to result in better
average optimality gap percentages and average times. The performance of all three
methods gets worse in general as n increases. As in the case of permutation graphs,
when we compare the results in Table 4 to those in Tables 5–6, we observe enhanced
performance in the IP formulation with the increase in cluster sizes due to reduction
in the size of the IP formulation. As far as the number of instances solved to optimal-
ity is concerned, the decomposition method produces more robust results. As cluster
sizes increase, the performance of B&P also improves in low-density instances, but
we cannot observe a monotonic trend in high-density instances.

Our last set of experiments is conducted on chordal graph instances. Tables 7–12
show the results for small, medium and large cluster sizes and for low and high edge
densities, respectively. The general structure of these tables is the same as before,
except that we additionally include the average number of maximal cliques across
ten graph instances (“avg # cliques”), which is an important indicator of how well
the algorithm performs, and exclude the column for time spent in the subproblem.

All the chordal graph instances are solved to optimality under one second by our
decomposition approach, as the results in Tables 7–12 reveal. Here, we experimented
with graphs up to 1000 vertices in order to be able to clearly demonstrate the gap
between performances of the three algorithms. For a given n, the solution times
of our algorithm decrease as edge density increases due to a parallel decline in the
number of maximal cliques. The IP formulation can also solve a large percentage
of chordal graph instances to optimality within the permitted time limit; yet, our
method clearly outperformed it time-wise. When the clusters in the partition are
small-sized, the IP failed to optimally solve many of the chordal graph instances
with 800 or more vertices and could not give reasonable optimality gaps or even find
a feasible solution within the allowed time limit. The B&P method performs poorly
as compared to both of the other methods; it fails to solve instances with 600 or
more vertices in all cases.

In all three graph classes we consider, our decomposition method significantly

21

T
ab

le
4:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
ge

n
er

al
iz

ed
sp

li
t

gr
ap

h
in

st
an

ce
s

w
it

h
sm

al
l

cl
u
st

er
s

IP
fo

rm
u
la

ti
on

B
&

P
D

ec
om

p
os

it
io

n

n
av

g
d
en

si
ty

av
g

#
cl

u
st

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

av
g

ti
m

e
in

su
b
p
r

10
0

0.
10

1
29

.9
10

0.
00

0.
74

0.
74

10
0.

00
15

.5
3

15
.5

3
10

0.
00

0.
30

0.
30

0.
03

0.
29

9
28

.7
10

0.
00

4.
09

4.
09

10
0.

00
22

.3
8

22
.3

8
9

14
.2

9
1.

43
0.

31
12

0.
28

0.
21

20
0

0.
10

1
58

.4
10

0.
00

4.
42

4.
42

10
0.

00
11

9.
30

11
9.

30
7

25
.0

0
7.

50
4.

78
36

3.
34

1.
13

0.
30

0
58

.3
10

0.
00

78
.8

6
78

.8
6

10
0.

00
17

3.
60

17
3.

60
7

13
.1

0
3.

93
0.

46
36

0.
32

33
.1

7

30
0

0.
10

2
86

.1
10

0.
00

38
.9

5
38

.9
5

9
10

0.
00

10
.0

0
43

2.
26

50
9.

03
7

23
.3

3
7.

00
10

0.
29

43
0.

21
8.

60
0.

30
0

85
.3

8
87

.5
0

17
.5

0
29

8.
75

47
9.

00
8

10
0.

00
20

.0
0

47
5.

71
62

0.
57

6
24

.7
9

9.
92

1.
13

48
0.

68
29

.8
6

40
0

0.
10

1
11

5.
9

10
0.

00
16

3.
67

16
3.

67
6

10
0.

00
40

.0
0

70
5.

57
90

3.
34

8
22

.5
0

4.
50

36
.8

3
26

9.
46

4.
27

0.
30

0
11

4.
2

2
60

.2
1

48
.1

7
73

9.
80

11
07

.9
6

5
10

0.
00

50
.0

0
10

67
.1

1
11

33
.5

5
7

22
.2

2
6.

67
4.

45
36

3.
11

27
.4

9

50
0

0.
10

1
14

3.
5

9
40

.0
0

4.
00

36
3.

05
44

6.
75

2
10

0.
00

80
.0

0
94

4.
11

11
48

.8
2

7
27

.5
0

8.
25

0.
77

36
0.

54
51

.7
8

0.
30

0
14

4.
0

1
94

.6
0

85
.1

4
11

53
.1

0
11

95
.3

1
0

10
0.

00
10

0.
00

12
00

.0
0

7
26

.0
1

7.
80

3.
68

36
2.

57
42

.6
0

8
0

7
7
.4

0
1
5
.4

8
2
8
4
.5

4
3
5
1
.9

8
7
0

1
0
0
.0

0
3
0
.0

0
4
3
9
.5

1
5
8
4
.6

1
7
5

2
2
.8

0
5
.7

0
1
5
.3

0
3
1
1
.0

8
1
9
.9

1

10
0

0.
49

7
28

.8
10

0.
00

7.
30

7.
30

10
0.

00
17

.0
4

17
.0

4
9

25
.0

0
2.

50
2.

07
12

1.
86

9.
56

0.
70

1
29

.8
10

0.
00

17
.7

8
17

.7
8

10
0.

00
17

.4
8

17
.4

8
9

21
.4

3
2.

14
1.

00
12

0.
90

5.
92

20
0

0.
50

4
58

.0
8

83
.3

3
16

.6
7

17
2.

99
37

8.
39

10
0.

00
15

7.
56

15
7.

56
8

22
.1

8
4.

44
0.

52
24

0.
42

13
.8

5
0.

70
0

57
.5

7
52

.7
8

15
.8

3
35

5.
95

60
9.

17
10

0.
00

10
9.

51
10

9.
51

9
21

.4
3

2.
14

32
.5

2
14

9.
27

13
.0

4

30
0

0.
50

1
87

.5
6

72
.7

8
29

.1
1

36
8.

70
70

1.
22

10
0.

00
33

8.
01

33
8.

01
9

25
.0

0
2.

50
14

0.
84

24
6.

76
11

.5
0

0.
69

5
85

.2
5

10
0.

00
50

.0
0

15
2.

55
67

6.
28

10
0.

00
37

7.
56

37
7.

56
5

19
.6

3
9.

82
18

.8
1

60
9.

41
10

.0
0

40
0

0.
50

0
11

4.
9

0
69

.2
2

69
.2

2
12

00
.0

0
9

10
0.

00
10

.0
0

73
9.

04
78

5.
13

7
21

.1
3

6.
34

11
.8

5
36

8.
30

13
.5

9
0.

69
9

11
5.

8
1

79
.9

4
71

.9
5

19
2.

23
10

99
.2

2
8

10
0.

00
20

.0
0

68
9.

02
79

1.
21

3
18

.5
5

12
.9

8
0.

47
84

0.
14

28
.2

1

50
0

0.
50

0
14

2.
4

0
96

.8
5

96
.8

5
12

00
.0

0
5

10
0.

00
50

.0
0

11
20

.6
7

11
60

.3
3

5
24

.7
5

12
.3

7
24

.4
7

61
2.

23
43

.7
2

0.
70

0
14

3.
8

1
82

.4
1

74
.1

7
94

9.
35

11
74

.9
4

4
10

0.
00

60
.0

0
83

4.
08

10
53

.6
3

2
21

.5
1

17
.2

1
0.

79
96

0.
16

13
9.

41

4
8

8
1
.5

0
4
2
.3

8
2
7
7
.1

1
7
0
6
.4

3
8
6

1
0
0
.0

0
1
4
.0

0
4
4
0
.0

0
4
8
0
.7

5
6
6

2
1
.3

1
7
.2

4
2
3
.3

4
4
2
6
.9

4
2
8
.8

8

22

T
ab

le
5:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
ge

n
er

al
iz

ed
sp

li
t

gr
ap

h
in

st
an

ce
s

w
it

h
m

ed
iu

m
-s

iz
ed

cl
u
st

er
s

IP
fo

rm
u
la

ti
on

B
&

P
D

ec
om

p
os

it
io

n

n
av

g
d
en

si
ty

av
g

#
cl

u
st

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

av
g

ti
m

e
in

su
b
p
r

10
0

0.
10

1
18

.2
10

0.
00

0.
25

0.
25

10
0.

00
2.

84
2.

84
10

0.
00

1.
95

1.
95

0.
03

0.
29

9
18

.2
10

0.
00

1.
35

1.
35

10
0.

00
3.

84
3.

84
9

20
.0

0
2.

00
1.

53
12

1.
38

3.
17

20
0

0.
10

1
36

.4
10

0.
00

3.
46

3.
46

10
0.

00
28

.0
7

28
.0

7
10

0.
00

2.
25

2.
25

0.
08

0.
30

0
36

.5
10

0.
00

16
.9

6
16

.9
6

10
0.

00
77

.6
4

77
.6

4
8

19
.6

4
3.

93
74

.1
5

29
9.

32
7.

78

30
0

0.
10

2
54

.6
10

0.
00

16
.5

7
16

.5
7

10
0.

00
94

.9
3

94
.9

3
6

41
.6

7
16

.6
7

5.
11

48
3.

07
10

.3
5

0.
30

0
54

.3
9

10
0.

00
10

.0
0

14
0.

88
24

6.
79

10
0.

00
44

9.
18

44
9.

18
7

44
.2

9
13

.2
9

12
9.

46
45

0.
62

18
.9

0

40
0

0.
10

1
73

.4
10

0.
00

77
.9

4
77

.9
4

10
0.

00
29

4.
48

29
4.

48
8

33
.3

3
6.

67
45

.2
0

27
6.

16
6.

87
0.

30
0

73
.3

8
75

.0
0

15
.0

0
45

6.
11

60
4.

89
4

10
0.

00
60

.0
0

75
7.

85
10

23
.1

4
7

33
.3

3
10

.0
0

5.
62

36
3.

93
14

.7
7

50
0

0.
10

1
90

.5
10

0.
00

23
1.

34
23

1.
34

6
10

0.
00

40
.0

0
79

.9
3

52
7.

96
7

47
.7

8
14

.3
3

19
.1

0
37

3.
37

19
.6

1
0.

30
0

90
.5

3
56

.6
2

39
.6

3
49

6.
33

98
8.

90
1

10
0.

00
90

.0
0

60
7.

83
11

40
.7

8
6

38
.8

7
15

.5
5

2.
16

48
1.

30
37

.4
0

9
0

6
4
.6

3
6
.4

6
1
4
4
.1

2
2
1
8
.8

5
8
1

1
0
0
.0

0
1
9
.0

0
2
3
9
.6

6
3
6
4
.2

8
7
8

3
7
.4

7
8
.2

4
2
8
.6

5
2
8
5
.3

4
1
1
.9

0

10
0

0.
49

7
18

.2
10

0.
00

4.
61

4.
61

10
0.

00
7.

24
7.

24
9

40
.0

0
4.

00
14

.1
4

13
2.

73
7.

82
0.

70
1

17
.7

10
0.

00
5.

01
5.

01
10

0.
00

28
.9

9
28

.9
9

9
33

.3
3

3.
33

0.
59

12
0.

53
13

.0
3

20
0

0.
60

1
36

.8
10

0.
00

11
7.

66
11

7.
66

10
0.

00
89

.1
2

89
.1

2
8

40
.8

7
8.

17
12

0.
36

33
6.

29
12

.6
7

0.
70

0
36

.8
10

0.
00

16
7.

16
16

7.
16

10
0.

00
14

7.
37

14
7.

37
4

5.
56

3.
33

78
.6

9
75

1.
48

7.
32

30
0

0.
50

1
54

.5
10

0.
00

16
6.

49
16

6.
49

10
0.

00
26

3.
47

26
3.

47
6

31
.8

8
12

.7
5

24
.3

8
49

4.
63

19
.6

5
0.

69
5

54
.5

5
0.

00
53

.0
6

62
6.

53
6

10
0.

00
40

.0
0

76
6.

78
94

0.
07

7
21

.4
3

6.
43

41
.9

6
38

9.
37

3.
23

40
0

0.
50

0
72

.4
5

90
.0

0
45

.0
0

54
5.

79
87

2.
90

7
10

0.
00

30
.0

0
82

3.
50

93
6.

45
6

37
.8

0
15

.1
2

69
.5

7
52

1.
74

20
.6

3
0.

69
9

71
.9

3
89

.6
6

62
.7

6
43

9.
65

97
1.

89
1

10
0.

00
90

.0
0

79
7.

84
11

59
.7

8
3

26
.3

9
18

.4
7

27
.6

3
84

8.
29

20
.1

8

50
0

0.
50

0
91

.3
0

97
.6

2
97

.6
2

12
00

.0
0

2
10

0.
00

80
.0

0
10

22
.1

1
11

64
.4

2
6

40
.1

6
16

.0
6

88
.6

3
53

3.
18

40
.0

6
0.

70
0

90
.5

2
87

.5
0

70
.0

0
53

6.
96

10
67

.3
9

1
10

0.
00

90
.0

0
88

3.
85

11
68

.3
8

1
32

.0
0

28
.8

0
1.

22
10

80
.1

2
43

.8
2

6
5

7
8
.6

8
2
7
.5

4
2
2
6
.2

7
5
1
9
.9

7
6
7

1
0
0
.0

0
3
3
.0

0
4
8
3
.0

3
5
9
0
.5

3
5
9

2
8
.4

1
1
1
.6

5
4
6
.7

2
5
2
0
.8

4
1
8
.8

4

23

T
ab

le
6:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
ge

n
er

al
iz

ed
sp

li
t

gr
ap

h
in

st
an

ce
s

w
it

h
la

rg
e

cl
u
st

er
s

IP
fo

rm
u
la

ti
on

B
&

P
D

ec
om

p
os

it
io

n

n
av

g
d
en

si
ty

av
g

#
cl

u
st

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

av
g

ti
m

e
in

su
b
p
r

10
0

0.
10

1
12

.7
10

0.
00

0.
25

0.
25

10
0.

00
0.

04
0.

04
10

0.
00

0.
13

0.
13

0.
01

0.
29

9
13

.2
10

0.
00

0.
71

0.
71

10
0.

00
5.

02
5.

02
9

25
.0

0
2.

50
0.

77
12

0.
69

0.
78

20
0

0.
10

1
26

.1
10

0.
00

1.
08

1.
08

10
0.

00
24

.5
6

24
.5

6
8

50
.0

0
10

.0
0

25
.8

1
26

0.
65

0.
18

0.
30

0
26

.3
10

0.
00

5.
65

5.
65

10
0.

00
56

.0
0

56
.0

0
9

20
.0

0
2.

00
10

1.
72

21
1.

55
1.

80

30
0

0.
10

2
39

.8
10

0.
00

8.
53

8.
53

10
0.

00
14

9.
38

14
9.

38
7

38
.8

9
11

.6
7

23
.9

0
37

6.
73

6.
53

0.
30

0
39

.6
10

0.
00

40
.4

1
40

.4
1

10
0.

00
20

5.
34

20
5.

34
7

38
.8

9
11

.6
7

11
.8

7
36

8.
31

12
.7

2

40
0

0.
10

1
53

.4
10

0.
00

29
.4

9
29

.4
9

9
10

0.
00

10
.0

0
46

6.
75

54
0.

08
6

50
.0

0
20

.0
0

10
4.

94
54

2.
96

1.
24

0.
30

0
53

.4
10

0.
00

21
6.

67
21

6.
67

7
10

0.
00

30
.0

0
61

0.
20

78
7.

14
5

40
.0

0
20

.0
0

5.
34

60
2.

67
9.

37

50
0

0.
10

1
66

.8
10

0.
00

12
5.

22
12

5.
22

9
10

0.
00

10
.0

0
36

2.
52

44
6.

27
6

50
.0

0
20

.0
0

4.
86

48
2.

92
19

.5
8

0.
30

0
65

.9
9

50
.0

0
5.

00
41

8.
26

49
6.

43
9

10
0.

00
10

.0
0

36
8.

12
45

1.
31

6
48

.3
3

19
.3

3
17

.4
1

49
0.

45
26

.8
9

9
9

5
0
.0

0
0
.5

0
8
4
.6

3
9
2
.4

4
9
4

1
0
0
.0

0
6
.0

0
2
2
4
.7

9
2
6
6
.5

1
7
3

4
3
.4

0
1
1
.7

2
2
9
.6

7
3
4
5
.7

0
7
.9

1

10
0

0.
49

7
13

.2
10

0.
00

1.
33

1.
33

10
0.

00
7.

77
7.

77
9

25
.0

0
2.

50
14

.5
9

13
3.

14
2.

55
0.

70
1

13
.1

10
0.

00
2.

52
2.

52
10

0.
00

15
.3

3
15

.3
3

9
28

.5
7

2.
86

0.
45

12
0.

41
14

.1
5

20
0

0.
50

4
26

.6
10

0.
00

12
.6

8
12

.6
8

10
0.

00
86

.1
5

86
.1

5
8

45
.0

0
9.

00
1.

15
24

0.
92

9.
50

0.
70

0
26

.7
10

0.
00

41
.6

0
41

.6
0

10
0.

00
15

6.
95

15
6.

95
8

41
.4

3
8.

29
14

0.
78

35
2.

63
12

.2
8

30
0

0.
50

1
39

.6
10

0.
00

73
.6

3
73

.6
3

10
0.

00
37

3.
93

37
3.

93
6

37
.5

0
15

.0
0

0.
61

48
0.

37
10

.2
1

0.
69

5
39

.6
5

60
.0

0
30

.0
0

59
.5

1
62

9.
75

10
0.

00
67

4.
24

67
4.

24
6

25
.4

2
10

.1
7

95
.4

0
53

7.
24

7.
04

40
0

0.
50

0
53

.1
7

61
.1

1
18

.3
3

29
5.

64
56

6.
95

5
10

0.
00

50
.0

0
95

6.
08

10
78

.0
4

6
40

.0
0

16
.0

0
14

.4
2

48
8.

65
14

.8
5

0.
69

9
52

.8
4

85
.0

9
51

.0
6

44
9.

67
89

9.
87

10
0.

00
49

7.
87

49
7.

87
5

35
.0

0
17

.5
0

25
7.

89
72

8.
94

22
.0

4

50
0

0.
50

0
67

.4
1

82
.9

1
74

.6
2

62
1.

18
11

42
.1

2
4

10
0.

00
60

.0
0

74
1.

31
10

16
.5

2
7

55
.7

1
16

.7
1

24
.7

2
37

7.
30

34
.6

7
0.

70
0

66
.7

3
85

.7
1

60
.0

0
37

0.
23

95
1.

07
6

10
0.

00
40

.0
0

56
5.

94
81

9.
56

1
37

.2
6

33
.5

4
0.

07
10

80
.0

1
32

.8
2

7
0

7
8
.0

0
2
3
.4

0
1
9
2
.8

0
4
3
2
.1

5
8
5

1
0
0
.0

0
1
5
.0

0
4
0
7
.5

6
4
7
2
.6

4
6
5

3
7
.5

9
1
3
.1

6
5
5
.0

1
4
5
3
.9

6
1
6
.0

1

24

T
ab

le
7:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
ch

or
d
al

gr
ap

h
in

st
an

ce
s

of
d
en

si
ty

0.
1

an
d

0.
3

w
it

h
sm

al
l

cl
u
st

er
s

IP
fo

rm
u
la

ti
on

B
&

P
D

ec
om

p
os

it
io

n

n
av

g
d
en

si
ty

av
g

#
cl

u
st

av
g

#
cl

iq
u
es

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

10
0

0.
10

3
29

.3
38

.2
10

0.
00

0.
91

0.
91

10
0.

00
19

.2
2

19
.2

2
10

0.
00

0.
11

0.
11

0.
29

9
28

.3
25

.0
10

0.
00

1.
26

1.
26

10
0.

00
15

.7
5

15
.7

5
10

0.
00

0.
15

0.
15

20
0

0.
10

6
56

.6
59

.2
10

0.
00

4.
35

4.
35

10
0.

00
15

6.
28

15
6.

28
10

0.
00

0.
16

0.
16

0.
30

6
58

.0
37

.8
10

0.
00

4.
00

4.
00

10
0.

00
83

.8
0

83
.8

0
10

0.
00

0.
13

0.
13

30
0

0.
10

8
86

.4
75

.8
10

0.
00

11
.4

5
11

.4
5

10
0.

00
48

2.
17

48
2.

17
10

0.
00

0.
22

0.
22

0.
29

8
86

.1
48

.3
10

0.
00

18
.5

7
18

.5
7

10
0.

00
25

2.
91

25
2.

91
10

0.
00

0.
18

0.
18

40
0

0.
10

1
11

3.
8

96
.3

10
0.

00
28

.1
9

28
.1

9
8

10
0.

00
20

.0
0

10
52

.3
6

10
81

.8
8

10
0.

00
0.

21
0.

21
0.

30
4

11
3.

8
58

.0
10

0.
00

37
.2

8
37

.2
8

10
0.

00
60

8.
79

60
8.

79
10

0.
00

0.
17

0.
17

50
0

0.
10

1
14

3.
0

10
7.

9
10

0.
00

74
.6

8
74

.6
8

7
10

0.
00

30
.0

0
99

6.
29

10
57

.4
0

10
0.

00
0.

17
0.

17
0.

30
0

14
0.

9
68

.3
10

0.
00

93
.4

4
93

.4
4

8
10

0.
00

20
.0

0
85

8.
92

92
7.

14
10

0.
00

0.
13

0.
13

60
0

0.
10

3
17

3.
5

12
4.

0
10

0.
00

14
2.

78
14

2.
78

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
36

0.
36

0.
30

4
17

2.
0

76
.6

10
0.

00
20

5.
08

20
5.

08
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

17
0.

17

70
0

0.
10

1
19

7.
7

13
0.

6
10

0.
00

34
2.

65
34

2.
65

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
25

0.
25

0.
29

9
20

0.
2

84
.3

10
0.

00
38

9.
96

38
9.

96
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

18
0.

18

80
0

0.
10

3
22

9.
0

14
7.

4
10

0.
00

56
6.

86
56

6.
86

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
26

0.
26

0.
30

4
23

2.
3

90
.6

10
0.

00
58

3.
48

58
3.

48
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

19
0.

19

90
0

0.
09

9
25

7.
4

15
6.

2
8

96
.8

1
19

.3
6

65
2.

82
76

2.
26

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
29

0.
29

0.
29

9
25

5.
5

98
.6

7
91

.8
6

27
.5

6
11

45
.1

5
11

61
.6

1
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

22
0.

22

10
00

0.
10

5
28

6.
2

16
6.

1
6

97
.2

9
38

.9
2

82
9.

80
97

7.
88

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
32

0.
32

0.
29

7
28

5.
9

10
7.

2
9

93
.2

9
9.

33
93

8.
76

96
4.

89
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

23
0.

23

1
9
0

9
5
.1

7
4
.7

6
3
0
3
.5

7
3
1
8
.5

8
9
3

1
0
0
.0

0
5
3
.5

0
4
5
2
.6

5
8
3
4
.2

7
2
0
0

-
0
.0

0
0
.2

0
0
.2

0

25

T
ab

le
8:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
ch

or
d
al

gr
ap

h
in

st
an

ce
s

of
d
en

si
ty

0.
5

an
d

0.
7

w
it

h
sm

al
l

cl
u
st

er
s

IP
fo

rm
u
la

ti
on

B
&

P
D

ec
om

p
os

it
io

n

n
av

g
d
en

si
ty

av
g

#
cl

u
st

av
g

#
cl

iq
u
es

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

10
0

0.
49

4
28

.7
19

.8
10

0.
00

1.
17

1.
17

10
0.

00
11

.7
6

11
.7

6
10

0.
00

0.
16

0.
16

0.
69

9
28

.8
15

.1
10

0.
00

1.
25

1.
25

10
0.

00
11

.1
4

11
.1

4
10

0.
00

0.
15

0.
15

20
0

0.
49

5
57

.8
28

.9
10

0.
00

5.
16

5.
16

10
0.

00
69

.6
3

69
.6

3
10

0.
00

0.
14

0.
14

0.
69

5
57

.2
22

.0
10

0.
00

6.
19

6.
19

10
0.

00
61

.4
3

61
.4

3
10

0.
00

0.
09

0.
09

30
0

0.
50

1
86

.6
39

.1
10

0.
00

18
.5

7
18

.5
7

10
0.

00
20

1.
03

20
1.

03
10

0.
00

0.
11

0.
11

0.
70

6
86

.7
27

.0
10

0.
00

23
.5

4
23

.5
4

10
0.

00
18

1.
26

18
1.

26
10

0.
00

0.
09

0.
09

40
0

0.
49

9
11

4.
8

46
.1

10
0.

00
41

.8
8

41
.8

8
10

0.
00

50
5.

76
50

5.
76

10
0.

00
0.

12
0.

12
0.

69
7

11
4.

7
34

.2
10

0.
00

60
.6

9
60

.6
9

10
0.

00
44

4.
91

44
4.

91
10

0.
00

0.
10

0.
10

50
0

0.
50

3
14

3.
3

54
.1

10
0.

00
12

4.
58

12
4.

58
5

10
0.

00
50

.0
0

10
12

.0
2

11
06

.0
1

10
0.

00
0.

13
0.

13
0.

70
5

14
1.

7
40

.6
10

0.
00

14
1.

98
14

1.
98

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
13

0.
13

60
0

0.
50

5
17

2.
1

59
.7

10
0.

00
26

0.
72

26
0.

72
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

14
0.

14
0.

70
4

17
2.

7
44

.4
10

0.
00

32
5.

45
32

5.
45

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
12

0.
12

70
0

0.
49

6
20

0.
2

64
.5

10
0.

00
43

2.
24

43
2.

24
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

15
0.

15
0.

70
4

20
0.

1
49

.1
10

0.
00

69
5.

57
69

5.
57

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
13

0.
13

80
0

0.
49

7
22

6.
6

67
.8

10
0.

00
72

3.
77

72
3.

77
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

16
0.

16
0.

69
8

22
9.

2
50

.9
7

70
.2

1
21

.0
6

10
51

.4
1

10
95

.9
8

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
14

0.
14

90
0

0.
50

4
25

5.
0

74
.6

2
86

.3
2

69
.0

6
93

6.
59

11
47

.3
2

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
18

0.
18

0.
69

9
25

5.
5

55
.5

0
94

.9
5

94
.9

5
12

00
.0

0
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

15
0.

15

10
00

0.
50

0
28

5.
8

78
.8

3
93

.5
4

65
.4

7
15

77
.9

0
13

13
.3

7
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

19
0.

19
0.

70
2

28
4.

5
58

.3
0

93
.9

9
93

.9
9

12
00

.0
0

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
17

0.
17

1
6
2

9
0
.6

7
1
7
.2

3
3
5
7
.1

5
4
4
0
.9

7
8
5

1
0
0
.0

0
5
7
.5

0
2
7
7
.6

6
7
8
9
.6

5
2
0
0

-
0
.0

0
0
.1

4
0
.1

4

26

T
ab

le
9:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
ch

or
d
al

gr
ap

h
in

st
an

ce
s

of
d
en

si
ty

0.
1

an
d

0.
3

w
it

h
m

ed
iu

m
-s

iz
ed

cl
u
st

er
s

IP
fo

rm
u
la

ti
on

B
&

P
D

ec
om

p
os

it
io

n

n
av

g
d
en

si
ty

av
g

#
cl

u
st

av
g

#
cl

iq
u
es

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

10
0

0.
10

3
18

.3
38

.2
10

0.
00

0.
28

0.
28

10
0.

00
4.

68
4.

68
10

0.
00

0.
10

0.
10

0.
29

9
17

.7
25

.0
10

0.
00

0.
44

0.
44

10
0.

00
33

.7
1

33
.7

1
10

0.
00

0.
09

0.
09

20
0

0.
10

6
36

.9
59

.2
10

0.
00

1.
32

1.
32

10
0.

00
22

3.
93

22
3.

93
10

0.
00

0.
12

0.
12

0.
30

6
36

.2
37

.8
10

0.
00

2.
20

2.
20

10
0.

00
23

3.
31

23
3.

31
10

0.
00

0.
10

0.
10

30
0

0.
10

8
54

.7
75

.8
10

0.
00

4.
56

4.
56

7
10

0.
00

30
.0

0
96

4.
26

10
34

.9
8

10
0.

00
0.

15
0.

15
0.

29
8

54
.1

48
.3

10
0.

00
5.

90
5.

90
10

0.
00

82
3.

78
82

3.
78

10
0.

00
0.

11
0.

11

40
0

0.
10

1
72

.3
96

.3
10

0.
00

10
.1

7
10

.1
7

1
10

0.
00

90
.0

0
89

5.
76

11
69

.5
8

10
0.

00
0.

18
0.

18
0.

30
4

72
.3

58
.0

10
0.

00
14

.6
9

14
.6

9
5

10
0.

00
50

.0
0

10
63

.9
1

11
31

.9
6

10
0.

00
0.

13
0.

13

50
0

0.
10

1
90

.7
10

7.
9

10
0.

00
24

.3
5

24
.3

5
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

20
0.

20
0.

30
0

90
.3

68
.3

10
0.

00
29

.9
0

29
.9

0
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

15
0.

15

60
0

0.
10

3
10

8.
6

12
4.

0
10

0.
00

49
.6

8
49

.6
8

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
23

0.
23

0.
30

4
10

8.
8

76
.6

10
0.

00
55

.7
6

55
.7

6
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

16
0.

16

70
0

0.
10

1
12

6.
7

13
0.

6
10

0.
00

86
.6

6
86

.6
6

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
23

0.
23

0.
29

9
12

8.
1

84
.3

10
0.

00
11

1.
53

11
1.

53
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

18
0.

18

80
0

0.
10

3
14

6.
3

14
7.

4
10

0.
00

11
9.

76
11

9.
76

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
29

0.
29

0.
30

4
14

4.
2

90
.6

10
0.

00
16

0.
96

16
0.

96
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

20
0.

20

90
0

0.
09

9
16

2.
2

15
6.

2
10

0.
00

30
2.

82
30

2.
82

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
32

0.
32

0.
29

9
16

4.
3

98
.6

10
0.

00
25

5.
49

25
5.

49
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

22
0.

22

10
00

0.
10

5
18

2.
7

16
6.

1
10

0.
00

32
2.

25
32

2.
25

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
34

0.
34

0.
29

7
18

1.
0

10
7.

2
10

0.
00

39
7.

19
39

7.
19

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
25

0.
25

2
0
0

-
0
.0

0
9
7
.8

0
9
7
.8

0
6
3

1
0
0
.0

0
6
8
.5

0
5
3
0
.4

2
9
5
2
.8

0
2
0
0

-
0
.0

0
0
.1

9
0
.1

9

27

T
ab

le
10

:
E

x
p

er
im

en
ta

l
re

su
lt

s
fo

r
ch

or
d
al

gr
ap

h
in

st
an

ce
s

of
d
en

si
ty

0.
5

an
d

0.
7

w
it

h
m

ed
iu

m
-s

iz
ed

cl
u
st

er
s

IP
fo

rm
u
la

ti
on

B
&

P
D

ec
om

p
os

it
io

n

n
av

g
d
en

si
ty

av
g

#
cl

u
st

av
g

#
cl

iq
u
es

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

10
0

0.
49

4
18

.1
19

.8
10

0.
00

0.
55

0.
55

10
0.

00
32

.0
4

32
.0

4
10

0.
00

0.
08

0.
08

0.
69

9
18

.3
15

.1
10

0.
00

0.
61

0.
61

10
0.

00
38

.3
3

38
.3

3
10

0.
00

0.
07

0.
07

20
0

0.
49

5
36

.4
28

.9
10

0.
00

2.
75

2.
75

10
0.

00
13

2.
44

13
2.

44
10

0.
00

0.
09

0.
09

0.
69

5
36

.9
22

.0
10

0.
00

3.
26

3.
26

10
0.

00
10

5.
92

10
5.

92
10

0.
00

0.
09

0.
09

30
0

0.
50

1
55

.7
39

.1
10

0.
00

9.
16

9.
16

10
0.

00
73

0.
09

73
0.

09
10

0.
00

0.
10

0.
10

0.
70

6
55

.7
27

.0
10

0.
00

11
.4

6
11

.4
6

10
0.

00
51

5.
32

51
5.

32
10

0.
00

0.
09

0.
09

40
0

0.
49

9
72

.7
46

.1
10

0.
00

21
.5

1
21

.5
1

6
10

0.
00

40
.0

0
10

43
.5

8
11

06
.1

5
10

0.
00

0.
11

0.
11

0.
69

7
72

.8
34

.2
10

0.
00

29
.5

8
29

.5
8

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
11

0.
11

50
0

0.
50

3
90

.3
54

.1
10

0.
00

44
.7

7
44

.7
7

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
13

0.
13

0.
70

5
89

.2
40

.6
10

0.
00

62
.0

8
62

.0
8

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
11

0.
11

60
0

0.
50

5
10

9.
6

59
.7

10
0.

00
83

.5
7

83
.5

7
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

14
0.

14
0.

70
4

10
7.

7
44

.4
10

0.
00

11
6.

59
11

6.
59

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
12

0.
12

70
0

0.
49

6
12

5.
9

64
.5

10
0.

00
14

0.
76

14
0.

76
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

15
0.

15
0.

70
4

12
8.

5
49

.1
10

0.
00

20
6.

58
20

6.
58

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
13

0.
13

80
0

0.
49

7
14

5.
8

67
.8

10
0.

00
22

3.
10

22
3.

10
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

16
0.

16
0.

69
8

14
6.

9
50

.9
10

0.
00

36
0.

06
36

0.
06

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
14

0.
14

90
0

0.
50

4
16

2.
9

74
.6

10
0.

00
37

5.
52

37
5.

52
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

18
0.

18
0.

69
9

16
4.

5
55

.5
10

0.
00

62
3.

74
62

3.
74

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
16

0.
16

10
00

0.
50

0
18

1.
9

78
.8

10
0.

00
56

8.
22

56
8.

22
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

20
0.

20
0.

70
2

18
1.

7
58

.3
10

0.
00

11
09

.4
5

11
09

.4
5

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
17

0.
17

2
0
0

-
0
.0

0
1
9
9
.6

7
1
9
9
.6

7
6
6

1
0
0
.0

0
6
7
.0

0
3
7
1
.1

0
9
1
3
.0

1
2
0
0

-
0
.0

0
0
.1

3
0
.1

3

28

T
ab

le
11

:
E

x
p

er
im

en
ta

l
re

su
lt

s
fo

r
ch

or
d
al

gr
ap

h
in

st
an

ce
s

of
d
en

si
ty

0.
1

an
d

0.
3

w
it

h
la

rg
e

cl
u
st

er
s

IP
fo

rm
u
la

ti
on

B
&

P
D

ec
om

p
os

it
io

n

n
av

g
d
en

si
ty

av
g

#
cl

u
st

av
g

#
cl

iq
u
es

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

10
0

0.
10

3
13

.1
38

.2
10

0.
00

0.
20

0.
20

10
0.

00
4.

68
4.

68
10

0.
00

0.
10

0.
10

0.
29

9
13

.4
25

.0
10

0.
00

0.
37

0.
37

4
10

0.
00

60
.0

0
14

7.
05

77
8.

82
10

0.
00

0.
09

0.
09

20
0

0.
10

6
26

.4
59

.2
10

0.
00

0.
80

0.
80

10
0.

00
38

.3
3

38
.3

3
10

0.
00

0.
13

0.
13

0.
30

6
26

.7
37

.8
10

0.
00

1.
67

1.
67

10
0.

00
22

3.
93

22
3.

93
10

0.
00

0.
10

0.
10

30
0

0.
10

8
39

.5
75

.8
10

0.
00

2.
25

2.
25

10
0.

00
10

5.
92

10
5.

92
10

0.
00

0.
15

0.
15

0.
29

8
39

.2
48

.3
10

0.
00

4.
07

4.
07

7
10

0.
00

30
.0

0
96

4.
26

10
34

.9
8

10
0.

00
0.

11
0.

11

40
0

0.
10

1
53

.2
96

.3
10

0.
00

4.
67

4.
67

10
0.

00
51

5.
32

51
5.

32
10

0.
00

0.
20

0.
20

0.
30

4
53

.1
58

.0
10

0.
00

10
.0

2
10

.0
2

1
10

0.
00

90
.0

0
89

5.
76

11
69

.5
8

10
0.

00
0.

12
0.

12

50
0

0.
10

1
66

.6
10

7.
9

10
0.

00
8.

53
8.

53
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

19
0.

19
0.

30
0

66
.9

68
.3

10
0.

00
19

.9
6

19
.9

6
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

14
0.

14

60
0

0.
10

3
79

.8
12

4.
0

10
0.

00
21

.1
4

21
.1

4
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

22
0.

22
0.

30
4

80
.5

76
.6

10
0.

00
37

.8
6

37
.8

6
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

16
0.

16

70
0

0.
10

1
93

.3
13

0.
6

10
0.

00
47

.6
9

47
.6

9
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

25
0.

25
0.

29
9

92
.8

84
.3

10
0.

00
60

.5
4

60
.5

4
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

17
0.

17

80
0

0.
10

3
10

6.
7

14
7.

4
10

0.
00

83
.8

6
83

.8
6

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
28

0.
28

0.
30

4
10

5.
8

90
.6

10
0.

00
13

7.
56

13
7.

56
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

20
0.

20

90
0

0.
09

9
11

9.
8

15
6.

2
10

0.
00

13
4.

43
13

4.
43

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
31

0.
31

0.
29

9
11

9.
0

98
.6

10
0.

00
15

8.
73

15
8.

73
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

23
0.

23

10
00

0.
10

5
13

3.
7

16
6.

1
10

0.
00

21
0.

71
21

0.
71

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
35

0.
35

0.
29

7
13

3.
1

10
7.

2
10

0.
00

25
7.

12
25

7.
12

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
25

0.
25

2
0
0

-
0
.0

0
6
0
.1

1
6
0
.1

1
6
2

1
0
0
.0

0
6
9
.0

0
3
6
1
.9

1
9
1
3
.5

8
2
0
0

-
0
.0

0
0
.1

9
0
.1

9

29

T
ab

le
12

:
E

x
p

er
im

en
ta

l
re

su
lt

s
fo

r
ch

or
d
al

gr
ap

h
in

st
an

ce
s

of
d
en

si
ty

0.
5

an
d

0.
7

w
it

h
la

rg
e

cl
u
st

er
s

IP
fo

rm
u
la

ti
on

B
&

P
D

ec
om

p
os

it
io

n

n
av

g
d
en

si
ty

av
g

#
cl

u
st

av
g

#
cl

iq
u
es

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

op
t

av
g

%
ga

p
in

n
on

op
t

av
g

%
ga

p
ov

er
al

l

av
g

ti
m

e
in

op
t

av
g

ti
m

e
ov

er
al

l

10
0

0.
49

4
13

.1
19

.8
10

0.
00

0.
53

0.
53

7
10

0.
00

30
.0

0
28

.4
4

37
9.

91
10

0.
00

0.
07

0.
07

0.
69

9
13

.3
15

.1
10

0.
00

0.
69

0.
69

10
0.

00
32

.0
4

32
.0

4
10

0.
00

0.
08

0.
08

20
0

0.
49

5
26

.6
28

.9
10

0.
00

1.
99

1.
99

10
0.

00
23

3.
31

23
3.

31
10

0.
00

0.
09

0.
09

0.
69

5
26

.2
22

.0
10

0.
00

2.
30

2.
30

10
0.

00
13

2.
44

13
2.

44
10

0.
00

0.
08

0.
08

30
0

0.
50

1
40

.1
39

.1
10

0.
00

6.
40

6.
40

10
0.

00
82

3.
78

82
3.

78
10

0.
00

0.
10

0.
10

0.
70

6
40

.0
27

.0
10

0.
00

11
.6

1
11

.6
1

10
0.

00
73

0.
09

73
0.

09
10

0.
00

0.
09

0.
09

40
0

0.
49

9
53

.4
46

.1
10

0.
00

15
.1

0
15

.1
0

5
10

0.
00

50
.0

0
10

63
.9

1
11

31
.9

6
10

0.
00

0.
12

0.
12

0.
69

7
53

.1
34

.2
10

0.
00

21
.1

3
21

.1
3

6
10

0.
00

40
.0

0
10

43
.5

8
11

06
.1

5
10

0.
00

0.
10

0.
10

50
0

0.
50

3
67

.0
54

.1
10

0.
00

31
.8

7
31

.8
7

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
13

0.
13

0.
70

5
66

.6
40

.6
10

0.
00

45
.0

4
45

.0
4

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
11

0.
11

60
0

0.
50

5
80

.5
59

.7
10

0.
00

60
.7

0
60

.7
0

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
15

0.
15

0.
70

4
80

.3
44

.4
10

0.
00

87
.9

2
87

.9
2

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
12

0.
12

70
0

0.
49

6
93

.3
64

.5
10

0.
00

96
.0

9
96

.0
9

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
15

0.
15

0.
70

4
93

.5
49

.1
10

0.
00

17
2.

24
17

2.
24

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
14

0.
14

80
0

0.
49

7
10

7.
7

67
.8

10
0.

00
19

9.
78

19
9.

78
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

17
0.

17
0.

69
8

10
6.

1
50

.9
10

0.
00

23
8.

96
23

8.
96

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
15

0.
15

90
0

0.
50

4
11

9.
3

74
.6

10
0.

00
24

4.
41

24
4.

41
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

18
0.

18
0.

69
9

12
0.

2
55

.5
10

0.
00

36
8.

76
36

8.
76

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
16

0.
16

10
00

0.
50

0
13

2.
4

78
.8

10
0.

00
39

7.
46

39
7.

46
0

10
0.

00
10

0.
00

12
00

.0
0

10
0.

00
0.

21
0.

21
0.

70
2

13
3.

4
58

.3
10

0.
00

62
6.

37
62

6.
37

0
10

0.
00

10
0.

00
12

00
.0

0
10

0.
00

0.
17

0.
17

2
0
0

-
0
.0

0
1
3
1
.4

7
1
3
1
.4

7
6
8

1
0
0
.0

0
6
6
.0

0
5
1
0
.9

5
9
4
8
.4

8
2
0
0

-
0
.0

0
0
.1

3
0
.1

3

30

improves the solvability of the problem in low-density graphs. The best performance
is presented in the class of chordal graphs; it clearly outperforms regardless of the
edge density or cluster size of the input graph. In terms of change in the number
of instances solved to optimality as n and the average density increases, we observe
a more robust performance in the class of generalized split graphs as compared to
permutation graphs.

4 Conclusions and Future Research

In this paper, we presented a decomposition-based exact solution approach for the
selective graph coloring problem in three different perfect graph families: permuta-
tion, generalized split, and chordal graphs. Given an input graph with a partition of
its vertex set into clusters, the master problem of our decomposition procedure seeks
an optimal selection, and the subproblem seeks maximum clique(s) in the graph in-
duced by that selection by utilizing efficient combinatorial algorithms. We tested
the performance of our algorithm on a large suite of randomly generated problem
instances, and compared the results to those of an IP formulation and a branch-
and-price algorithm from the literature. Our computational results show that the
decomposition approach significantly improved the solution performance especially
in low-density graphs, and the improvement manifests most evidently in the class
of chordal graphs.

As future research, our decomposition approach can be adapted to more general
graph classes. Namely, it would be of interest to investigate perfect graphs in general
or other graph classes that are not perfect but that possess structural properties
which may be utilized within this decomposition framework. The problem can also
be investigated in general graphs, where the insights obtained on specific graph
classes can be used to design efficient solution algorithms.

Acknowledgements

We are grateful to an anonymous referee and associate editor for their construc-
tive comments and useful suggestions, which helped us improve the content and
presentation of the paper.

References

[1] J.R. Blair and B. Peyton, “An introduction to chordal graphs and clique trees,”
Graph Theory and Sparse Matrix Computation, Springer, (1993), pp. 1–29.

[2] G.J. Chaitin, Register allocation & spilling via graph coloring, ACM SIGPLAN
Notices 17 (1982), 98–101.

[3] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect
graph theorem, Ann. Math. 164 (2006), 51–229.

31

[4] M. Demange, T. Ekim, B. Ries, and C. Tanasescu, On some applications of the
selective graph coloring problem, Eur. J. Oper. Res. 240 (2015), 307–314.

[5] M. Demange, J. Monnot, P. Pop, and B. Ries, On the complexity of the selective
graph coloring problem in some special classes of graphs, Theor. Comput. Sci.
540 (2014), 89–102.

[6] E. Egerváry, On combinatorial properties of matrices, translated by H.W. Kuhn,
Office of Naval Research Logistics Project Report, Dept. Math. Princeton Uni-
versity (1953).

[7] E.M. Eschen and X. Wang, Algorithms for unipolar and generalized split graphs,
Discr. Appl. Math. 162 (2014), 195–201.

[8] Y. Frota, N. Maculan, T.F. Noronha, and C.C. Ribeiro, A branch-and-cut al-
gorithm for partition coloring, Networks 55 (2010), 194–204.

[9] D. Fulkerson and O. Gross, Incidence matrices and interval graphs, Pacific
journal mathematics 15 (1965), 835–855.

[10] F. Furini, E. Malaguti, and A. Santini, An exact algorithm for the partition
coloring problem, Comput. Oper. Res. 92 (2018), 170–181.

[11] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, San Francisco,
1979.

[12] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal
graphs, J. Combinatorial Theory, Ser. B 16 (1974), 47–56.

[13] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Vol. 57, Else-
vier, 2004.

[14] E.A. Hoshino, Y.A. Frota, and C.C. De Souza, A branch-and-price approach
for the partition coloring problem, Oper. Res. Lett. 39 (2011), 132–137.

[15] D. König, Graphen und matrizen, Matematikai Lapok 38 (1931), 116–119.

[16] R. Lewis, A Guide to Graph Colouring, Springer, 2015.

[17] G. Li and R. Simha, The partition coloring problem and its application to wave-
length routing and assignment, Proceedings of the First Workshop on Optical
Networks, 2000.

[18] D. Marx, Graph colouring problems and their applications in scheduling, Peri-
odica Polytechnica Electrical Eng. 48 (2004), 11–16.

[19] A. Mehrotra and M.A. Trick, A column generation approach for graph coloring,
INFORMS J. Comput. 8 (1996), 344–354.

[20] T.F. Noronha and C.C. Ribeiro, Routing and wavelength assignment by parti-
tion colouring, Eur. J. Oper. Res. 171 (2006), 797–810.

32

[21] H.L. Petersen and O.B. Madsen, The double travelling salesman problem with
multiple stacks–formulation and heuristic solution approaches, Eur. J. Oper.
Res. 198 (2009), 139–147.

[22] H.J. Prömel and A. Steger, Almost all Berge graphs are perfect, Combin. Prob.
Comput. 1 (1992), 53–79.

[23] O. Şeker, P. Heggernes, T. Ekim, and Z.C. Taşkın, Linear-time generation of
random chordal graphs, Lecture Notes in Computer Science, volume 10236,
Springer, 2017, pp. 442–453.

[24] H.D. Sherali and J.C. Smith, Improving discrete model representations via sym-
metry considerations, Manage. Sci. 47 (2001), 1396–1407.

33

	Introduction
	Motivation and Literature Survey
	Hardness of Sel-Col and Our Contribution
	Definitions

	Sel-Col in Perfect Graph Families
	Integer Programming Formulation
	Decomposition Approach
	Permutation Graphs
	Generalized Split Graphs
	Chordal Graphs

	Computational Study
	Data Generation
	Random Permutation Graph Generation
	Random Generalized Split Graph Generation
	Random Chordal Graph Generation

	Experimental Results

	Conclusions and Future Research

