An Exact Cutting Plane Algorithm to Solve the Selective Graph Coloring
Problem in Perfect Graphs *

Oylum Seker®* Tinaz EkimP, Z. Caner Tagkin”

% Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S3G8, Canada
b Department of Industrial Engineering, Bodazici University, 34342, Bebek, Istanbul, Turkey

Abstract

We consider the selective graph coloring problem, which is a generalization of the classical graph coloring
problem. Given a graph together with a partition of its vertex set into clusters, we want to choose exactly one
vertex per cluster so that the number of colors needed to color the selected set of vertices is minimized. This
problem is known to be NP-hard. In this study, we focus on an exact cutting plane algorithm for selective
graph coloring in perfect graphs. Since there exists no suite of perfect graph instances to the best of our
knowledge, we also propose an algorithm to randomly (but not uniformly) generate perfect graphs, and
provide a large collection of instances available online. We conduct computational experiments to test our
method on graphs with varying size and densities, and compare our results with a state-of-the-art algorithm
from the literature and with solving an integer programming formulation of the problem by CPLEX. Our
experiments demonstrate that our solution strategy significantly improves the solvability of the problem.

Keywords: Graph theory; selective graph coloring; partition coloring; cutting plane algorithm; perfect
graph generation

*This study is supported by Bogazigi University Research Fund (grant 11765); and T. Ekim is supported by Turkish Academy
of Sciences GEBIP award.
*Corresponding author
Email addresses: oylum.seker@utoronto.ca (Oylum Seker), tinaz.ekim@boun.edu.tr (Tinaz Ekim),
caner.taskin@boun.edu.tr (Z. Caner Taskin)

Preprint submitted to Elsevier September 14, 2020

1. Introduction

Graph coloring is an assignment of labels, or “colors” as typically called, to the vertices of a graph
in such a way that no pair of vertices that are linked by an edge receives the same color. The general
structure of problems that are modeled as a graph coloring problem consists of a set of entities and possible
incompatibilities between them, represented by vertices and edges, respectively. A proper color assignment to
vertices of a graph means to divide the corresponding set of entities into distinct groups so that incompatible
entities do not belong to the same group. Graph coloring arises in a variety of practical areas including
scheduling (Marx, 2004), frequency assignment (Hale, 1980), sudoku puzzles (Lewis, 2015), and more.

As an example to a graph coloring application, suppose that we have a set of tasks, which take place
in predetermined and possibly overlapping time slots, for which we want to assign a minimum number of
workers. In order to express the problem in the domain of graphs, we can represent each task with a vertex,
and link a pair of vertices by an edge if the two tasks take place in the same time slot. If we color the
vertices of such a graph, each color corresponds to a distinct worker, and the least number of colors yields
the minimum number of workers necessary to carry out all the tasks.

We can consider a more flexible adaptation of the graph coloring application mentioned above into a
“selective” framework. Suppose that the given set of tasks are divided into distinct groups, or categories,
such that it is enough to carry out only one representative task per group. The goal is to perform a sufficient
set of tasks with a minimum number of workers. Representing each task with a vertex, task categories with
a partition of the vertex set, and pairs of tasks occurring in same time slot with edges, the aim is to select
exactly one task from each group in such a way that the number of workers required to complete the selected
set of tasks is minimized. When we pick one vertex per group and color the selected ones, each color will
correspond to a distinct worker, and the set of vertices having the same color stands for the set of tasks
assigned to that particular worker. This new problem is an example to the selective graph coloring problem,
and it inherently has two layers; the selection, and the coloring of it.

As the example graph coloring application and its adaptation into a selective scheme reveal, the selective
graph coloring problem (SEL-COL), which is alternatively referred to as partition coloring in the literature,
generalizes the classical graph coloring problem. Given a graph together with a partition of its vertex set
into clusters, the aim in SEL-COL is to choose exactly one vertex from each cluster in such a way that, among
all possible vertex selections, the resulting number of colors required to color the selected set of vertices is
minimized. When each cluster is comprised of a single vertex, every vertex of the input graph needs to
be selected and colored, which makes the classical graph coloring problem a special case of SEL-COL. It
has emerged as a model to select routes and assign proper wavelengths in the second step of a two-phase
solution approach for the routing and wavelength assignment problem (RWA) in optical networks (Li and
Simha, 2000).

SEL-CoL is known to be an NP-hard problem, which follows from the fact that it is a generalized version
of the classical graph coloring problem that is NP-hard. Moreover, it remains NP-hard in many special graph
families including various subclasses of perfect graphs (Demange et al., 2015), and hence in the general class
of perfect graphs. There are two tiers in the difficulty of SEL-CoOL; it may be due to an exponential number
of possible selections and/or due to the hardness of optimally coloring a given selection (Demange et al.,
2015). Hence, rendering one aspect of the problem somehow easy does not necessarily rid us of the overall
difficulty.

To the best of our knowledge, there exist three studies in the literature that concentrate on exact
solution methods for SEL-CoOL. The study by Frota et al. (2010) introduces an integer programming model
and a branch-and-cut algorithm for the partition coloring problem. Hoshino et al. (2011) propose another
integer programming model and a branch-and-price algorithm, which is shown to demonstrate superior
performance to the method by Frota et al. (2010). Finally, a recent study by Furini et al. (2018) proposes a
new formulation with an exponential number of variables and designs a branch-and-price algorithm, which
improves on the previous exact approaches from the literature. In our previous work (Seker et al., 2019), we
investigated SEL-COL in certain subclasses of perfect graphs, and proposed efficient exact solution algorithms
that exploit special characteristics of the graph families under consideration. In this paper, we generalize
our earlier approach for SEL-COL to the general class of perfect graphs.

2

There exist various applications that motivate the study of SEL-COL in perfect graphs. In many real
life problems that can be modelled as SEL-COL, the application domain yields host graphs that admit
characteristics of certain perfect graph families. Examples include timetabling problems calling for interval
graphs, particular cases of multiple stacks travelling salesperson problem that bring in permutation graphs,
quality test scheduling problems yielding linear interval graphs, and more (Demange et al., 2015). In this
regard, SEL-COL in the class of perfect graphs serves to consolidate many models sharing a common domain.

The importance of perfect graphs is not confined to SEL-COL applications. The class of perfect graphs
has led to a key area of interest in graph theory due to the numerous connections it has to a wide range
of fields including linear programming and computational complexity. It has great significance for several
reasons. First, many problems that are NP-hard in general, including the minimum coloring and maximum
clique problems, become polynomially solvable when restricted to the class of perfect graphs (Grotschel
et al., 1984). Moreover, for many subclasses of perfect graphs, there exist coloring and clique algorithms
that are not only polynomial-time but also of combinatorial nature (Golumbic, 2004). These subclasses, such
as chordal graphs, permutation graphs, and interval graphs have additional importance as they naturally
arise in various real life applications like perfect phylogeny, DNA sequencing, timetabling, and flight altitude
assignment (Brandstadt et al., 1999; Spinrad, 2003; Golumbic, 2004). In this respect, perfect graphs form
an umbrella class that unifies the results relating to the complexity of important problems in various graph
classes.

The polynomial-time algorithms that can solve some of the aforementioned problems in the general class
of perfect graphs, such as the maximum clique problem, are not purely combinatorial; they make use of
semidefinite programming models. Even though these methods are polynomial-time in theory, they are
known to demonstrate poor performance in practice (Grotschel et al., 1984). In order to observe how the
performance of such algorithms manifests in practice, it is important to have a collection of perfect graph
instances or a method to generate them.

Generation of perfect graphs in its general form, rather than from subclasses of it, has a considerable
potential to contribute to the literature by providing a means to test the algorithms specifically designed
for perfect graphs. To the best of our knowledge, a method to generate general perfect graphs has not
been proposed before. Even though there exists a polynomial-time recognition algorithm for perfect graphs
(Chudnovsky et al., 2005), generating a random graph and testing for perfectness may not be a viable course
of action to obtain perfect graph instances, because this recognition algorithm is not practical even for small
graphs, as pointed out in (Yildirim and Fan-Orzechowski, 2006). Alternatively, one may resort to producing
instances from certain subclasses of perfect graphs. For instance, two such subclasses for which random
generation algorithms are available are chordal graphs (Andreou et al., 2005; Markenzon et al., 2008; Seker
et al., 2017) and generalized split graphs (McDiarmid and Yolov, 2016; Seker et al., 2019). However, as
Yildirim and Fan-Orzechowski (2006) note, this approach would be fairly restrictive in nature since there
are at least 120 known subclasses of perfect graphs (Hougardy, 2006).

In this study, we present a cutting plane algorithm for SEL-COL in perfect graphs, which is generalization
of our previous work (Seker et al., 2019), and also propose a perfect graph generation algorithm, which, to
the best of our knowledge, is the first one in the literature that is capable of producing instances from the
general class of perfect graphs and hence serves as a first step to fill an important gap in the literature. Using
the proposed generator, which does not guarantee that every perfect graph can be generated with positive
probability, we produced a large suite of random perfect graph instances with varying size and densities,
and made them accessible online.

We test the performance of our solution approach using the problem instances generated, and compare
our results to those of an IP formulation and a branch-and-price algorithm by Furini et al. (2018). The results
show that our cutting plane algorithm significantly improves the solution performance, and the improvement
manifests most noticeably in low-density graphs (see Section 6). Additionally, we compare the performance
of our algorithm for general perfect graphs to that of our previous algorithm tailored for three subclasses of
perfect graphs, which are permutation, generalized split, and chordal graphs. Our cutting plane algorithm
for general perfect graphs results in better performance in permutation graphs, and marked deterioration in
the class of chordal graphs. As for generalized split graphs, we observe that, with the algorithm for general
perfect graphs, the overall performance is comparable to our specially tailored algorithm in (Seker et al.,

3

2019).

The rest of this article is organized as follows. In Section 2, we provide some preliminary graph-theoretic
definitions and information that relate to perfect graphs and SEL-CoL. We give an integer programming
formulation and describe our cutting plane algorithm in Section 3, and follow it with the review of two
existing methods that we employ within our solution framework in Section 4. In Section 5, we introduce
our random perfect graph generation method. In Section 6, we report the computational results of our
cutting plane approach in comparison to those of the integer programming formulation and a state-of-the-
art algorithm by Furini et al. (2018). Finally, we conclude our study in Section 7 with a brief summary and
possible future research directions.

2. Definitions

A graph G = (V, E) is an ordered pair, where V' denotes the set of vertices (or nodes) and E the set of
edges that are pairs of vertices. A pair of vertices in a graph are called adjacent if they are linked by an
edge. A vertex w is a neighbor of a vertex v if there exists an edge {u,v}. The neighborhood of a vertex v,
N (v), is the set of all vertices that are adjacent to it.

The complement of a graph G = (V, E), shown as G, is a graph with the same vertex set V where two
distinct vertices of G are made adjacent if and only if they are not adjacent in G. An induced subgraph of
G = (V, E) is a graph formed by a subset V' of V where the set of edges that exist between pairs in V' in
G are all preserved. For a graph G = (V, E) and V' C V, we denote the subgraph induced by V' by G[V’].

A (simple) cycle is a sequence of vertices that are consecutively adjacent, which begins and ends at the
same vertex and does not repeat any vertices in between. When a cycle contains an odd number of vertices,
it is called an odd cycle. A clique in a graph is a subset of vertices such that all vertices in the subset are
pairwise adjacent. A given clique in a graph is called maximal if it cannot be extended by incorporating
any other vertex, i.e., if it is not contained within another clique. The clique number of a graph G, denoted
by w(G), is the number of vertices in a largest clique in G. A set of vertices in a graph form a stable set, or
equivalently an independent set, if no two vertices in the set are adjacent. The size of a largest stable set in
a graph G is called the stability number and is shown by «(G).

A coloring of a graph is called a (proper) k-coloring if it uses at most k colors. If a k-coloring can be
assigned to the vertex set of a graph, then that graph is called k-colorable. The minimum number of colors
necessary to color all vertices of a graph G is called the chromatic number of G, and is denoted by x(G). A
graph G is k-colorable for all k > x(G).

v

/@-
g ’
Vit

(a) (h) (c)

Figure 1: (a) A graph G with a partition of its vertex set into four clusters V = {Vi,...,Vs} shown in dashed ellipses, (b) an
optimally colored selection {1,2,3,4} in G, (c) an optimal selection {1,6,3,8} in G with an optimal coloring of it, yielding
xser(G,V) =1

A graph G is called perfect if x(G') = w(G’) for every induced subgraph G’ of G. The Weak Perfect
Graph Theorem (WPGT) (Lovész, 1972) states that a graph G is perfect if and only if its complement G
is perfect. The Strong Perfect Graph Theorem (SPGT) (Chudnovsky et al., 2006) states that a graph G is
perfect if and only if neither G nor G' contains an odd cycle of length at least five as an induced subgraph.
Given a graph G = (V, E) and a partition V = {V4,...,Vp} of its vertex set into P clusters, a selection is
a subset V'’ of V that comprises exactly one vertex from each one of the clusters in the partition; that is,

4

V' CV such that [V'NV,|=1forallp e {1,...,P}. A selective k-coloring of G is defined by a selection V'
and a k-coloring of G[V']. The selective chromatic number of a graph G with vertex partition V, denoted
by xserL(G,V), is the smallest integer &k for which G admits a selective k-coloring (Demange et al., 2015).
An optimal selection is a selection whose optimal coloring yields the selective chromatic number (see Figure

1).

3. Cutting Plane Algorithm for SEL-CoOL in Perfect Graphs

In this section, we start with presenting an integer programming (IP) formulation for SEL-CoL. We
then describe our cutting plane method that is based on our previous work (Seker et al., 2019), by first
providing the model that forms the foundation for it, and afterwards presenting two types of cuts with one
being stronger than the other in perfect graphs and explaining the algorithmic procedure.

Suppose that we are given a graph G = (V, E) with V = {1,...,n} and a partition V of its vertex set
into P clusters V1, ..., Vp. An IP formulation to solve SEL-COL can be written as follows:

P
Model 1: min Z Yk (1a)
k=1
st wiy + wip < Yk A {Z,]} ek, ke {1, ...,P} (1b)
P
S>> wikp =1 Vpe{l,., P} (1c)
i€V, k=1
yr € {0,1} Vke{l,..P} (1d)
wy, € {0,1} VieV, ke{l,.., P}, (Le)

where yj, is a binary variable that takes value 1 if color k is used and 0 otherwise, and w;y, is another binary
variable taking value 1 if vertex ¢ is selected and gets color k£ and 0 otherwise.

Model 1 takes the number of available colors as P, because the size of a selection is P and in the worst
case each vertex in the selection takes a distinct color. One should note that a feasible c-coloring of a
selection can choose any size-c subset of the available P colors. Moreover, a feasible c-coloring of a selection
has ¢! equivalent alternatives in the solution space that are obtained by simply permuting the indices of
the ¢ colors used. In order to reduce the inherent symmetry in this formulation, we add the constraint set
(2) to Model 1 (similar to the symmetry breaking constraints in (Sherali and Smith, 2001)). This way, the
program is forced to use the colors in increasing order of their indices and clone solutions resulting from
alternative combinations of the available P colors are discarded from the solution space.

Yk > Yk—1 Vke {23 5P} (2)

Model 1 contains O(|V| x P) binary variables and O(|E| x P) constraints. Since it is an integer pro-
gramming formulation, its solution time and memory requirement may rise exponentially with the increase
in the size of the input.

An alternative formulation for SEL-COL, which constitutes the basis of our cutting plane algorithm, can
be written as follows (Seker et al., 2019):

Model 2: min ¢ (3a)
s.t. Z x; = 1 vpedl,.. P} (3b)
i€V,
t > x(G[x]) (3¢)
t>0 (3d)
x; € {0,1} VieV, (3e)

5

where z; is a binary variable that is assigned value 1 if vertex i is selected and 0 otherwise. G[z] denotes the
graph induced by the selection defined by the variable vector z = (z1,...,z,), and the nonnegative variable
t is an estimate of the number of colors needed.

The requirement that exactly one vertex is selected from each of the P clusters is met by constraint set
(3b). The nonnegative variable ¢ is forced to be at least equal to the chromatic number of the selection
given by the variable vector x through constraint set (3c). Since the objective is to minimize variable ¢, the
optimal objective value of this model will be equal to the selective chromatic number xsgr(G,V) of the
input graph. However, enforcing ¢ to be equal to the selective chromatic number is not achieved with linear
expressions in the current form of the model. We need to replace (3c) with a set of linear inequalities that
will perform the coloring task. Instead of embedding these inequalities to the model all at once, we are going
to generate and incorporate them to the model as needed. In order to be able to do this, we decompose the
problem into two parts, and deal with the selection task in one part and the coloring of the given selection
in the other.

We first construct our initial master problem by relaxing the constraint set (3c) and obtaining a linear
model that merely yields a feasible vertex selection for G. At the beginning, there is no connection between
variable ¢t and vector z. The link in between is established throughout the iterations. At each step, we start
with solving the master problem to optimality and obtain a vertex selection. We then feed this selection
to a subproblem where the chromatic number of the graph induced by the given selection is computed. If
the chromatic number found by the subproblem is higher than the optimal objective value of the master
problem, then it means that the current state of the master problem does not fully incorporate the set of
constraints that can correctly estimate the selective chromatic number of the input graph. In this case, we
add a constraint to the master problem, which ensures that the t-value takes a value at least as large as
the chromatic number of the graph induced by the current selection, as long as the same set of vertices is
selected. A diagram demonstrating the way our cutting plane algorithm works is provided in Figure 2.

Master solution
t@ @

Select vertices Color selected vertices
MP Guess # colors as t(9) Min # colors used zig) sp

ng) > 1),

add cut to MP

Figure 2: A diagram showing how the cutting plane algorithm operates

One cut that can be incorporated into our cutting plane framework can be expressed as follows:

t > x(GY]) - > (-, (4)

fievia =1}

where G [J;(j)] denotes the graph induced by the selection found at iteration j given by the variable vector
20 and x(G[zY)]) the chromatic number of this induced subgraph.

The inequality (4) utilizes the fact that the chromatic number of a graph induced by a selection can
decrease by at most one for each vertex change. Let us investigate the set of values that the right hand
side of constraint (4) can attain. Firstly, the rightmost summation in inequality (4) becomes zero only if we
choose the exact same set of vertices as in), that is, when 2 = () holds. Secondly, each time a vertex
from the selection given by z() is switched to some other vertex, this term increases by one. Considering
the term on the right hand side as a whole, the lower bound on ¢ is reduced by one for each vertex we change
in the selection.

The solution framework introduced above is valid for any input graph; it does not utilize any particular
property of the input graph. As mentioned before, the chromatic number of a perfect graph is equal to
the size of a maximum clique in it and by definition, the property of being perfect is hereditary, i.e., every

6

induced subgraph of a perfect graph is again perfect. We can make use of this property and adapt our
solution framework to the class of perfect graphs. Each time the subproblem is called, we can equivalently
find a maximum clique in it, instead of its chromatic number. We can express this relationship as an
inequality as shown in (5), and utilize it within our cutting plane algorithm.

t> Y (5)

ic K ()

where K) is a maximum clique of G[z\/)].

Given a selection, the right hand side of (5) is equal to the size of a maximum clique in it. So, for a fixed
vertex selection, (5) enforces the master program’s objective value ¢ to be at least as large as the number
of vertices in a maximum clique of it, as intended. Moreover, (5) provides positive lower bounds for other
unexplored selections that intersect with the cliques whose cuts have been added before. For each vertex
selection that the master problem outputs, we will construct a constraint of type (5) using the maximum
clique found in the subproblem, and add it to the master problem. So, at each iteration, the master problem
will contain constraints of type (5) that have been generated so far, together with (3b), (3d) and (3e). We
prefer constraint (5) over (4) because it is stronger for perfect graphs, which we show in the following.

Proposition 3.1. Constraint (5) is stronger than (4) for perfect graphs.
Proof. Given a graph G and a partition V = {V1, ..., Vp} of its vertex set, let us first define the two polyhedra

P4 and P5 as follows:

i€V,
t>xGE)— > (A-mz) vee{o,1}Vst Y i =1
{ieV]z;=1} i€V,

vp e {1,.., P}}

Ps = {x € [0, 1]“/', teRx>g: Z x,=1 Vpe{l,.. P},
i€V,
t>Y x vie{0,1}VIst. Y 4;=1 Vpe{l,..,P}and
icK i€V,

K is a maximum clique of G[i"}}

In other words, if we let P be the linear programming (LP) relaxation of the polyhedron defined by the
constraint set of our initial master problem, P4 and P5 are constructed by further constraining P respectively
with constraints (4) and (5) defined for each one of all possible vertex selections. We want to prove that Ps C
Py. To do this, we first show that for any {¢,Z} € Ps, {t,Z} € P4 holds. Since vertex selection constraints are
common on both P4 and Ps, Ez’evp Z; =1 V¥p € {1,..., P} holds by construction. Now, let & € {0, 1}|V‘ such
that > .oy, &i =1 Vp€{l,.., P} and K is a maximum clique of G[#]. Note that we can write Yick Ti =
|K| =2 ik (1—2;). Since K C V(G[2]), we have 3oy 5,2y (1-20) = 32, g (1-24) = 0. As x(G2]) = |K]|
by the perfectness of G, we have t > >, 7; = K| — Yier (1= 2:) 2 X(G[Z]) = Xopiev)z,=13 (1 — T;) and
hence {¢,z} € P;. Next, we show that this containment can be strict; i.e., there exists a perfect graph
G for which at least one point in Py is not contained in Ps. To this end, consider the graph G = (V| E)
with V = {V1, V5, V3}, where V = {1,2,3,4}, E = 0, V; = {1,2}, Vo = {3}, and V3 = {4}. There are
two possible selections for this graph, which are #() = (1,0,1,1) and #*) = (0,1,1,1). The constraints
of type ((4)) associated with selections (") and #(?) are respectively ¢; : t > 1 — (3 — (21 + x3 + x4)) and
co:t>1—(3— (w2 +x3+ 24)). Now, take the point (¢,Z1,...,%4) = (0.5,0.5,0.5,1,1). This point is

7

contained in P4, because it satisfies the selection constraints as well as ¢; and ¢3. A maximum clique of
G[#™M)] is {3}. The corresponding constraint of type (5), t > x3 is violated by the given point, as = 0.5
and T3 = 1. Hence, (0.5,0.5,0.5,1,1) ¢ P5, and P5 C Py. O

Input: A perfect graph G = (V, F), and a partition V of V
Output: An optimal selection z* with xspr(G,V) = 2*
J0,t0) 0,28 « oo
while true do
j+—j3+1
Solve the master problem optimally, find an optimal selection (/) with optimal objective value t(%)
Find a maximum clique K) of G[z)] in the subproblem
2 |KO)|
if zs(f)) > tU) then
Add (5) to the master problem
else
break
end if
end while
o x| 2 1)
return z*, z*

Figure 3: Cutting Plane Algorithm for Perfect Graphs

Pseudo-code of our cutting plane algorithm for perfect graphs is provided in Figure 3. At each step j
of our cutting plane algorithm, the master problem is solved to optimality yielding a selection z(/) with a
corresponding optimal objective value t\), and G[z(/)] is fed to the subproblem. If the objective value of
the subproblem, which is the size of a maximum clique K in G [x(j)], turns out to be greater than t\7) we
continue iterating because it means the master problem is currently lacking the constraints that will lead
to the correct estimate of the optimal value of t. Otherwise, the process is terminated, in which case the
incumbent solution z* and the associated objective value t* are optimal.

We note that in our computational experiments, we implemented the algorithm in Figure 3 using the
callback mechanism of the solver, as discussed in Section 6. We also note that when our cutting plane
algorithm terminates with an optimum solution, it does not deliver the colors of the vertices in the optimal
selection; we only know the size of a maximum clique and the vertices in it. In order to find a minimum
coloring of a given optimal selection, we can build an IP model and solve it using the graph induced by the
optimal selection as input. By allowing only as many colors as the maximum clique size, we can significantly
reduce the search space, so that any feasible solution to the minimum coloring problem becomes optimal,
too. To facilitate the solution procedure further, we can incorporate additional constraints that fix the colors
of the vertices in the maximum clique to distinct ones.

4. Methods for the Maximum Clique Problem

In this section, we discuss the two methods that we employ in the subproblem of our cutting plane
procedure to find maximum cliques. First, we discuss the details of an approach by Grétschel et al. (1984)
that uses semidefinite programming, and then review a more promising combinatorial method by Tomita
et al. (2010).

4.1. Solving the Maximum Clique Problem in Perfect Graphs via Semidefinite Programming

In the class of perfect graphs, the maximum clique problem is polynomial-time solvable via semidefinite
programming (SDP) (Grétschel et al., 1981, 1984). Finding the clique number of a perfect graph necessitates
solving an SDP model only once. However, extracting a maximum clique involves solving a series of SDP
models on successively smaller graphs for at most n times, where n is the number of vertices in the input
graph.

In his seminal paper, Lovasz (1979) introduced the so-called theta function of a graph, also known as
Lowvdsz’s theta function, which is denoted by ¥(G) for a given graph G, and satisfies

a(G) < 9(G) < x(G),

where a(G) denotes the size of a maximum stable set in G and x(G) denotes the chromatic number of the
complement of G. For any graph G, the stability number «(G) equals the clique number of its complement
w(@), and x(G) is equal to w(G) for perfect graphs. Then, ¥(G) = w(G) holds for perfect graphs. In
order to find w(G) of a perfect graph G, we need to use the complement G of it, which is again perfect by
the WPGT (Lovész, 1972). The theta function ¥(G) can be computed by several equivalent formulations
(Knuth, 1994; Grotschel et al., 1988), as noted in (Yildirim and Fan-Orzechowski, 2006). We provide one
of these formulations in (6a)—(6e), which is an SDP due to Lovdasz (1979).

Let us introduce a few notations first. For two matrices A € R™*™ and B € R"*", the trace inner
product is denoted by A e B = trace(AT B) = trace(BAT) = > AigBij. A symmetric real matrix A is
said to be positive semidefinite if zATz > 0 for every z € R". For an n x n real symmetric matrix A, we
use A > 0 to indicate that A is positive semidefinite. Finally, we use S"*™ to denote the space of n x n
symmetric matrices.

Consider the following formulation:

max JeX (6a)
st. TeX =1 (6b)
Xi; =0 V{i,jleE (6¢)
X =0 (6d)
X eSS, (6e)

where I is the identity matrix, J is a matrix of all ones, and FE is the edge set of the input graph.

The SDP model provided in (6a)—(6¢) in general gives an upper bound ¥(G) on the stability number
Q) of a graph G (Lovasz, 1979). To see this, let us first consider an IP formulation for the maximum stable
set problem for a graph G = (V, E) on n vertices, which is max,eqo1yn{e’z: z; + 2; < 1 V{i,j} € E},
and let & € {0,1}™ be a feasible solution to it. Let us define X = &7 /e, where e is a vector of ones.
X is positive semidefinite by definition, and this shows that constraints (6d) and (6e) are satisfied. Since
€ {0,1}", each row of #27 is either 27 or is comprised of zeroes. As el'Z is simply the sum of entries
of &, we have X e [0,1]{"*"}, Moreover, diag(X) = &/eT#, where diag(X) denotes the vector formed by
the diagonal entries of X. This implies that trace(X) = 1, which means that X satisfies constraint (6b).
Furthermore, for all {i,j} € FE, we have X'ij = 0 by definition, which shows that constraint (6c¢) is satisfied,
too. So, X is a feasible solution to the SDP model (Galli and Letchford, 2017). Finally, we have that
JeX = Zi@’%j’j = (eeTT?Q = eT'#, which means that the objective function simply counts the number of
vertices contained in Z. Hence, we conclude that for any graph G = (V, E), any feasible solution to the
above IP formulation for the maximum stable set problem can be converted to a feasible solution for the
SDP model in (6a)—(6e), which has a corresponding objective value equal to the stability number o(G).
Since there may be other feasible solutions with a better objective value, the optimum objective value of
this SDP model provides an upper bound on «(G) in general.

SDP models can be solved in polynomial time up to any given accuracy (Grotschel et al., 1981; Alizadeh,
1991; Nesterov and Nemirovskii, 1994). When the input graph G is perfect, the optimal objective value of
the SDP model provided in (6a)—(6e) gives the stability number a(G) (Grotschel et al., 1984). However,

9

we cannot directly obtain a maximum stable set itself by solving this model once. Grotschel et al. (1984)
propose a method to extract a maximum stable set in perfect graphs by repeatedly computing the stability
number in smaller induced subgraphs of the input graph. The main idea of this method is to remove vertices
from the input graph until only the vertices of one maximum stable set remains. It works as follows: First,
we find the stability number a(G) of the original input perfect graph G = (V, E'). Then, we mark all vertices
of G unlabeled. At each step, we select an unlabeled vertex v € V(G) and tentatively remove it from G.
Note that G’ = G\ {v} is an induced subgraph of G, and hence is perfect, too. We then calculate a(G").
If a(G") = a(G), we set G = G’, because it means that v is not contained in all maximum stable sets of G
and its removal will leave at least one maximum stable set intact. If a(G’) < «(G), then it means that v
intersects with all of the maximum stable sets in the current graph and cannot be eliminated. Therefore, we
label v in this case and keep it in our vertex set. This process continues until there is no unlabeled vertex, in
which case the set of all remaining (labeled) vertices form a maximum stable set of the original graph. Since
we either label or remove a vertex at each step, each vertex is considered once in this method. It outputs a
maximum stable set after n iterations, with n being the number of vertices of the original input graph. It is
also possible to find other maximum stable sets, if any, by changing the order of vertices to be considered.

This method is the first polynomial-time algorithm to find a maximum stable set in perfect graphs.
Since we are interested in finding a maximum clique, which corresponds to a maximum stable set in the
complement of the graph, we simply give the complement of the original graph as input, which is also a
perfect graph by WPGT. At each step of this method, we make use of the SDP model provided in (6a)—(6e)
to find the stability number. Note that the input to this method will be a subgraph of a perfect graph induced
by a vertex selection. By definition, induced subgraphs of a perfect graph are again perfect. Therefore, we
can safely employ this method in the subroutine of our cutting plane procedure.

We made a minor modification to Grotschel et al. (1984)’s algorithm in order to possibly avoid unneces-
sary computations. As we compute the size of a maximum stable set at the beginning of the algorithm, we
continue iterating until the number of labeled vertices in the graph equals maximum stable set size, instead
of waiting for all vertices to be considered.

Although SDP models are polynomial-time solvable (up to any fixed accuracy) in theory, their practical
performance is typically not satisfactory, as will be revealed by the results of our computational experiments
presented in Section 6. We note that Yildirim and Fan-Orzechowski (2006) propose another algorithm to
solve the maximum stable set problem in perfect graphs, which makes use of solutions to SDP models
throughout. Although it shows better performance than the one by Grotschel et al. (1984) in several test
instances, we decided not to test it within our cutting plane procedure, because the improvement that their
algorithm achieves is far from being comparable to what we achieve by using the combinatorial method by
Tomita et al. (2010), which we discuss in the sequel.

4.2. A Branch-and-Bound Algorithm for the Maximum Cliqgue Problem

A comprehensive review on both exact and heuristic algorithms for maximum clique problem by Wu and
Hao (2015) provides computational performance comparison of ten state-of-the-art exact algorithms on a set
of popular DIMACS instances. One of the best-performing algorithms is that of Tomita et al. (2010), which
is a branch-and-bound algorithm that the authors call MCS. MCS is based on a previous maximum clique
algorithm MCR by Tomita and Kameda (2007) and shows considerably improved performance compared to
the previous with the help of newly introduced techniques that reduce the search space.

MCR (Tomita and Kameda, 2007) is a branch-and-bound algorithm that begins with a small clique and
continues searching for larger and larger cliques until it finds one that can be confirmed to be of maximum
size. At every step, it starts from a single vertex and tries to expand it by adding new vertices. In order to
avoid unnecessary searching, the algorithm makes use of a greedy coloring of the set R of common neighbors
of vertices in the current clique). Greedy coloring assigns a minimum possible (integer) label to each vertex
in R, which simply implies that the size of a maximum clique in R, w(R), can be at most the maximum
label used in greedy coloring. Then, current clique @ can be extended by at most w(R) vertices. So, if the
sum of |Q| and the maximum label from greedy coloring does not exceed the size of a clique of maximum
size found so far, |@*|, then there is no need to continue searching for vertices to be included in @ because
it is simply not possible to obtain a larger clique on that branch.

10

In the improved maximum clique algorithm MCS (Tomita et al., 2010), which we utilize in our cutting
plane procedure, the authors focus on reducing the search space further by incorporating a recoloring routine.
This routine aims to improve the coloring obtained from the greedy coloring procedure by recoloring vertices
with the largest color label into a smaller one. One should note that MCS is not tailored for perfect graphs;
it works on any graph.

5. Test Bed: A Perfect Graph Generator

In order to test the performance of our solution approach, we need random problem instances. A complete
problem instance for SEL-COL counsists of a graph G = (V, E) and a partition V of its vertex set V. In this
section, we first introduce an algorithm to randomly generate perfect graphs and then briefly describe a
method to produce random vertex set partitions.

To the best of our knowledge, there have been only theoretical studies on the generation of perfect graphs
in its general form. In his survey, Chvatal (1984) raises the question of whether all perfect graphs are con-
structible from some “primitive” perfect graphs using perfection-preserving operations, while exemplifying
some classes all elements of which can be set up through this idea. To date, only some partial answers have
been given to this question. For instance, Burlet and Fonlupt (1984) have proven that all Meyniel graphs
are constructible from certain primitive Meyniel graphs by an operation called amalgam. Another study by
Chudnovsky and Penev (2013) describes the structure of all bull-free perfect graphs, where bull is a graph
consisting of a triangle and two vertex-disjoint pendant edges. They show that every bull-free perfect graph
either belongs to a basic class, or it can be built from smaller bull-free perfect graphs by an operation that
preserves the property of being bull-free and perfect.

The question of whether all perfect graphs can be built from some primitive perfect graphs still remains
to be answered, but there are operations proven to preserve perfection that can seemingly serve well to the
purpose of generating perfect graphs. Our algorithm, which we call Algorithm PerfectGen, is based on this
idea. We note that Algorithm PerfectGen does not guarantee that every perfect graph can be generated
with strictly positive probability or that they are produced uniformly at random. We take a diverse set
of small-sized perfect graphs and reach an end-graph by combining randomly selected ones via perfection-
preserving operations. For this purpose, we made use of the set of perfect graphs up to nine vertices, offered
by McKay (2016). We filtered out the ones that are not connected, and used the remaining collection to
build larger perfect graphs.

Algorithm PerfectGen works as follows: We input a desired number of vertices n and a desired edge
density p to the algorithm. Initially, we randomly choose a perfect graph from collection P, which is to be
extended into a final perfect graph on n vertices. Then, at each step, we first pick a random perfection-
preserving operation op among the six such operations we selected from the literature, whose details we
are going to provide in the sequel. If the selected operation op necessitates a perfect graph other than the
current perfect graph G that is being extended, then we randomly pick a graph G’ from P and combine G
and G’ via operation op. Otherwise, we simply apply operation op to G. This routine continues until G has
n vertices in total.

The first part of the algorithm explained above has no mechanism to control the number of edges in G.
In fact, we cannot directly control the number of edges, because the change in the number of edges as well
as the number of vertices cannot be foreseen before starting to apply the operation. Moreover, the change
in the number of edges is not monotonic throughout the iterations in general; i.e., it can increase, decrease
(only possible if we take the complement of the graph), or stay the same. Thus, we first build a perfect graph
G on n vertices and then check its edge density d. If d is within some predetermined e-distance from the
desired edge density p, then we accept G and terminate the algorithm. On the other hand, if we can achieve
the desired density by taking the complement of G, then we deliver G as the output graph. Otherwise, we
simply discard G and start to construct a new perfect graph from scratch. When generating our instances,
we set the value of € as 0.025. Pseudo-code of the algorithm is provided in Figure 4.

We now present the set of six perfection-preserving operations that we have used in Algorithm PerfectGen.

11

Input: An integer n, two real numbers p and € between 0 and 1
Output: A perfect graph G on n vertices with (approximate) edge density p

d+0
while |d—p| <e do
Let G = (V, E) be a graph selected randomly from the collection of small-sized perfect graphs
P such that |[V| <n
while |V|<n do
Select a perfection-preserving operation op randomly
if op requires another input graph then
Select a random graph G’ = (V’, E’) from P with |V'| <n — |V|
Attach G’ to G via operation op
else
Modify G with operation op
end if
end while
m < |E|, d «+ w3y
ifp—e< 1—d<2p—|—ethen
G < G, where G is the complement of G, d + 1 —d
end if
end while
return G = (V| E)

Figure 4: Algorithm PerfectGen

o Clique identification (Berge and Minieka, 1973):
Let G1, G2 be disjoint graphs, and K; be a nonempty clique in G; satisfying |K;| = |K2|. Define a
one-to-one correspondence between vertices of K7 and Ks; i.e., choose a bijective map f : K1 — Ko.
A graph obtained by unifying each vertex v in K with vertex f(v) in Kj is said to arise from G; and
G> by clique identification. A graph G obtained from two perfect graphs via clique identification is
perfect.

In Algorithm PerfectGen, we randomly select one vertex from G and one vertex from G’ and extend
each one to a maximal clique, say K; and Ko. Without loss of generality, say |Ki| < |Ka|. We
randomly choose |K;| vertices from Ky and identify them with those in Kj. The bijection f to
identify those vertices is randomly determined.

Gy Gy G

Figure 5: Two perfect graphs combined by clique identification operation

o Substitution (Lovész, 1972):
Let G1, G2 be disjoint graphs, v be a vertex of G1, and N the set of all neighbors of v in G;. Removing
v from (7 and linking each vertex in G5 to those in N results in a graph that arises from G; and G,
by substitution. If G; and G5 are perfect, a graph G derived via substitution of the two is perfect

12

too. We note that this operation is also known as Replication Lemma in the literature and it played
an important role in the proof of the WPGT (Lovész, 1972).

Algorithm PerfectGen randomly picks a vertex v from G, and then substitutes v with G’ as explained
above. Here, G of Algorithm PerfectGen corresponds to (G; above, and similarly G’ corresponds to
Gs.

Gy Ga

Figure 6: Two perfect graphs combined by substitution operation

o “Composition” (Bixby, 1984; Cunningham and Edmonds, 1980):
Let G1, G4 be disjoint graphs each with at least three vertices, v; be a vertex of G;, N (v;) the set of all
neighbors of v;. The composition of G and G5 is obtained from G; \ {v1} and G2\ {v2} by connecting
all vertices in N(v1) to those in N(vz). A graph obtained from two perfect graphs via composition
operation is again perfect.

In Algorithm PerfectGen, we randomly pick a vertex v from G and a vertex v’ from G’, and apply the
operation as explained above.

Gy Gy G

Figure 7: Two perfect graphs combined by composition operation

e Disjoint union:
Let Gy, G5 be two disjoint graphs. The disjoint union of G; and G5 is simply G = G; U G5 with
V(G) = V(G1) UV(G2) and E(G) = E(G1) U E(G3). Disjoint union of two perfect graphs is again
perfect (obvious from the definition of perfect graphs).

o Join:
Let GG1, G5 be disjoint graphs. The join of G; and Gs, say G, is obtained by connecting all vertices
in G; to all those in G3. A graph obtained from two perfect graphs via join operation is perfect. To
show that this operation indeed preserves perfection, assume that G| and G5 are perfect. Consider G
which is simply G1 U Gs. G and Go being perfect, G; and G5 are so, too, by WPGT. As the disjoint
union of two perfect graphs is perfect, G = G; U G5 and therefore G is perfect.

o Complement:
By WPGT, the complement of a perfect graph is again perfect.

The algorithm we designed to generate a random partition of a given vertex set into clusters takes a
pair of integers to be respectively the lower and upper bound on the sizes of clusters as input. The first
phase of the algorithm initially creates a random ordering o of vertices. Then, at each step, the size r of
the cluster under construction is set uniformly random between the lower and upper bounds input to the

13

algorithm, and a separator is placed r-many elements ahead of the previous cluster’s last vertex in o. The
set of vertices between two consecutive points the separator is placed serves as one cluster. This procedure
continues until all vertices in V' belong to some cluster.

All of the perfect graph instances and the associated vertex partitions that we have generated with
the presented method can be accessed online at http://www.ie.boun.edu.tr/~taskin/data/pg/. Our
algorithm for random perfect graph generation and the large collection of randomly generated perfect graph
instances we provide online serve as a first step to overcome the difficulty of finding perfect graph instances
in their general form.

6. Computational Study

In this section, we present the results of a series of experiments we conducted to evaluate the performance
of our cutting plane procedure by comparing it with that of the integer programming formulation Model 1,
and the branch-and-price algorithm by Furini et al. (2018).

The algorithms described in the previous section are implemented in C+4. We executed the algorithms
on a computer with 2.00-GHz Intel Xeon CPU. We used CPLEX version 12.8 in all our experiments, and
used the callback mechanism of it, which enabled us to solve the problem on a single solution tree and
generate cuts not only from the optimal solutions to the master problem but also from feasible solutions
to it. To solve the SDP formulations, we used MOSEK version 8.1.0.24. The reason for us to select this
SDP solver among several others is that MOSEK turned out to be the best-performing one according to the
results of benchmark by Mittelmann (2018) (available at http://plato.asu.edu/ftp/sparse_sdp.html)
conducted on a large set of problem instances, both in terms of solution times and the number of instances
that are solved optimally.

We generated random test test instances of with varying size and densities. The number of vertices (n)
range from 50 to 500. The edge density of a graph is defined as ++, where the numerator m denotes the

2

number of edges in the graph, and the denominator is the maximum number edges that it can have. We
used four different average edge densities while generating our instances; 0.1, 0.3, 0.5, and 0.7. For each pair
of n and average edge density value, we used five random graph instances.

When an instance could not be solved to optimality by any of the methods we consider, we report the
optimality gap percentage, which is calculated as UBU’BLB x 100 with UB and LB denoting the upper and
lower bounds respectively, to give an indication of how far a feasible solution is away from optimal.

We set a time limit of 1200 seconds throughout all the experiments for each one of the methods we
experiment with. When an instance could not be solved optimally within the limit, we take the solution
time of that instance as 1200 seconds. In our experiments, the B&P algorithm by Furini et al. (2018) failed
to report optimality gaps for instances that could not be solved optimally within the time limit. Therefore,
we use the optimality gap values only when comparing the cutting plane algorithm to the IP formulation.

In our first set of experiments, we test the performance of our cutting plane approach for perfect graphs
using the SDP-based method by Grétschel et al. (1984) in the subproblem versus using the maximum clique
algorithm MCS by Tomita et al. (2010). Table 1 summarizes the computational results for perfect graph
instances with cluster sizes varying between 2 and 5. The first three columns of this table provides some
information about the instances by respectively listing the number of vertices (“n”), average edge density
(“Avg density”), and average number of clusters (“Avg # clust”) across five random instances. The next
two sets of columns show the results of our experiments for the two versions of our algorithm for perfect
graphs under “Cutting Plane w/ SDP” and “Cutting Plane w/ MCS” headings, respectively. For the cutting
plane method coupled with the SDP-based method of Grétschel et al. (1984), Table 1 respectively lists the
number of instances that could be optimally solved among five (“# opt”), average optimality gap percentages
over instances that were not optimally solved within the given time limit of 1200 seconds (“Avg % gap in
nonopt”), average solution time in seconds over instances that are optimally solved (“Avg time in opt”),
and average solution time over all instances (“Avg overall time”) in columns 4-7. Columns 8-11 contain
the same set of results as columns 4-7 for the cutting plane method coupled with MCS. Each row of the

14

http://www.ie.boun.edu.tr/~taskin/data/pg/
http://plato.asu.edu/ftp/sparse_sdp.html

table reports the average values across runs on five independent instances, where the bottom row recaps the
results by providing the sum for “# opt” column and the averages for the others.

Table 1: Experimental results for perfect graph instances with small clusters to compare the SDP-based method with the MCS
of Tomita et al. (2010)

Cutting Plane w/ SDP Cutting Plane w/ MCS

n Avg Avg # Avg Avg Avg # Avg Avg Avg
density # opt % gap time overall opt % gap time overall

clust nonopt in opt time nonopt in opt time
0.110 144 5 3.15 3.15 5 0.28 0.28
50 0.293 13.8 5 2.21 2.21 5 0.20 0.20
0.495 14.2 5 3.44 3.44 5 0.14 0.14
0.710 14.0 5 6.50 6.50 5 0.35 0.35
0.096 28.4 5 94.59 94.59 5 0.29 0.29
100 0.300 29.4 5 88.51 88.51 5 0.19 0.19
0.488 28.0 5 105.39 105.39 5 0.34 0.34
0.705 28.8 5 314.56 314.56 5 1.41 1.41
0.098 42.6 3 50.00 580.73 828.44 5 0.28 0.28
150 0.298 42.2 5 720.72 720.72 5 0.20 0.20
0.498 44.2 1 34.58 624.60 1084.92 5 0.50 0.50
0.693 43.4 0 34.29 1200.00 5 6.12 6.12
0.107 56.8 0 53.33 1200.00 5 0.21 0.21
200 0.304 57.2 0 48.33 1200.00 5 0.20 0.20
0.496 57.2 0 48.03 1200.00 5 0.67 0.67
0.703 57.6 0 56.20 1200.00 4 9.09 232.05 425.64
0.112 71.4 0 77.33 1200.00 5 0.19 0.19
250 0.304 71.2 0 82.42 1200.00 5 0.42 0.42
0.497 722 0 76.96 1200.00 5 1.89 1.89
0.693 70.2 0 70.12 1200.00 2 13.33 254.25 821.70
0.110 86.6 0 - 1200.00 5 0.23 0.23
300 0.302 88.6 0 - 1200.00 5 1.04 1.04
0.506 83.4 0 92.86 1200.00 5 4.72 4.72
0.691 85.6 0 86.41 1200.00 2 18.51 319.48 847.79
0.117 102.6 0 - 1200.00 5 0.23 0.23
350 0.301 100.0 0 1200.00 5 0.51 0.51
0.508 98.4 0 96.91 1200.00 4 8.33 15.55 252.44
0.698 99.6 0 96.21 1200.00 0 18.72 1200.00
0.111 114.8 0 1200.00 5 0.34 0.34
400 0.315 114.0 0 - 1200.00 5 0.65 0.65
0.502 114.2 0 — 1200.00 4 8.33 25.32 260.25
0.692 112.8 0 97.71 1200.00 0 24.55 1200.00
0.117 130.2 0 - 1200.00 5 0.39 0.39
450 0.309 130.4 0 - 1200.00 5 2.02 2.02
° 0.507 128.4 0 1200.00 4 10.00 64.26 291.41
0.696 125.8 0 - 1200.00 0 33.30 1200.00
0.117 142.8 0 - 1200.00 5 0.59 0.59
500 0.296 143.0 0 1200.00 5 1.05 1.05
0.507 144.2 0 - 1200.00 1 15.22 74.45 974.89
0.695 141.0 0 98.36 1200.00 0 30.15 1200.00
49 70.59 231.31 951.31 166 17.23 28.08 217.50

We observe from the results listed in Table 1 that solving the subproblem via the MCS algorithm by
Tomita et al. (2010) clearly yields superior results in terms of the number of instances solved to optimality,
average optimality gap, and average amount of time spent. As n and edge density increase, the performance
of both methods deteriorate as expected; however, coupling of the cutting plane method with MCS out-
performs the other in every aspect for all the instances. Out of the 200 instances we experiment with, the
version that uses MCS could optimally solve 166 of them, whereas the one that solves SDP models could
only solve 49 instances to optimality. Moreover, when we use the SDP-based method in the subproblem, we
observe that in many instances with 300 or more vertices, the algorithm could not even finish solving the
maximum clique problem for the first selection the master problem outputs. In such cases, no optimality

15

W »

gap could be reported, which is revealed by the cells with a sign in “Avg % gap in nonopt” column
for groups of instances for which the number of optimally solved instances shown in the fourth column is
zero. In terms of the overall averages shown in the bottom row, when the SDP-based method is used in the
subproblem, the average percentage gap and average time spent over all instances are three times higher,
and the average time spent in optimally solved instances is seven times higher.

The results in Table 1 show that using the SDP-based method in the subproblem of the cutting plane
method leads to relatively poor performance in all respects. Therefore, we utilize MCS in the subproblem
of our solution procedure for the rest of our computational experiments. In the remaining portion of this
section, we present the experimental results of the IP formulation, B&P algorithm by Furini et al. (2018),
and our cutting plane method.

We tested the three methods on 600 test instances in total, 200 for each cluster size range. In order
to give an idea on the general performances first, we begin with presenting a brief synopsis of our overall
results in Table 2. In the first two columns of Table 2, we provide information about the cluster sizes and
graph densities by combining them into three groups. The “small”, “medium”, and “large” cluster sizes
respectively correspond to those having 2-5, 4-7, and 6-9 vertices in them. The “low” and “high” densities
denote the edge densities between 0.1-0.3 and 0.5-0.7, respectively, where the “all” category contains the
entire set of edge densities. In the next three sets of columns, we report the results of the three methods
under “IP formulation”, “B&P”, and “Cutting plane” headings. For each method, we provide the number
of optimally solved instances (“# opt”), average optimality gap percentages (“Avg % gap”), and average
solution times in seconds (“Avg time”), except that we do not report the gap values for the B&P method
as mentioned before. The average gap percentages and solution times in each row incorporate all instances
in that category, both the optimally solved ones and the others. Each row of the table provides the total or
average values across all n values for that category, where the last one shows the total number of optimally
solved instances and the overall averages of gaps and solution times.

Table 2: Summary of experimental results for all perfect graph instances

IP formulation B&P Cutting plane
Sizes of Density # Avg Avg # Avg # Avg Avg
clusters opt % gap time opt time opt % gap time
low 78 19.37 372.23 53 731.35 100 0.00 0.48
small high 48 44.03 707.97 88 469.88 66 7.26 434.51
all 126 31.70 540.10 141 600.62 166 3.63 217.50
low 97 2.75 175.36 80 339.75 100 0.00 0.96
medium high 73 24.17 448.30 92 365.42 88 3.57 177.81
all 170 13.46 311.83 172 352.59 188 1.78 89.39
low 100 0.00 72.54 100 9.34 100 0.00 0.47
large high 85 15.00 302.46 92 331.86 100 0.00 8.42
all 185 7.50 187.50 192 170.60 200 0.00 4.44
481 17.55 346.48 505 374.60 554 1.80 103.77

Firstly, the values in the last row of Table 2 indicate that the cutting plane algorithm delivers the best
overall performance in terms of the number of optimally solved problems, as well as optimality gap and
solution time. Out of the 600 instances in total, the cutting plane algorithm solves about 92% of them to
optimality, whereas IP and B&P could solve 80% and 84%, respectively. In terms of the average optimality
gap, our algorithm yields an order of magnitude better optimality gaps on the average as compared to the
IP formulation, and the average solution time is about 30% and 27% of those of IP and B&P, respectively. A
closer look at the results in terms of density categories reveals that our cutting plane algorithm is successful
in solving the low-density instances particularly. The B&P algorithm can solve a higher number of high-
density instances optimally for clusters with small and medium size than does the IP formulation and the
cutting plane method, but it yields larger average solution times than those of the cutting plane method.
Regarding the effect of cluster sizes, increasing the number vertices per cluster leads to improved performance
in all three methods, regardless of edge densities. In case of large clusters in particular, the cutting plane

16

algorithm can optimally solve all the instances in a matter of a few seconds on the average.

Having obtained a first impression on the overall results, we next evaluate the performances of the three
methods in more detail for each cluster size category separately. We start with the test instances having small
clusters, in which perfect graphs are coupled with clusters containing 2 to 5 vertices. Figure 8 illustrates
a comparison of performances of the three methods. The three charts in Figures 8a—8c respectively show
the percentage of instances solved optimally within the given time limit (“% opt”), average solution time of
optimally solved instances (“Avg time in opt”), and average solution time over all instances (“Avg time”)
versus the number of vertices of input graphs (n). Each point in these charts give the average value over
20 instances, five for each one of the four different density values, for a given n. In terms of the percentage
of optimally solved instances (Figure 8a), the cutting plane algorithm outperforms the other two methods
except for two values of n. The solution times of the cutting plane method is almost always the best as
compared to those of the other two methods, and the difference is notably high most of the time (Figure
8¢). Also, the average solution time of the cutting plane method and IP in optimally solved instances does
not vary much with increasing n values, whereas those of B&P exhibit an increasing trend (Figure 8b).

1P -~B&P -e-Cutting p. &P -+B&P --Cutting p &P -+B&P --Cutting p
100% 1200 1200
1000 1000
800 800

600 600

Avg time

400 400

Avg time in opt

2
2

200
s —0—0o o . 0

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
n n n

I
S

(a) Percentage of optimally solved (b) Average time in optimally solved (c¢) Average time over all instances

Figure 8: Results on perfect graph instances with 2-5 vertices in each cluster

We next provide a more detailed summary of the results for instances with small clusters in Tables 3 and
4. Table 3 summarizes the results for perfect graph instances having edge density 0.1 and 0.3 (which are
referred to as low density). The first three columns are the same as in Table 1. The following three sets of
columns with headings “IP formulation”, “B&P”, and “Cutting Plane” contains the results for the associated
algorithms we experiment with. The five columns under ‘IP formulation” and “Cutting Plane” headings
report the same set of results respectively for the two methods, which are the number of instances that are
solved to optimality among five instances (“# opt”), average optimality gap percentages over instances that
could not be solved optimally within the given time limit of 1200 seconds (“Avg % gap in nonopt”) and over
all instances (“Avg % gap overall”), average solution time in seconds over instances that are optimally solved
(“Avg time in opt”) and over all instances (“Avg time overall”). The rightmost column of the table lists
the average percentage of time spent in the subproblem of our cutting plane algorithm across five instances
(“Avg % time in subpr”). For B&P of Furini et al. (2018), columns associated with the optimality gap values
are excluded. Each row of this table reports the average values across five independent problem instances.
Finally, the bottom row provides the totals for columns containing the number of instances solved optimally
(“4# opt”), and the averages for the others.

Table 4 presents the results of our experiments conducted on instances having edge density 0.5 and 0.7
(which are referred to as high density) with small clusters. The structure of this table is the same as Table 3.
From the results listed in these two tables, we observe that our approach yields superior results to both of the
others in terms of solution time, and to IP formulation in terms of optimality gap as well, consistent with the
aggregate results presented in Table 2. For low-density instances, the B&P method fails to optimally solve
any of the instances with 350 or more vertices, while the cutting plane method does not seem to be affected
from increasing n values and solves all optimally in under one second on the average. While increased edge
densities negatively affect the performances of the IP formulation and the cutting plane method, it improves
that of the B&P method so that higher n values impact its performance much less than the low-density case.
Even though there is no cut-off value for n above which the cutting plane method fails to solve optimally,
high densities nevertheless make its performance more sensitive to increasing n values.

17

Table 3: Experimental results for low-density perfect graph instances with small clusters

IP formulation B&P Cutting Plane
n Avg Avg # Avg Avg Avg Avg # Avg Avg # Avg Avg Avg Avg Avg
density # opt % gap % gap time time opt time time opt % gap % gap time time % time
clust in overall in opt overall in opt overall in overall in opt overall in

nonopt nonopt subpr

0.110 14.4 5 0.00 0.13 0.13 5 0.14 0.14 5 0.00 0.28 0.28 45.43

50 0.293 13.8 5 0.00 0.21 0.21 5 2.02 2.02 5 0.00 0.20 0.20 37.60
100 0.096 28.4 5 0.00 0.90 0.90 5 23.07 23.07 5 0.00 0.29 0.29 44.59
0.300 29.4 5 0.00 3.24 3.24 5 32.02 32.02 5 0.00 0.19 0.19 45.24

150 0.098 42.6 5 0.00 2.97 2.97 5 146.58 146.58 5 0.00 0.28 0.28 48.99
0.298 42.2 5 0.00 8.70 8.70 4 140.79 352.63 5 0.00 0.20 0.20 44.94

200 0.107 56.8 5 0.00 7.93 7.93 5 420.52 420.52 5 0.00 0.21 0.21 54.51
0.304 57.2 5 0.00 36.53 36.53 5 293.05 293.05 5 0.00 0.20 0.20 54.27

250 0.112 714 5 0.00 30.25 30.25 5 1023.62 1023.62 5 0.00 0.19 0.19 49.82
0.304 71.2 5 0.00 85.98 85.98 5 712.18 712.18 5 0.00 0.42 0.42 51.83

300 0.110 86.6 5 0.00 74.87 74.87 0 1200.00 5 0.00 0.23 0.23 57.38
0.302 88.6 5 0.00 340.37 340.37 4 726.59 821.27 5 0.00 1.04 1.04 62.28

350 0.117 102.6 5 0.00 204.47 204.47 0 1200.00 5 0.00 0.23 0.23 63.60
0.301 100.0 4 94.52 18.90 689.68 791.74 0 1200.00 5 0.00 0.51 0.51 69.82

400 0.111 114.8 5 0.00 265.87 265.87 0 1200.00 5 0.00 0.34 0.34 70.10
0.315 114.0 0 51.02 51.02 1200.00 0 1200.00 5 0.00 0.65 0.65 68.71

450 0.117 130.2 3 98.42 39.37 523.80 794.28 0 1200.00 5 0.00 0.39 0.39 69.22
0.309 130.4 0 99.17 99.17 1200.00 0 1200.00 5 0.00 2.02 2.02 76.74

- 0.117 142.8 1 98.59 78.87 1180.90 1196.18 0 1200.00 5 0.00 0.59 0.59 71.36
500 0.296 143.0 0 100.00 100.00 1200.00 0 1200.00 5 0.00 1.05 1.05 71.71
78 90.29 19.37 203.34 372.23 53 320.05 731.35 100 - 0.00 0.48 0.48 57.91

18

19

L0°ST T9vev 69°C9 9C'L €T°LT 99 88°69¥% [{iR547 88 L6°L0L ¥8°9€¢C €0'vV 09°SL 514

68°L 000021 qeT'oe qroe 0 386901 386401 g 0070021 00°00T 00°00T 0 0 TvT G69°0 00¢
L0°6 6876 SVvL 81°¢Cl ccsl T 6€°L6TT LVE6TT 4 00°002T 6566 6566 0 [aa! L0670

€L°9 0070021 0eee 0eee 0 YTOTTT GE'4L6 4 00°002T GE'86 TE'86 0 8621 969°0 ocy
¥8°€E 17162 9¢' 79 00c 00°0T 4 000021 0 0070021 CL'86 CL'86 0 ¥'8¢1 L0G°0

9LV 00°002T q4ve 9eve 0 09°¢vL 09°¢vL g 00°002T 18°L6 18°L6 0 8°CIT 690 00¥
veie G¢'09¢ [4utrd 291 €€'8 4 60 VITT ¢9°c601 i 000021 16°98 16°98 0 [aan! c05°0

9c’e 00°002T CL'8T CL'8T 0 8€°694 8676499 g 00°002T 09°68 09°68 0 966 869°0 oce
87°0¢ ¥¥'ese Ga'ar L9°T €e's i 0L°L99 0L°L99 g 00°002T GLV6 GLV6 0 7'86 804°0

€0°¢ 6L°L¥8 8V61¢ OT'TT T6'8T 4 17'8G€ 17'8G€ g 000021 96°€8 96°€8 0 968 169°0 00¢
0492 oLy oLy 000 g ¢8°L0¢ ¢8°L0S g L1°026 €7°009 1871 897¢ 4 7es 909°0

V61 0L°Te8 S 4514 008 €eel 4 6L°G1¢ 6L°G1¢ g €1°cS01 £€€°0e8 €EVI 68°€C 4 c0L €690 0¢g
78y 68°T 68T 000 g €4°€9C €4°€49¢ g 86°087 86°087 000 g oL L6770

e v9°gcy G0'cET a8l 606 i 19°¢0T 19°20T g 6L°6VL Ve LE9 8’1 606 ¥ 9°LG €0L°0 002
6799 290 290 00°0 g 60°CST 60°24T g 0T'78 0T'v8 00°0 g LS 967°0

761 cr9 9 000 g 60'T9 60°'T9 g 66°8¢ 66°8¢ 000 g 8314 €690 0er
9€°€g 09°0 09°0 000 q Gg'89 G4'89 g 0T°€C 0T'€ee 000 g (g 8670

8¢'1€ w1 Wi 000 g 1671 1671 g G99°¢ €9'¢ 000 g 88¢C G0L°0 001
8€"GS €0 €0 000 g 8¢LT 8€°LT g c0'e c0'e 000 g 08¢ 8870

804 qeo geo 000 g 16T 16T g 610 6L°0 00°0 g 0Vt 0120 0¢
02'6e ¥1°0 ¥1°0 000 g €€C €e'C g c9°0 290 000 g [G67°0

adqns jdouou ydouou

ur [[e1oA0 ydo ur [[e1oA0 ur [[eI1sA0 7do ur [[ei1sA0 7do ur [[ei1sA0 ur Jsnpo
awiry %, sy o) de3 o de3 o, jdo oury auIr) jdo oIy owry des o, de8 1do # Aysuap
3avy 8Avy 3avy Ay 3ay # 3ay 8Ay # 3ay 3ay 3ay 8Ay # 3ay 8Ay
sueld Surny dzd uorjyernurioy Ji

s199sn[o [ews yim seouelsul ydeis 109510d A)susp-ySIy 10J snsal [ejuswitiodxy :f o[qe],

Next, we present a detailed summary of the experimental results obtained using the same collection of
perfect graphs, but with different sets of clusters. In this case, the aim is to investigate the effect of increased
cluster sizes on performances. We use the same collection of perfect graphs as before, but with different
sets of clusters having 4-7 and 6-9 vertices in them. Figures 9 and 10 illustrate a comparison between the
three methods in terms of percentage of optimally solved instances and solution times. When the clusters
have 6-9 vertices, the cutting plane method outperforms in all three respects, and when cluster sizes vary
between 4 and 7, the outperformance of the cutting plane persists except for few cases. Improved solvability
of the cutting plane method also reveals as just slight variability in the average solution times with respect
to n values.

[P -«B&P -e-Cutting p. -8-]P -+-B&P -#-Cutting p. -8-]P -+B&P -#-Cutting p.
100% 1200 1200
80% = 1000 1000
5
2 60% = 800 l% 800
S g 600 S 600
= A0 = 400 Z 400
o 3
20% < 200 200
0% 0 0
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
n n n
(a) Percentage of optimally solved (b) Average time in optimally solved (C) Average time over all instances

Figure 9: Results on perfect graph instances with 4-7 vertices in each cluster

-#-]P -=B&P -e-Cutting p. %P -=B&P -e-Cutting p. -#-]P -=B&P -e-Cutting p.
100% 1200 1200
80% 1000
800
60% . .
600 600
40% .
400 400
(2 200
0% 0

20%
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
n n n

% opt
Avg time in opt
v =
- 2 2
Avg time
®
8

(a) Percentage of optimally solved (b) Average time in optimally solved (c¢) Average time over all instances

Figure 10: Results on perfect graph instances with 6-9 vertices in each cluster

A more detailed summary of experimental results for instances with cluster sizes 4-7 and 6-9 are provided
in Tables 5 to 8. When we compare the results in Tables 3-4 to those in Tables 5-8, we notice that the
performances improve with increased cluster sizes and hence decreased number of clusters. For a given
n value, the number of variables and constraints in the IP formulation decreases with the increase in the
average size of the clusters, which leads to a shrinkage in problem size and hence to improved performance
for IP. We observe that, for high densities, the largest n value for which IP can optimally solve at least one
instance rises from 300 to 450 and 500 in instances with medium-sized and large clusters, respectively. As
for the B&P method, there is no n value above which it cannot deliver an optimal solution anymore, even for
the low-density instances where it is weaker. In case of medium-sized clusters and low densities, the cutting
plane algorithm outperforms the other two by optimally solving all instances in under one second, whereas IP
and B&P do so for respectively 97% and 80% of these instances while yielding considerably longer solution
times as well. When the clusters are large, the cutting plane method is able to deliver optimal solutions for
all the instances within a few seconds most of the time, and it becomes the outperforming method even in
high densities.

As an additional set of experiments, we compare the performance of our cutting plane algorithm for
general perfect graphs with that designed for the subclasses of perfect graphs investigated in (Seker et al.,
2019). The subproblems in these three graph classes, which are permutation, generalized split, and chordal
graphs, were solved via specialized combinatorial algorithms that are polynomial-time, whereas the maxi-
mum clique algorithm MCS by Tomita et al. (2010) is not so, though it runs quite efficiently in practice.

20

91°89 96°0 96°0 00°0 - 00T GL°68€ 08°6TT 08 9€°GLT 16°991 GL°C GL°€6 L6
7978 LT°C N4 000 g 0070021 0 G9°990T 60°T96 00°¢e 09°L8 € V16 96¢°0 008
VLS 06°T 06T 00°0 g 98°096 ey 1 €T 61T €671 000 g 906 L1T°0
LG°LL 18T 18T 000 g 00°002T 0 067928 CT'EEL 0002 00°00T ¥ 918 60€°0 och
£€9°€8 90T 90T 000 g y€'c6€ €7°061 i 8G'19¢ 86192 00°0 g c'c8 L1T°0
cT'9L c6'T 6T 00°0 g 00°002T 0 yEV6Y 1294014 000 g 0°€L G1e’0 00F
€418 901 90T 000 S L971¢C LG71CC g 89°€¢ 89°€E 000 g v 111°0
cees 0S'T 09'T 00°0 q 8C'TL9 8C'TL9 g GG'EeCe GG'eCe 000 g 8'29 10€°0 oce
8978 1¢'1T 1¢'1T 00°0 g ¢9'€91 C9'€91 g 88°CC 88'CC 000 g 9'€9 LT1T°0 -
16°2L LT°C LT1C 00°0 g €CaLy €CGLY g GGv6 G476 00°0 g (a2 c0€0 008
9€'€L 97°0 97°0 000 g S07T SOvT g €T°0T €T°0T1 000 g a8 0TT°0
9€"LL 8.0 8.0 00°0 g 9C€VT 9T EVT g 9691 9691 00°0 g 8°G¥ ¥0€°0 0cz
66°29 €70 €70 00°0 g 62T 6C'T g 09v 097 000 g 067 ¢IT’o
06°GL 040 0.0 00°0 g 9€°09 9€°09 g 'L i) 000 g 0'9¢ 70€°0 002
G€'69 97°0 97°0 000 g 98°0 98°0 g TLT TLT 000 g 8'9¢ L0T°0
6£'8G 170 170 000 S 60°0 60°0 g 641 69T 000 g 992 8620 et
LT°LS 8€°0 8¢°0 00°0 q 80°0 80°0 g 9.0 9.0 00°0 g 9'LC 860°0
L1768 920 9¢°0 000 g 90°0 90°0 g 01T V0’1 000 g LT 00€°0 001
0v'cy ¥¢0 ¥¢0 00°0 g 00 c00 g 020 020 00°0 g 8°LT 960°0
e€rae ¥1°0 ¥1°0 000 g 00 c0'0 g 0T°0 0T°0 000 g 06 €6¢°0 05
1214 01°0 01°0 00°0 g 10°0 10°0 g 80°0 800 00°0 g 06 0110
adqns jdouou ydouou
ur [[e1oA0 ydo ur [[e1oA0 ur [[eI1sA0 7do ur [[ei1sA0 7do ur [[ei1sA0 ur Jsnpo
awiry %, sy o) de3 o de3 o, jdo oury auIr) jdo oIy owry des o, de8 1do # Aysuap
3avy 8Avy 3avy Ay 3ay # 3ay 8Ay # 3ay 3ay 3ay 8Ay # 3ay 8Ay u
sueld Surny dzd uorjyernurioy Ji

SI9)SN[O PozZIS-WNIpaw Ym seour)sul ydeasd goojrod A)1suop-mo[10J s)nsal [ejuswtodxs :G o[qe],

21

Table 6: Experimental results for high-density perfect graph instances with medium-sized clusters

IP formulation B&P Cutting Plane
n Avg Avg # Avg Avg Avg Avg # Avg Avg # Avg Avg Avg Avg Avg
density # opt % gap % gap time time opt time time opt % gap % gap time time % time

clust in overall in opt overall in opt overall in overall in opt overall in

nonopt nonopt subpr

0.495 9.0 5 0.00 0.15 0.15 5 0.04 0.04 5 0.00 0.22 0.22 45.21

50 0.710 8.8 5 0.00 0.32 0.32 5 1.04 1.04 5 0.00 0.29 0.29 55.70
0.488 17.6 5 0.00 3.20 3.20 5 3.44 3.44 5 0.00 0.47 0.47 66.76

100 0.705 18.0 5 0.00 1.62 1.62 5 9.91 9.91 5 0.00 1.64 1.64 60.08
0.498 26.6 5 0.00 7.38 7.38 5 20.24 20.24 5 0.00 0.57 0.57 73.52

150 0.693 27.8 5 0.00 8.94 8.94 5 37.06 37.06 5 0.00 2.99 2.99 52.97
0.496 35.6 5 0.00 19.81 19.81 5 98.02 98.02 5 0.00 1.08 1.08 70.71

200 0.703 36.2 5 0.00 33.79 33.79 5 76.94 76.94 5 0.00 4.43 4.43 44.63
0.497 45.2 5 0.00 58.95 58.95 5 209.77 209.77 5 0.00 0.65 0.65 70.86

250 0.693 46.4 5 0.00 121.05 121.05 5 132.32 132.32 5 0.00 235.66 235.66 7.86
) 0.506 55.0 5 0.00 195.94 195.94 5 450.78 450.78 5 0.00 0.98 0.98 74.14
300 0.691 54.4 4 20.00 4.00 250.94 440.76 5 226.42 226.42 4 20.00 4.00 257.77 446.21 23.36
) 0.508 63.8 4 100.00 20.00 407.27 565.81 5 734.28 734.28 5 0.00 1.71 1.71 67.28
350 0.698 63.2 3 60.00 24.00 670.25 882.15 5 287.89 287.89 4 16.67 3.33 111.61 329.29 9.15
0.502 73.0 5 0.00 713.59 713.59 4 640.53 752.42 5 0.00 3.72 3.72 54.37

400 0.692 73.2 0 82.86 82.86 1200.00 5 539.49 539.49 4 37.50 7.50 33.92 267.14 20.36
0.507 82.8 2 96.67 58.00 981.34 1112.53 3 980.21 1068.12 5 0.00 11.30 11.30 62.12

450 0.696 81.2 0 95.33 95.33 1200.00 5 564.83 564.83 0 31.07 31.07 1200.00 4.26
0.507 91.2 0 99.20 99.20 1200.00 0 1200.00 5 0.00 6.62 6.62 54.75

500 0.695 92.6 0 100.00 100.00 1200.00 5 895.48 895.48 1 31.80 25.44 406.27 1041.25 3.80
73 81.76 24.17 448.30 92 310.98 365.42 88 27.41 3.57 56.94 177.81 46.09

22

ov'8¢g Lv°0 Lo 00°0 - 00T v€'6 v€'6 00T 12 vaecL 00°0 - 00T
80°C8 ¥6°0 ¥6°0 000 g 0v'ev (Uay g c6°087 c6°087 00°0 g 799 96¢°0 008
90'9L €L°0 €L°0 00°0 g 1L°¢ 1L°C g CLEVT CLEVI 00°0 g 8G9 L1T°0
cTvs ¥l el 000 g L0V L07V g €C°6ET €C°6ET 00°0 g V64 60€°0 och
V5’69 Lv'0 Ly0 00°0 g 06°T 06°T g 0€°LET 0€°LET 000 g 069 L1T°0
80°T8 06°0 06°0 000 g 16T 16T g LOETT LOETT 00°0 g 9'cs G1e’0 00F
7099 €70 €70 00°0 g et Vel g 90°¢c 90°cc 00°0 g [R5 T11°0
9T'0L cL0 L0 00°0 q 68°48 68°G8 g L6724 L6°CS 00°0 g 9Ly 10€°0 oce
G709 62°0 62°0 000 g GL0 GL0 g YSvL vavI 00°0 g (g LT1T°0 -
GLTL €9°0 €9°0 00°0 g 87 87 g 90°¢e 90°¢c 00°0 g [alti% c0€0 008
0L°€S 0€°0 0€°0 000 g cs0 [4<y] g 1’9 eT'9 00°0 g cov 0TT°0
G069 LE°0 L€°0 00°0 g 9€°0 9€°0 g 816 816 000 g yee ¥0€°0 0cz
9L°04 €20 €20 00°0 g ¥¢'0 ¥C0 g 19°C 19°C 00°0 g cee ¢IT’o
1979 05°0 05°0 000 g 10 ¥r°o g L6°€ LE°€ 00°0 g 9'9¢ ¥0€°0 002
8C'€Y 8€°0 8¢€°0 000 g 11°0 11°0 g €0'T €0'T 00°0 g 8'9¢ L0T°0
cees 8¢0 8¢°0 00°0 S G0°0 00 g 10°T 10°T 000 g 861 8620 et
T1°8€ €20 €20 00°0 q 80°0 80°0 g €40 €9°0 00°0 g 761 860°0
98'€V 9T'0 9T°0 00°0 S €0°0 €0°0 g cL0 cL0 000 g (a3} 00€°0 001
6L°0€ 01°0 01°0 00°0 g c0'0 00 g 91’0 910 00°0 g el 960°0
6L'6C 6T°0 61°0 000 g 100 10°0 g 80°0 80°0 00°0 g 99 €6¢°0 05
CL61 LT°0 LT°0 00°0 g 10°0 10°0 g 900 90°0 000 g 99 0110
adqns jdouou ydouou
ur [[e1oA0 ydo ur [[e1oA0 ur [[eI1sA0 7do ur [[ei1sA0 7do ur [[ei1sA0 ur Jsnpo
awiry %, sy o) de3 o de3 o, jdo oury auIr) jdo oIy owry des o, de8 1do # Aysuap
3avy 8Avy 3avy Ay 3ay # 3ay 8Ay # 3ay 3ay 3ay 8Ay # 3ay 8Ay u
sueld Surny dzd uorjyernurioy Ji

s109sn[o 93xe] Yirm seouelsul ydeis 10951ed L)1susp-mo[10J sjnsol [ejuowittodxy :), 9[qR],

23

Table 8: Experimental results for high-density perfect graph instances with large clusters

IP formulation B&P Cutting Plane
n Avg Avg # Avg Avg Avg Avg # Avg Avg # Avg Avg Avg Avg Avg
density # opt % gap % gap time time opt time time opt % gap % gap time time % time
clust in overall in opt overall in opt overall in overall in opt overall in

nonopt nonopt subpr

_ 0.495 6.4 5 0.00 0.11 0.11 5 0.01 0.01 5 0.00 0.23 0.23 33.81
50 0.710 7.0 5 0.00 0.25 0.25 5 0.38 0.38 5 0.00 0.26 0.26 59.92
0.488 13.2 5 0.00 2.13 2.13 5 0.05 0.05 5 0.00 0.22 0.22 53.08

100 0.705 13.4 5 0.00 4.12 4.12 5 5.83 5.83 5 0.00 0.77 0.77 69.83
0.498 19.0 5 0.00 1.94 1.94 5 0.62 0.62 5 0.00 0.35 0.35 64.90

150 0.693 20.2 5 0.00 4.65 4.65 5 26.65 26.65 5 0.00 0.93 0.93 61.71
0.496 26.6 5 0.00 7.13 7.13 5 12.97 12.97 5 0.00 0.98 0.98 58.60

200 0.703 26.8 5 0.00 15.67 15.67 5 55.31 55.31 5 0.00 4.13 4.13 51.20
0.497 33.2 5 0.00 19.66 19.66 5 62.03 62.03 5 0.00 0.79 0.79 77.09

250 0.693 33.4 5 0.00 42.21 42.21 5 129.70 129.70 5 0.00 4.05 4.05 51.07
0.506 40.0 5 0.00 47.66 47.66 5 123.92 123.92 5 0.00 1.36 1.36 80.21

300 0.691 40.6 5 0.00 118.47 118.47 5 244.15 244.15 5 0.00 5.04 5.04 44.38
0.508 46.6 5 0.00 274.99 274.99 5 394.37 394.37 5 0.00 2.25 2.25 82.15

350 0.698 46.8 4 100.00 20.00 208.45 406.76 5 407.26 407.26 5 0.00 8.06 8.06 40.88
0.502 52.8 5 0.00 298.38 298.38 5 728.67 728.67 5 0.00 2.58 2.58 64.96

400 0.692 52.2 3 100.00 40.00 354.49 692.69 5 658.65 658.65 5 0.00 4.23 4.23 46.87
0.507 59.6 3 100.00 40.00 538.64 803.18 2 372.79 869.11 5 0.00 1.92 1.92 81.49

450 0.696 60.6 4 100.00 20.00 896.27 957.01 5 733.06 733.06 5 0.00 85.12 85.12 12.77
0.507 66.0 1 100.00 80.00 960.58 1152.12 2 903.36 1081.34 5 0.00 4.65 4.65 69.60

500 0.695 65.0 0 100.00 100.00 1200.00 3 103845 1103.07 5 0.00 40.48 40.48 25.01
85 100.00 15.00 199.78 302.46 92 294.91 331.86 100 - 0.00 8.42 8.42 56.48

24

Using the same experimental environment as in (Seker et al., 2019), we run our cutting plane algorithm
for general perfect graphs on the test instances from the three subclasses of perfect graphs. The number of
vertices of these instances range from 100 to 500 for permutation and generalized split graphs, and from 100
to 1000 for chordal graphs. The average edge densities are the same as here; namely, 0.1, 0.3, 0.5, and 0.7.
The total number of instances tested are 1200 for chordal graphs, and 600 for the other two classes.

Table 9 summarizes the results for permutation graphs. The structure of this table is the same as
Table 2, except that the two sets of columns list the results for our algorithms for the general and special
cases, respectively. Our first observation from this table is that the general algorithm surprisingly yields
better results than the one tailored for permutation graphs. The improvement is particularly evident in
high-density instances in terms of all three measures we list here. The average percentage gap value in high-
density instances with small clusters drops from 23.32% to 12.98%, and the overall average of optimality
gap improves by 5%.

Table 9: Summary of experimental results for permutation graph instances

Cutting plane Decomp for perm gr (Seker et al., 2019)
Sizes of Density # Avg Avg # Avg Avg
clusters opt % gap time opt % gap time
low 99 0.25 14.41 98 0.40 47.16
small high 52 12.98 641.35 37 23.32 780.47
all 151 6.62 327.88 135 11.86 413.81
low 100 0.00 1.18 100 0.00 3.81
medium high 53 19.44 649.30 42 29.78 753.63
all 153 9.72 325.24 142 14.89 378.72
low 100 0.00 0.93 100 0.00 1.08
Jarge high 64 18.07 482.31 52 26.95 627.73
all 164 9.03 241.62 152 13.47 314.41
468 8.46 298.25 429 13.41 368.98

Table 10 contains the summary of the results we obtained for generalized split graphs and has the same
format as the previous one. As opposed to the case of permutation graphs, there is no monotonicity in the
change of the performance between the cutting plane and the decomposition algorithm, not even within
a given density or cluster size category. The overall performance deteriorates when we use our algorithm
for general perfect graphs, but it is still comparable to that of the algorithm tailored for generalized split
graphs.

Table 10: Summary of experimental results for generalized split graph instances

Cutting plane Decomp for GSG (Seker et al., 2019)
Sizes of Density # Avg Avg # Avg Avg
clusters opt % gap time opt % gap time
low 81 4.95 234.61 76 5.50 310.33
small high 62 10.26 495.17 66 7.58 427.44
all 143 7.61 364.89 142 6.54 368.88
low 74 10.75 321.26 7 9.03 287.05
medium high 57 16.59 547.13 64 11.63 454.85
all 131 13.67 434.19 141 10.33 370.95
low 70 13.67 393.82 72 12.55 364.49
Jarge high 67 15.33 443.80 66 12.66 431.26
all 137 14.50 418.81 138 12.60 397.88
411 11.92 405.96 421 9.82 379.24

In the last part of this final group of experiments, we present the computational results for chordal graphs
in Table 11 in the same structure as the previous two. The algorithm we present in (Seker et al., 2019) yields
the best results in the class of chordal graphs by solving all of the instances to optimality in approximately
0.16 seconds. In this case, the difference between the two methods is clear; the one custom-tailored for
chordal graphs clearly outperforms in all respects.

25

Table 11: Summary of experimental results for chordal graph instances

Cutting plane Decomp for chordal gr (Seker et al., 2019)
Sizes of Density # Avg Avg # Avg Avg
clusters opt % gap time opt % gap time
low 53 25.56 897.58 200 0.00 0.20
small high 17 43.65 1113.71 200 0.00 0.14
all 70 23.72 811.29 400 0.00 0.17
low 68 31.91 813.37 200 0.00 0.19
medium high 2 51.79 1055.41 200 0.00 0.13
all 94 25.42 674.19 400 0.00 0.16
low 68 36.69 809.30 200 0.00 0.19
Jarge high 35 51.55 1001.10 200 0.00 0.13
all 103 24.07 618.65 400 0.00 0.16
267 24.41 701.37 1200 0.00 0.16

7. Conclusion and Future Research

In this study, we presented an exact cutting plane algorithm for the selective graph coloring problem in
perfect graphs, which is a generalization of the method presented in (Seker et al., 2019). We also introduced
an algorithm to generate random perfect graphs, which, to the best of our knowledge is the first algorithm
for this purpose in the literature. Given an input graph together with vertex set partition, we search for
and optimal selection in the master problem of our cutting plane procedure, and in the subproblem, we find
a maximum clique in the graph induced by the selected set of vertices by making use of two alternative
methods. One of these makes use of semidefinite programming models and works in polynomial time in
theory in the class of perfect graphs. The other one is a general-purpose maximum clique algorithm from
the literature and performs quite efficiently in practice. We conducted an extensive computational study
on a large set of test instances we generated randomly, in order to test the performance of our algorithm
in comparison to those of an IP formulation and a branch-and-price algorithm from the literature. The
computational results show that the cutting plane algorithm significantly improved the solvability of the
problem in general, but most evidently in low-density graph instances. We also compared the performance of
our cutting plane algorithm for perfect graphs in its general form to that of our previous algorithm tailored
for three subclasses of perfect graphs; namely, permutation, generalized split, and chordal graphs. The use
of our cutting plane algorithm for general perfect graphs resulted in better performance in permutation
graphs, and marked deterioration in chordal graphs regardless of edge density. In the class of generalized
split graphs, the overall performance became worse with the algorithm for general perfect graphs.

Our presented solution strategy can be adapted to general graphs where the clique number is not nec-
essarily equal to the chromatic number. We carried out preliminary experiments to test the performance
of such an adaptation (see Appendix). In order to apply this exact solution approach to general graphs, a
minimum coloring algorithm is required, while it is still possible and indeed helpful to utilize a maximum
clique algorithm as well. Since the maximum clique algorithm by Tomita et al. (2010) works for any graph,
we keep utilizing it to generate constraint (5). In order to generate constraint (4), we employed two different
minimum coloring algorithms in our subproblem, which are two best-performing ones according to a survey
on vertex coloring problems by Malaguti and Toth (2010): (i) a branch-and-cut algorithm by Méndez-Diaz
and Zabala (2006), and (ii) a column generation algorithm by Mehrotra and Trick (1996), for which we used
the implementation by Held et al. (2012). Unfortunately, neither (i) nor (ii) performs very well, such that
the majority of the solution time is spent in the subproblem of our cutting plane method. The reason for
the coloring task to constitute the bottleneck of our cutting plane approach on general graphs is not only
that the coloring problem turns out to be much harder in practice as compared to the maximum clique
problem, but also that the weakness of constraint (4) induces more calls to the coloring problem. Hence,
further research should investigate how to design and incorporate alternative stronger cuts to improve the
performance of our cutting plane method. Moreover, we note that our approach of taking advantage of the
graph structures can be potentially applied to other exact methods to solve SEL-COL.

As for perfect graph generation, our proposed algorithm can be enriched by including different perfection-
preserving methods. One can also address the more challenging open question of generating every perfect

26

graph with strictly positive probability, or at least being able to give a measure of the quality or the
distribution of the generated perfect graphs (Roussel et al., 2009).

Acknowledgements

We are grateful to Pinar Heggernes for her helpful suggestions in the perfect graph generation algorithm
when she was on her sabbatical leave at Bogazic¢i University and when the first author was a visiting scholar
at the University of Bergen. We are also thankful to three anonymous referees, whose constructive comments
and useful suggestions helped us improve the content and exposition of the paper.

References

Alizadeh, F., 1991. Combinatorial optimization with interior point methods and semidefinite matrices. Ph.D. thesis, University
of Minnesota, Minneapolis, USA.

Andreou, M. 1., Papadopoulou, V. G., Spirakis, P. G., Theodorides, B., Xeros, A., 2005. Generating and radiocoloring families
of perfect graphs. In: Experimental and Efficient Algorithms. Springer, pp. 302-314.

Berge, C., Minieka, E., 1973. Graphs and Hypergraphs. Vol. 7. North-Holland Amsterdam.

Bixby, R. E., 1984. A composition for perfect graphs. Ann. Discrete Math 21, 221-224.

Brandstadt, A., Le, V. B., Spinrad, J. P., 1999. Graph Classes: A Survey. Vol. 3. STAM Monographs on Discrete Mathematics
and Applications, Philadelphia, PA.

Burlet, M., Fonlupt, J., 1984. Polynomial algorithm to recognize a Meyniel graph. In: Progress in Combinatorial Optimization.
Elsevier, pp. 69-99.

Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P., Vuskovi¢, K., Mar 2005. Recognizing Berge graphs. Combinatorica
25 (2), 143-186.

Chudnovsky, M., Penev, 1., 2013. The structure of bull-free perfect graphs. Journal of Graph Theory 74 (1), 1-31.

Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R., 2006. The strong perfect graph theorem. Annals of Mathematics
164 (1), 51-229.

Chvétal, V., 1984. Notes on perfect graphs. Progress in Combinatorial Optimization, 107-115.

Cunningham, W. H., Edmonds, J., 1980. A combinatorial decomposition theory. Canadian Journal of Mathematics 32 (3),
734-765.

Demange, M., Ekim, T., Ries, B., Tanasescu, C., 2015. On some applications of the selective graph coloring problem. European
Journal of Operational Research 240 (2), 307-314.

Erdés, P., Rényi, A., 1959. On random graphs. Publicationes Mathematicae Debrecen 6, 290-297.

Frota, Y., Maculan, N., Noronha, T. F., Ribeiro, C. C., 2010. A branch-and-cut algorithm for partition coloring. Networks
55 (3), 194-204.

Furini, F., Malaguti, E., Santini, A., 2018. An exact algorithm for the partition coloring problem. Computers & Operations
Research 92, 170-181.

Galli, L., Letchford, A. N., 2017. On the lovédsz theta function and some variants. Discrete Optimization 25, 159-174.

Golumbic, M. C., 2004. Algorithmic Graph Theory and Perfect Graphs. Vol. 57. Elsevier.

Grotschel, M., Lovéasz, L., Schrijver, A., 1981. The ellipsoid method and its consequences in combinatorial optimization.
Combinatorica 1 (2), 169-197.

Grétschel, M., Lovasz, L., Schrijver, A., 1984. Polynomial algorithms for perfect graphs. North-Holland Mathematics Studies
88, 325-356.

Grotschel, M., Lovéasz, L., Schrijver, A., 1988. Geometric Algorithms and Combinatorial Optimization. Springer, New York.

Hale, W. K., Dec 1980. Frequency assignment: Theory and applications. Proceedings of the IEEE 68 (12), 1497-1514.

Held, S., Cook, W., Sewell, E. C., 2012. Maximum-weight stable sets and safe lower bounds for graph coloring. Mathematical
Programming Computation 4 (4), 363-381.

Hoshino, E. A., Frota, Y. A., De Souza, C. C., 2011. A branch-and-price approach for the partition coloring problem. Operations
Research Letters 39 (2), 132-137.

Hougardy, S., 2006. Classes of perfect graphs. Discrete Mathematics 306 (19-20), 2529-2571.

Knuth, D. E., 1994. The sandwich theorem. The Electronic Journal of Combinatorics 1 (1), 1.

Lewis, R., 2015. A Guide to Graph Colouring. Springer.

Li, G., Simha, R., 2000. The partition coloring problem and its application to wavelength routing and assignment. In: Pro-
ceedings of the First Workshop on Optical Networks.

Lovész, L., 1972. Normal hypergraphs and the perfect graph conjecture. Discrete Mathematics 2 (3), 253-267.

Lovész, L., 1979. On the Shannon capacity of a graph. IEEE Transactions on Information theory 25 (1), 1-7.

Malaguti, E., Toth, P., 2010. A survey on vertex coloring problems. International Transactions in Operational Research 17 (1),
1-34.

Markenzon, L., Vernet, O., Araujo, L. H., 2008. Two methods for the generation of chordal graphs. Annals of Operations
Research 157 (1), 47-60.

Marx, D., 2004. Graph colouring problems and their applications in scheduling. Periodica Polytechnica Electrical Engineering
48 (1-2), 11-16.

27

McDiarmid, C., Yolov, N., 2016. Random perfect graphs. Random Structures & Algorithms.

McKay, B., 2016. Graphs. http://users.cecs.anu.edu.au/~bdm/data/graphs.html Accessed 25 December 2017.

Mehrotra, A., Trick, M. A., 1996. A column generation approach for graph coloring. INFORMS Journal on Computing 8 (4),
344-354.

Méndez-Diaz, 1., Zabala, P., 2006. A branch-and-cut algorithm for graph coloring. Discrete Applied Mathematics 154 (5),
826-847.

Mittelmann, H., 2018. Benchmarks for optimization software. http://plato.asu.edu/bench.html.

Nesterov, Y., Nemirovskii, A., 1994. Interior-point polynomial algorithms in convex programming. Vol. 13. Siam.

Roussel, F., Rusu, I., Thuillier, H., 2009. The strong perfect graph conjecture: 40 years of attempts, and its resolution. Discrete
Mathematics 309 (20), 6092—-6113.

Seker, O., Ekim, T., Tagkin, Z. C., 2019. A decomposition approach to solve the selective graph coloring problem in some
perfect graph families. Networks 73 (2), 145-169.

Seker, O., Heggernes, P., Ekim, T., Tagkin, Z. C., 2017. Linear-time generation of random chordal graphs. In: Lecture Notes
in Computer Science. Vol. 10236. pp. 442-453.

Sherali, H. D., Smith, J. C., 2001. Improving discrete model representations via symmetry considerations. Management Science
47 (10), 1396-1407.

Spinrad, J. P., 2003. Efficient graph representations. American Mathematical Society.

Tomita, E., Kameda, T., 2007. An efficient branch-and-bound algorithm for finding a maximum clique with computational
experiments. Journal of Global Optimization 37 (1), 95-111.

Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M., 2010. A simple and faster branch-and-bound algorithm for
finding a maximum clique. In: International Workshop on Algorithms and Computation. Springer, pp. 191-203.

Wu, Q., Hao, J.-K., 2015. A review on algorithms for maximum clique problems. European Journal of Operational Research
242 (3), 693-709.

Yildirim, E. A.; Fan-Orzechowski, X., 2006. On extracting maximum stable sets in perfect graphs using Lovasz’s theta function.
Computational Optimization and Applications 33 (2-3), 229-247.

28

http://users.cecs.anu.edu.au/~bdm/data/graphs.html
http://plato.asu.edu/bench.html

Appendix: Extension to General Graphs

As we noted in Section 7, the presented cutting plane algorithm can be adapted as an exact method
to solve SEL-COL in general graphs, i.e., graphs with no particular structure, where the chromatic number
is not necessarily equal to the clique number. This can be done by only generating constraint (4) in the
subproblem. However, since we observed that constraint (5) can be produced efficiently and facilitate the
solution procedure considerably, we add constraints of type (5) as long as they are violated, and start adding
(4) only afterwards, i.e., when no violated constraint (5) is left.

The maximum clique algorithm by Tomita et al. (2010) works for any graph. Therefore, we keep utilizing
it for general graphs to generate constraint (5). In order to generate constraint (4) for general graphs, we
need to employ a minimum coloring algorithm in our subproblem. According to a survey on vertex coloring
problems by Malaguti and Toth (2010), two best performing exact algorithms for graph coloring are a column
generation approach by Mehrotra and Trick (1996) and a branch-and-cut algorithm by Méndez-Diaz and
Zabala (2006). We used our own implementation of the method by Méndez-Diaz and Zabala (2006) as the
first alternative, and an implementation of the column generation approach of Mehrotra and Trick (1996)
offered by Held et al. (2012) as the second one, which is referred to as ezactcolors.

In the sequel, we present a preliminary set of computational results we obtained using the extension of
our cutting plane approach for graphs with no particular structure. Using the two alternative methods to
solve the minimum coloring problem in our subroutine, we conducted experiments on a set of 24 Erdés and
Rényi (1959) type random graphs having 50 to 500 vertices and four different average edge densities, which
are 0.1, 0.3, 0.5, and 0.7. For each pair of n and edge density value, we used a single graph instance and
coupled it with a set of clusters, each containing 2 to 5 vertices. We set a time limit of 1200 seconds in each
run, as before.

Table 12 provides a summary of our results for general graphs, with a structure similar to the previous
ones. The two sets of columns with headings “Cutting plane with B&C” and “Cutting plane with exactcol-
ors” stand for the cutting plane algorithm coupled with the minimum coloring algorithms by Méndez-Diaz
and Zabala (2006) and Held et al. (2012), respectively. Columns “% time in cliq” and “% time in col” re-
spectively give the percentage of solution time spent in solving the maximum clique and minimum coloring
problems in the subproblem.

Table 12: Summary of experimental results for general graph instances

IP formulation B&P Cutting plane with B&C Cutting plane with ezactcolors
n Avg # % Avg # Avg # % % % Avg # % % % Avg
opt gap time opt time opt gap time time time opt gap time time time
clust in clig in col in clig in col

50 14.5 4 0.00 2.45 4 1.84 4 0.00 0.25 71.69 12.60 4 0.00 0.80 16.52 1.62
100 28.8 3 4.17 478.60 4 15.26 2 14.58 0.28 82.89 697.49 2 15.71 0.58 28.22 629.53
200 57.8 1 52.59 940.58 4 123.32 1 49.62 0.01 99.89 1197.50 0 67.06 0.10 92.08 1200.00
300 84.0 0 87.50 1200.00 4 510.17 0 65.00 0.01 99.95 1200.00 0 75.99 0.02 99.37 1200.00
400 114.5 0 99.78 1200.00 3 904.82 0 76.85 0.01 99.97 1200.00 0 88.43 0.00 97.53 1200.00
500 144.8 0 99.81 1200.00 1 1172.96 0 76.53 0.05 99.94 1200.00 0 90.92 0.02 88.90 1200.00
8 57.31 836.94 20 454.73 7 47.10 0.10 92.39 917.93 6 56.35 0.25 70.44 905.19

The overall summary of the results delivered in the last row of Table 12 indicates that B&P method
outperforms all of the others by optimally solving 83.3% of the instances in approximately half the time
the cutting plane method takes on the average. The fraction of time our cutting plane method spends in
the minimum coloring problem is nearly one in many cases, implying that the coloring task constitutes the
bottleneck of our algorithm. The reason for this is not only that the coloring algorithms take too much
time; the constraint (4) being weak induces more calls to the coloring problem, hence increasing the total
amount of time spent for it. So, it is the coexistence of the weakness of constraint (4) and the elevated
solution times spent for the coloring problem that leads to unsatisfactory performance of the cutting plane
algorithm in general graph instances.

29

	Introduction
	Definitions
	Cutting Plane Algorithm for Sel-Col in Perfect Graphs
	Methods for the Maximum Clique Problem
	Solving the Maximum Clique Problem in Perfect Graphs via Semidefinite Programming
	A Branch-and-Bound Algorithm for the Maximum Clique Problem

	Test Bed: A Perfect Graph Generator
	Computational Study
	Conclusion and Future Research

