
Minimum Cost Noncrossing Flow Problem on Layered Networks

İ. Kuban Altınel*, Necati Aras, Zeynep Şuvak, Z. Caner Taşkın

Department of Industrial Engineering, Boğaziçi University, 34342, Bebek, İstanbul, Turkey

Abstract

In this work we focus on an extension of the minimum cost flow problem in layered networks. Feasible arc flows

must satisfy a specific compatibility restriction in addition to flow balance and capacity restrictions. Namely,

at most one of the crossing arcs is allowed to have positive flow on it. This variant of the minimum cost flow

problem, which we call the minimum cost noncrossing flow problem, can frequently be encountered in real life.

The determination of optimal temporal quay crane allocations to berthed vessels in container terminals, and optimal

train schedules through the stations on the same railroad line are two examples. We first analyze the complexity

of the problem and show that the noncrossing flow problem is in fact NP-complete in a layered network. Then,

we introduce mixed-integer linear programming formulations and discuss a polynomially solvable special case.

Next we show a sufficient condition for the existence of a crossing in an optimal solution, which can be used for

preprocessing the arcs in order to reduce the problem size. Our computational experiments on a large test set show

that our preprocessing algorithm can significantly reduce the number of arcs.

Keywords: Network flows, layered networks, noncrossing flow, integer programming.

1. Introduction

The ordinary minimum cost flow problem (MCFP) is well-known and has widespread applications. It is also

faced as a relaxed subproblem in solving many difficult combinatorial optimization problems [1]. Due to its special

structure, it can be solved efficiently, and many polynomial-time algorithms have been developed ever since Ford

and Fulkerson’s seminal work [8].

In this work, we focus on the minimum cost noncrossing flow problem (MCNFP), which is an extension of the

ordinary MCFP in layered networks with additional compatibility constraints in conjunction with the flow balance,

capacity, lower bound, and binary restrictions. Layered graphs and networks provide effective modeling tools

for the solution of some difficult combinatorial optimization problems, as recently detailed and classified in [12].

They are often encountered in container terminals, especially when the temporal allocation of the quay cranes to

load/unload the berthed vessels according to their technical properties [14, 21], and when the scheduling of trains

through the stations on the same railroad lines is targeted. In general, a layered network provides a graphical tool

to model the scheduling of flow with spatial constraints. Compatibility constraints we consider belong to a special

class named as conflict, disjunctive, or exclusionary side constraints. They make MCNFP a relative of graph

and network based combinatorial optimization problems, which also include conflict constraints. For example,

transportation problem with conflict constraints is studied in [19, 20], and [11], assignment problem with conflict

∗Corresponding author. Phone: + 90 (212) 359 6467, Fax: + 90 (212) 265 1800
Email addresses: altinel@boun.edu.tr (İ. Kuban Altınel*), arasn@boun.edu.tr (Necati Aras), zeynep.arslan@boun.edu.tr

(Zeynep Şuvak), caner.taskin@boun.edu.tr (Z. Caner Taşkın)

Preprint submitted to xxxx September 20, 2018

constraints is studied in [15], minimum spanning tree problem with conflict constraints is studied in [6, 22] and

[17], the shortest path problem with conflict constraints is studied in [7], and lastly maximum flow problem with

conflict constraints is studied in [16].

To the best of our knowledge the first four of the above mentioned studies are the most closely related ones

to ours. The problems they consider can be seen similar to ours, since their particular network structure has two

layers. In the first two, Sun [19] studies the transportation problem with conflict constraints (TPC), and proposes

a Tabu Search heuristic. He also develops a branch-and-bound (BB) algorithm in [20]. The third one is more

theoretical and provides a complexity analysis of TPC; it is shown that even some specific cases are NP-hard [11].

In the last one, the authors assume unit flow capacities and zero lower bounds in addition to the two-layer network

structure, and propose efficient heuristics for the assignment problem with conflicts [15].

This paper consists of eight sections. We explain in the next section a motivating real-life application of

MCNFP, i.e. the quay crane scheduling problem. We introduce the notation and terminology in Section 3, and

analyze the computational difficulty of MCNFP in Section 4. We propose mixed-integer linear programming

(MILP) formulations in Section 5, which is followed by Section 6, where we discuss a polynomially solvable

realistic case. Section 7 includes results that lead to a preprocessing procedure used in reducing the size of the

problem. The computational results for the effect of preprocessing on the performance of the formulations are

reported in Section 8. Finally, concluding remarks are provided in Section 9.

2. Flow scheduling with spatial constraints

Three important problems associated with the management of seaside operations at container terminals are the

berth allocation problem (BAP), crane assignment problem (CAP), and crane scheduling problem (CSP). Excellent

surveys of the related works with a classification according to some specific attributes are provided in [2, 3, 4, 5].

In general, BAP deals with the determination of optimal berthing times and positions of vessels. It is possible

to visualize a solution of BAP by means of a time-berth diagram where the y-axis represents the quay discretized

in berth sections which vessels can occupy, and the x-axis represents time periods. A common assumption is that

each berth section is just large enough to be occupied by only one quay crane. A sample time-berth diagram

is given in Figure 2.1. There are four vessels and the rectangles represent the area they cover on the time-berth

diagram. CAP finds the optimal number of cranes assigned to the vessels, and thus can be seen as a special form

of the optimal crane splitting problem [18]. The numbers within the parenthesis in the rectangles are the crane

numbers required per time period that guarantee the determined length of stay for the vessels, and form a solution

of CAP. For example, vessel 2 stays berthed at berth sections 4 − 8 for nine periods, and demands three cranes

during periods 1 − 3 and four cranes during periods 4 − 9. CSP focuses on assigning quay cranes to optimal work

places in each interval, given the berth locations of the vessels along the quay and number of the cranes that should

serve them (i.e. the information displayed in Figure 2.1 provides) with the objective of minimizing the total setup

cost due to crane relocations on the berth over the planning horizon. An interval is the time that elapses between

two sequential events. An event is a specific vessel activity capable to cause a change in the number of serving

cranes; it is an arrival or departure. More than one event can occur at the same time. This is also illustrated in

Figure 2.1. There are three intervals. For example, the first one starts with the arrivals of vessels 1, 2, and 3 at time

0, and ends with the departures of vessels 1 and 3, and arrival of vessel 4 at time 3, which is also the starting time

of the second interval. Observe that the number of cranes in service during an interval cannot be larger than seven,

which is the total number of cranes available in the terminal.

2

v1

(2)

B
er

th
 s

ec
ti

o
n

Time period

 0 1 2 3 4 5 6 7 8 9 10

v3

(2)

v2

(3)

 v4

 (3)

4

8

12

v2

(4)

 v4

 (3)

v2

(4)

Interval 1 Interval 2 Interval 3

v2

(4)

Two departures
and one arrival Departure Departure

v2

(4)

2

11

3

Figure 2.1: Sample berth allocations and quay crane assignments for five vessels

A layered network representation describing the sample situation explained above is given in Figure 2.2. This

is a directed, layered, single source, and single sink network. The only vertex of the first layer is the super source,

which represents the terminal’s resources, with supply equal to the total number of available quay cranes. Similarly,

the last layer consists of a single vertex. It is a super sink with demand equal to the total number of available quay

cranes. The remaining vertices belong to internal layers and represent the vessels demanding cranes at each time

interval. Except the first and last layers, each one of L layers represents a snapshot of the berth during a time

interval. In other words, layer l exists in the network if a vessel arrives or departs changing the current snapshot; it

is then followed by a new one. Notice that the number of cranes assigned to the berthed vessels can change only

between consecutive layers, since only an arrival or a departure can cause such a change. These events and the

intervals they represent are also depicted in Figure 2.1.

At each layer l, a berthed vessel is represented by a vertex, whose demand is equal to the number of assigned

cranes. These vertices are called vessel vertices, and they are ordered according to the position of the vessels

berthed along the quay from the beginning to the end. There is a second type of vertices below and above the

vessel vertices. They are called parking vertices and represent the waiting area for the idle cranes. In any layer,

the number of parking vertices is one more than the number of vessel vertices. To summarize, by letting nl denote

the number of berthed vessels at the quay during interval l, there are nl vessel vertices and nl + 1 parking vertices.

Hence, the total number of vertices in layer l is 2nl + 1 and a vertex with an even index (i.e. 2, 4, . . . , 2nl)

correspond to a vessel vertex with a crane demand, while those with an odd index (i.e. 1, 3, . . . , 2nl + 1) represent

parking vertices with finite capacities.

The network of Figure 2.2 is incomplete for the MCNFP formulation. As can be easily observed, the total

demand is not equal to the total supply. Besides, the odd vertices are capacitated and they have to be appropriately

presented. For this purpose, except the super source s and super sink t, we replace each vertex by two vertices

connected with an arc, which is a known transformation used for capacitated vertices. As a result, vessel vertices,

which are originally transshipment sinks, are replaced with two pure transshipment vertices. Similarly, parking

vertices, which are originally capacitated, are replaced with two uncapacitated pure transshipment vertices. The

details of the transformation can be found in the work by [21]. The flows on the arcs of this network correspond to

crane relocations or movements from parking areas to vessels, from vessels to vessels (this includes the case where

a crane continues serving the same vessel or starts serving a new vessel without an idle period), from vessels to

3

s

7

t

7 - 7

6

5

4

3

2

1

4

2

1

3

5

3

2

1

-2

-3

-2

-4

-3

-4

Figure 2.2: A layered network describing the situation given in Figure 2.1

parking areas in each time interval. The costs associated with these relocations are the unit flow costs.

CSP becomes an ordinary minimum cost flow problem (MCFP) on the described layered network if crane

crossing is allowed. Unfortunately, this is not possible in reality; quay cranes are restricted to move on a rail and

thus the relocation paths cannot cross. In other words, it is not enough to solve the MCFP on the described layered

network to determine an optimal crane schedule for the example of Figure 2.1, since, for example, an optimal

solution can include flows on arcs (2, 4) and (4, 2) between the second and third layers depicted in Figure 2.2. As

a consequence, it is possible to say that CSP is in fact equivalent to a MCFP with additional spatial constraints

allowing only noncrossing arcs to have positive flow values in an optimal solution, which makes it a particular

subclass of MCNFP.

MCNFP is a generalization of the CSP where we consider a flow problem with suppliers and customers located

on a line. The commodity flow is realized by means of vehicles, which are restricted to move along a single track

lane, and hence cannot pass each other as a spatial restriction. Besides, suppliers and customers have time varying

operating characteristics. At a given time, some of them can leave and/or new ones can arrive, and can change

their supplies/demands. The purpose is to determine an optimal commodity flow schedule between them so that,

the total distribution cost is minimized. We will consider this generalization in the rest of this work.

3. Notation and terminology

Let N = (V(N), A(N)) be a layered network consisting of L layers defined by the sets V(N) of vertices and

A(N) of arcs. We define Vl(N) as the set of vertices of layer l and nl its cardinality (i.e. nl = |Vl(N)|, l = 1, 2, . . . , L),

4

and assume that V1(N) = {s}, VL(N) = {t}, V(N) = ∪L
l=1Vl(N), n1 = nL = 1 and n = |V(N)| =

∑L
l=1 nl. s has only

outarcs and t has only inarcs. Any arc (i, j) ∈ A(N) of the network is forward (i.e. tail is closer to s in the number

of arcs). There are neither backward arcs, nor arcs connecting two vertices at the same layer. If we let Al(l+1)(N) be

the set of arcs (i, j) having i ∈ Vl(N) and j ∈ Vl+1(N), then A(N) = ∪L−1
l=1 Al(l+1)(N). We also assume that Al(l+1)(N)

consists of all possible arcs with tail in Vl(N) and heads in Vl+1(N); i.e. Al(l+1)(N) = {(i, j) : i ∈ Vl(N), j ∈ Vl+1(N)}.

We consider a particular embedding of the network for vertex labeling: the vertices are located on the intersection

points of a grid where the vertical lines represent the layers and numbered from 1 to nl at layer l starting from the

bottom to the top. As a consequence, if two arcs (i1, j1), (i2, j2) ∈ Al(l+1)(N) cross, then i1 > i2 and j1 < j2 and vice

versa; they form a crossing. Observe that arcs (s, j) ∈ A12(N) as well as arcs (i, t) ∈ A(L−1)L(N) are noncrossing.

Any pair of paths with at least two distinct arcs that cross each other are said to be crossing. Notice that crossing

paths are not necessarily arc or vertex disjoint. Any disjoint pair of paths may cross, and any two noncrossing

paths may share arcs or vertices. The described layered network structure is illustrated in Figure 3.1.

s

1

2

nl

1

2

nl+1

t

Layer l Layer l+1

i j

Layer 1 Layer 2 Layer L-1 Layer L

Figure 3.1: A layered network with L layers

Each arc (i, j) ∈ A(N) has an associated unit flow cost ci j. We also associate with each arc (i, j) ∈ A(N) a

capacity ui j that denotes the maximum amount of flow allowed on arc (i, j) and a lower bound li j that denotes the

minimum amount that must flow on arc (i, j). Each vertex i ∈ V(N) has a number bi representing its supply/demand.

If bi > 0, vertex i is a transshipment supply vertex, if bi < 0 vertex i is a transshipment demand vertex with a

demand of −bi, and if bi = 0 vertex i is a pure transshipment vertex. In other words, vertex set V(N) can be

expressed as V(N) = {s, t} ∪V+(N)∪V−(N)∪V±(N), where V+(N), V−(N) and V±(N) are respectively the subsets

of transshipment supply, transshipment demand, and pure transshipment vertices at layer l. Similarly, for every

level l, Vl(N) = V−l (N) ∪ V+
l (N) ∪ V±l (N), where V+

l (N), V−l (N) and V±l (N) denoting the subsets of transshipment

supply, transshipment demand and pure transshipment vertices of layer l. Clearly, V−1 (N) = V±1 (N) = ∅, V+
1 (N) =

V1(N) = {s}, and V+
L (N) = V±L (N) = ∅, V−L (N) = VL(N) = {t}. We assume that

∑L
l=1

∑
i∈Vl(N) bi = 0, and li j = 0 ≤ ui j

for all (i, j) ∈ A(N) and they satisfy sufficient conditions for the existence of a feasible flow [1].

The function f : A(N) → R is the flow function and associates the variable fi j with arc (i, j). In the ordinary

MCFP the goal is to determine a feasible flow with the minimum total cost. Recall that a flow f is feasible if it

satisfies flow balance equalities at the vertices, lower and upper bounds on the arcs. In the classical theory, network

5

s t

3
2

3

4

1

2
2

1

1

5

3
4

9

4

6 -6

(a) Arc flow

s t

2 2

3
2

2

s t

41

3

3

3

s t

1

4

2

1

1

1

1

(b) Flow paths of an equivalent path and circuit flow

4

2

1

4 4

4

3

4

1

1

1

1

(c) Flow circuits of an equivalent path and circuit flow

Figure 3.2: Two ways to express a flow in a network

flow problems can be equivalently formulated by either defining flows on arcs (i.e. arc flow) or directed paths and

circuits (i.e. path and circuit flow). This is a consequence of the flow decomposition theorem [8], which eventually

enables the (unique) representation of a path and circuit flow as nonnegative arc flow, and (not necessarily unique)

representation of a nonnegative arc flow as a path and circuit flow. An example is provided in Figure 3.2. Notice

that there is always a flow path connecting a source vertex to a sink vertex. In relation to the flow problem we

consider in this work, namely MCNFP, there is no circuit involved in this decomposition because of the (directed)

layered structure of the network, and thus an arc flow can be represented as a path flow, and vice-versa. Figure 3.3

provides an example for this particular situation. Then it is possible to say that an (arc) flow on N = (V(N), A(N))

is noncrossing if and only if all paths of the equivalent path flows are noncrossing, since an arc (i, j) with positive

flow (i.e. fi j > 0) appears on at least one path with positive flow on it, and if it is crossed by another arc, then there

exists another path having positive flow on it with an arc crossing arc (i, j). For example, in Figure 3.3, the path

s → 2 → 1 → t and s → 1 → 2 → t are crossing since they both have positive flows (i.e. 3 and 2 units of flows

respectively) and arcs (2, 1) and (1, 2) are crossing. In short, we can refer to MCNFP as the MCFP with noncrossing

flow paths, and a flow path is a directed path with positive flow on it. For the MCNFP, the directed paths from a

source vertex to a demand vertex with positive flow on its arcs, namely flow paths, must be noncrossing in addition

to flow balance, lower and upper bound restrictions in order to be feasible. We say such flow is feasible and also

noncrossing. In other words, an optimal solution of MCNFP is a noncrossing flow with the minimum total cost,

which is feasible with respect to the mentioned balance, lower and upper bound restrictions. Clearly, MCFP is the

6

relaxation of MCNFP obtained by relaxing spatial compatibility restrictions that do not allow arc crossings on the

flow paths.

s t

7
5

2

1

2

2
2

1

4

3

4

6

11

-2

2

-11

1

-1

(a) Arc flow

s t

1

2

3

3

3
s t

2
2

2
2

2

s t

11

2

2

2

s
t

2

1

2

2

2

s

2

2

t

1

2

t

11

1

1

11

1

(b) An equivalent path flow

Figure 3.3: Two ways to express a flow in a layered network

4. The difficulty of the minimum cost noncrossing flow problem

We first define the decision problems associated with the MCNFP and its variant with restricted total flow costs

for the flow paths (MCNFP-RC) in the following.

MCNFP Instance: A layered network N = (V(N), A(N)) with L ∈ Z+ layers each of which having nl ∈ Z+

vertices l = 1, 2, . . . , L except the first and last ones: they consist of single vertices, namely a source s for layer

l = 1 and a sink t for layer l = L. There is a supply/demand bi ∈ Z+ for every vertex i ∈ V(N) satisfying∑
i∈V+(N) bi =

∑
i∈V−(N) bi. For each arc (i, j) ∈ A(N) there is a capacity ui j ∈ Z+, and unit flow cost ci j ∈ Z+. There

is also a given number C ∈ Z+.

Question: Is there a noncrossing arc flow with total cost less than C?

MCNFP-RC Instance: The same as the MCNFP instance.

Question: Is there a noncrossing arc flow with total cost less than C for every flow path?

Proposition 1. MCNFP-RC is NP-complete for

bil =


B, if l = 1 (i.e. i1 = s)

−B, if l = L (i.e. iL = t)

0, otherwise,

with B ∈ Z+.

Proof. i. MCNFP-RC ∈ NP: If a flow is given, its feasibility can be checked in polynomial time. Checking

the feasibility of the flow with respect to the flow balance constraints and bounds can be done in O(|A(N)|) time.

7

Checking whether there is a crossing requires at most O(|V(N)|2L) time. As a consequence of the flow decompo-

sition theorem [8] given a nonnegative arc flow it is possible to generate all flow paths in O(|V(N)| + |A(N)|) time

and the number of flow paths is O(|V(N)| + |A(N)|) in the worst case. Thus, checking whether or not the total cost

of each path is less than C takes O((|V(N)| + |A(N)|)|A(N)|) = O(|A(N)|2) time. Therefore, there is a polynomial

time certificate checking algorithm and MCNFP-RC ∈ NP.

ii. MCNFP-RC is hard (Reduction from the set partitioning problem): The Set Partitioning Problem (SPP),

which is known to be NP-complete [9], reduces polynomially to MCNFP-RC. The SPP deals with the following

question: Given a set S of V elements with values sv ∈ Z+, v = 1, 2, . . . ,V and
∑

v∈S sv = D, is there a subset

S ′ ⊂ S such that
∑

v∈S ′ sv =
∑

v∈S \S ′ sv = D
2 ?

An instance of MCNFP-RC corresponding to an arbitrary SPP instance can be the complete layered network

N = (V(N), A(N)) with

a. L = V + 3 layers,

b. nl = 2, l = 2, 3, . . . , L − 1; n1 = nL = 1 vertices at each layer having a supply/demand

bil =


2, if l = 1 (i.e. i1 = s)

−2, if l = L (i.e. iL = t)

0, otherwise

c. C = D + (V + 1),

d. unit flow cost

cilil+1 =



D
2 , if l = 1; il+1 = 1, 2

1, if l = L − 1; iL−1 = 1, 2

1, if l = 2, 3, . . . , L − 1; il = 1, il+1 = 2

1, if l = 2, 3, . . . , L − 1; il = 2, il+1 = 1

sl−1 + 1, if l = 2, 3, . . . , L − 1; il = il+1 = 1

sl−1 + 1, if l = 2, 3, . . . , L − 1; il = il+1 = 2

e. lower bounds lilil+1 = 0 and capacities

uilil+1 =


1, if l = 2, 3, . . . , L − 1; il = 1, il+1 = 2

1, if l = 2, 3, . . . , L − 1; il = 2, il+1 = 1

uilil+1 ∈ Z+, otherwise,

Figure 4.1 illustrates the network obtained after this transformation for S = {s1, s2, s3}, V = 3, S ′ = {s1, s3},

L = 3 + 3 = 6. The number on the arcs are the unit costs. For vertex numbering we use the previously mentioned

convention. Two noncrossing flow paths satisfying the total flow cost restriction C = D + 4 are presented using

dashed arcs. Observe that the paths have unit flow on them, satisfy balance equalities, lower bound and capacity

restrictions, and cost restrictions. Furthermore, they are noncrossing. The first of the two paths presents subset S ′

(path 1 → 2 → 1 → 1 → 2 → 1) and the second one the subset S \S ′ (path 1 → 1 → 1 → 2 → 2 → 1). They

8

1 1 1

2

l = 1 l = 2 l = 3

s t

2

1

l = 4

1

l = 5

2

l = 6

1

2

 1

 1
 1

 1 s
2
+1

 s
1
+1

 D/2

 D/2

 1

 1
 1

 1

 s
3
+1

 s
3
+1

 s
2
+1

 s
1
+1

-2 2

Figure 4.1: Noncrossing paths corresponding to an SPP instance

are not necessarily disjoint; arc (2, 1) between layers 5 and 6 is traversed by both paths. The noncrossing flow path

representation of sets S ′ and S is not unique. They can be represented using two other paths as well. For example

path 1 → 2 → 2 → 1 → 1 → 1 for S ′ and path 1 → 1 → 2 → 2 → 1 → 1 for S \S ′. Notice that, this time arc

(1, 1) between layer 5 and 6 is on both paths. What must be done now is to show that S has a subset S ′ such that∑
v∈S ′ sv =

∑
v∈S \S ′ sv = D

2 if and only if there is a feasible flow with noncrossing flow paths each having at most

C = D + (V + 1) total flow cost.

First, suppose that S has a subset S ′ such that
∑

v∈S ′ sv =
∑

v∈S \S ′ sv = D
2 . Then, it is possible to generalize

the path structure of Figure 4.1 so that the first path includes the elements of S ′ and the second path the elements

of S \S ′. As can be noticed, these flow paths are noncrossing, satisfy flow balance equalities, lower bounds and

capacity restrictions, and each has a total flow cost D + (V + 1) (i.e. D
2 +

∑
v∈S ′ sv + (V + 1) = D + (V + 1) =

D
2 +

∑
v∈S \S ′ sv + (V + 1)). Thus, if the set S has a subset S ′ such that

∑
v∈S ′ sv =

∑
v∈S/S ′ sv = D

2 , it is possible to

construct two noncrossing flow paths each with a total flow cost equal to D + (V + 1).

Conversely, suppose that we are given a flow feasible with respect to flow balance equalities, lower bounds,

capacity restrictions and having only noncrossing flow paths each with a cost less than D + (V + 1). First of all for

the described MCNFP-RC instance there can be at most two s, t-flow paths since exactly two units of flow has to

be sent out of source s. Single s, t-flow path (with two units of flow on it) is not possible because the total cost of

the one with the smallest total cost is D + 2(V + 1), which is larger than the restriction D + (V + 1). Hence, two

distinct flow paths have to start at source s. Besides, they must satisfy the cost restrictions (i.e. each has a total

cost of at most D + (V + 1)).

Consider the arcs (il, il+1) such that il = il+1 = 1, 2 for l = 2, 3, . . . , L − 1. This is the pair of arcs with costs

sv + 1, v ∈ S . Then, at least one of these two arcs il = il+1 = 1, 2 must appear on one of these two paths for each

l = 2, 3, . . . , L − 1. Otherwise, there is a crossing because of the network structure and unit upper bounds on arcs

(il, il+1) with il = 1 and il+1 = 2, and il = 2 and il+1 = 1 for l = 2, 3, . . . , L − 1 (i.e. in case there is one which is

missing on both paths) or one of the paths has cost larger than D + (V + 1) (i.e. one of them can be traversed by

both paths), which is a contradiction. In short, there are two flow paths each having unit flow on it and partitioning

the arcs with costs sv + 1 v ∈ S (i.e. these arcs appear exactly on one of them) and thus the sum of the total costs

is equal to 2 D
2 +

∑
v∈S sv + 2(V + 1) = 2(D + (V + 1)). This implies that each flow path satisfies fully its total cost

restriction D + (V + 1), since each has a total flow cost less than D + (V + 1) with grand total exactly equal to

2(D + (V + 1)). Finally, one of the flow paths cannot include all of them (i.e. the set S entirely) because this results

in a total cost of D
2 +

∑
v∈S sv +(V +1) = 3

2 D+(V +1) > D+(V +1). Let S be the set of these arcs and S ′ be its subset

included in the first path. Then, other path would traverse the arcs in S ′/S . Recall that each one of these paths has

9

total cost D + (V + 2). Therefore, D
2 +

∑
v∈S ′ sv + (V + 1) = D + (V + 1) and D

2 +
∑

v∈S \S ′ sv + (V + 1) = D + (V + 1),

which implies that
∑

v∈S ′ sv =
∑

v∈S \S ′ sv = D − D
2 = D

2 . This transformation can be done in O(V) time.

Proposition 2. MCNFP is NP-complete when

bil =


B′, if l = 1 (i.e. i1 = s)

−B′, if l = L (i.e. iL = t)

0, otherwise,

with B′ ∈ Z+.

Proof. i. MCNFP ∈ NP: First of all any certificate of MCNFP can be checked in polynomial time similar to

MCNFP-RC. Hence, MCNFP ∈ NP.

ii. MCNFP is hard (Reduction from MCNFP-RC): Consider any arbitrary instance of MCNFP-RC with unit

costs ci j ∈ Z+, (i, j) ∈ A(N), supply/demand bi ∈ Z+, i ∈ V(N) and capacities ui j ∈ Z+, (i, j) ∈ A(N) as assumed in

the assertion, and cost restrictions D ∈ Z+ for the flow paths. To generate a particular MCNFP instance we keep

the same layered network structure of a MCNFP-RC instance, but modify unit costs, arc capacities, supplies and

demands.

We choose

b′il =


B′, if l = 1 (i.e. i1 = s)

−B′, if l = L (i.e. iL = t)

0, otherwise,

with

B′ = B +

⌈
1

(L − 1)

⌉
= B + 1.

We set the unit costs all equal to λ′, arc capacities to u′i j = ui j + 1, and the restriction C = λ′(L−1)B′. Here λ′ ∈ Z+

is larger enough than BD.

First suppose that MCNFP-RC has a noncrossing flow f ∈ Q|A(N)|
+ satisfying flow balance, arc capacity con-

straints and cost restrictions on the flow paths Pk = (V(Pk), A(Pk)) k = 1, 2, . . . ,K. Here, K is the number of

noncrossing flow paths and K ≤ |V(N)| + |A(N)| as a conseqeunce of the flow decomposition theorem [8]. How-

ever, for this particular case, due to the integrality of the flow and network structure K ≤ B.

Since each flow path satisfies the cost restrictions,

∑
(i, j)∈A(Pk)

ci j fk ≤ D k = 1, 2, . . . ,K,

and consequently
K∑

k=1

∑
(i, j)∈A(Pk)

ci j fk ≤ KD.

Here, fk is the amount of positive flow sent through the kth flow path. Then,

∑
(i, j)∈A(N)

ci j fi j ≤ KD (1)

10

follows, since fi j =
∑K

k=1
∑
{Pk :(i, j)∈A(Pk)} fk, where fi j is the flow on arc (i, j).

At this point we have to show the following claim.

Claim 1.
K∑

k=1

∑
(i, j)∈A(Pk)

fk = (L − 1)B

Proof. First of all,
∑K

k=1
∑

(i, j)∈A(Pk) fk =
∑K

k=1 |A(Pk)| fk. because of the special structure of the network N =

(V(N), A(N)) (i.e. layered network with forward arcs) every feasible arc flow can be represented as a path flow

having exactly L− 1 arcs. Besides, each flow path with positive flow on it connects a source vertex to a sink vertex

[8]. Hence,
K∑

k=1

∑
(i, j)∈A(Pk)

fk =

K∑
k=1

|A(Pk)| fk = (L − 1)
K∑

k=1

fk.

In addition, the sum of the flows over the flow paths is equal to the sum of supplies, which is equal to the negative of

the sum of the demands, namely to B. In other words
∑K

k=1 fk =
∑

i∈V+(N) bi = −
∑

i∈V−(N) bi = B, which completes

the proof.

Then, for unit costs c′i j = ci j + λi j with λi j ∈ Z+, λ = max(i, j)∈A(N){λi j} = BD and λ = min(i, j)∈A(N){λi j} the total

flow cost becomes

∑
(i, j)∈A(N)

c′i j fi j =
∑

(i, j)∈A(N)

ci j fi j +
∑

(i, j)∈A(N)

λi j fi j

=

K∑
k=1

∑
(i, j)∈A(Pk)

ci j fk +

K∑
k=1

∑
(i, j)∈A(Pk)

λi j fk

≤ KD + λ

K∑
k=1

∑
(i, j)∈A(Pk)

fk

= KD + λ(L − 1)B

≤ BD + λ(L − 1)B

= λ[(L − 1)B + 1]

= λ(L − 1)
(
B +

1
L − 1

)
≤ λ(L − 1)(B + 1)

= λ(L − 1)B′

≤ λ′(L − 1)B′.

The second term of the fourth expression follows from the second term of the third expression as consequence of

claim 1. The fifth expression follows from the fourth since B ≥ K. We also use the definition λ = BD and the fact

that λ′ ≥ λ. Notice that,

C = λ′(L − 1)B′ = λ′
K∑

k=1

∑
(i, j)∈A(Pk)

f ′k .

In other words this upper bound C is the total cost of an arc flow f′, with path flow f ′k k = 1, 2, . . . ,K on the flow

paths Pk k = 1, 2, . . . ,K, for the same network structure with B′ and u′i j as defined previously, and unit flow costs

set to λ′. Notice that it is possible to obtain f′ by increasing the flow f on one of the flow paths Pk k = 1, 2, . . . ,K,

11

say fp on path Pp by one unit and keeping the remaining ones the same, i.e. by setting f ′p = fp + 1, f ′k = fk

for k , p. This is a feasible solution of the particular MCNFP instance we have created, i.e. a noncrossing flow

feasible with respect to the flow balance equalities and capacity restrictions, with total cost equal to C.

Conversely, suppose that the particular MCNFP instance has a noncrossing flow with total cost not larger than

C. Let P′k = (V(P′k), A(P′k)), k = 1, 2, . . . ,K′ be the corresponding K′ flow paths of a feasible flow f′ of the

particular MCNFP instance, which also satisfies total cost restriction. Let also f ′k k = 1, 2, . . . ,K′ be the path flow

corresponding to these K′flow paths. Hence,

C = λ′(L − 1)B′ = λ′
K′∑

k=1

∑
(i, j)∈A(P′k)

f ′k

≥

K′∑
k=1

∑
(i, j)∈A(P′k)

c′i j f ′k

=
∑

(i, j)∈A(N)

c′i j f ′i j

=
∑

(i, j)∈A(N)

ci j f ′i j +
∑

(i, j)∈A(N)

λi j f ′i j

=

K′∑
k=1

∑
(i, j)∈A(P′k)

ci j f ′k +

K′∑
k=1

∑
(i, j)∈A(P′k)

λi j f ′k

≥

K′∑
k=1

∑
(i, j)∈A(P′k)

ci j fk +

K′∑
k=1

∑
(i, j)∈A(P′k)

λi j f ′k

≥

K′∑
k=1

∑
(i, j)∈A(P′k)

ci j fk + λ

K′∑
k=1

∑
(i, j)∈A(P′k)

f ′k

=

K′∑
k=1

∑
(i, j)∈A(P′k)

ci j fk + λ(L − 1)B′.

The first inequality is a consequence of our selection of λ′. For example setting λ′ = c′ with c′ = max(i, j)∈A(N){c′i j} is

a possibility. The last equality is a consequence of claim 1, since it can be shown that
∑K′

k=1
∑

(i, j)∈A(P′k) f ′k = (L−1)B′

similarly. Hence, we can write

K′∑
k=1

∑
(i, j)∈A(P′k)

ci j fk ≤ C − λ(L − 1)B′ = λ′(L − 1)B′ − λ(L − 1)B′ = (L − 1)B′(λ′ − λ),

which becomes
K′∑

k=1

∑
(i, j)∈A(P′k)

ci j fk ≤ D

after setting

λ = λ′ −

⌊
D

(L − 1)B′

⌋
·

For example for λ′ = c′ and λ = BD it is possible to set

λ = c′ −
⌊

D
(L − 1)B′

⌋
,

12

provided that

c′ ≤ BD +

⌊
D

(L − 1)B′

⌋
in order to have λ ≥ λ, which makes C − λ(L − 1)B′ ≤ D. Also for c′ = dαc + λe with c = max(i, j)∈A(N){ci j},

α =
1

(L − 1)B′
,

and λ = BD we have c ≤ D.

In short, ∑
(i, j)∈A(P′k)

ci j f ′k ≤ D k = 1, 2, . . . ,K′

follows, since ci j ≥ 0 and f ′k > 0 (i, j) ∈ A(P′k), implying
∑

(i, j)∈A(P′k) ci j f ′k ≥ 0, k = 1, 2, . . . ,K′. Therefore, it is

possible to obtain a feasible solution f of MCNFP-RC using the flow paths of the noncrossing arc flow f′ by simply

decreasing the flow on one of the flow paths P′k k = 1, 2, . . . ,K′, say f ′p on path P′p by one unit and keeping the

remaining ones the same, i.e. by setting fp = f ′p − 1, fk = f ′k for k , p. Finally, this transformation can be done in∑L−1
l=1 (nlnl+1) +

∑L
l=1 nl = O(|V(N)|2 + |V(N)|), which is polynomial and the proof is complete.

The next two propositions follow directly form Proposition 1 and Proposition 2.

Proposition 3. MCNFP-RC is NP-complete for general demand supply/demand, i.e. bi ∈ Z+ for every vertex

i ∈ V(N) satisfying
∑

i∈V+(N) bi =
∑

i∈V−(N) bi.

Proof. In Proposition 1 we have shown that a restriction of MCNFP-RC is NP-complete. It is obtained by setting

bil =


B, if l = 1 (i.e. i1 = s)

−B, if l = L (i.e. iL = t)

0, otherwise,

with B ∈ Z+.

Proposition 4. MCNFP is NP-complete for general demand supply/demand, i.e. b′i ∈ Z+ for every vertex i ∈ V(N)

satisfying
∑

i∈V+(N) b′i =
∑

i∈V−(N) b′i .

Proof. In Proposition 2 we have shown that a restriction of MCNFP is NP-complete. It is obtained by setting

b′il =


B′, if l = 1 (i.e. i1 = s)

−B′, if l = L (i.e. iL = t)

0, otherwise,

with B′ ∈ Z+.

5. Formulations

It is possible to formulate MCNFP as a mixed-integer linear programming problem (MILP) by allowing only

noncrossing arcs to have positive flows. In other words, for each arc (i, j) ∈ Al(l+1)(N), if there is a positive flow

13

on (i, j), i.e. if fi j > 0, then fpq = 0 for all (p, q) ∈ Al(l+1)(N) with either 1 ≤ p ≤ i − 1 and j + 1 ≤ q ≤ nl+1, or

i + 1 ≤ p ≤ nl and 1 ≤ q ≤ j − 1. Obviously, fi j = 0 if fpq > 0 for one of such (p, q) ∈ Al(l+1)(N). In addition to

the flow variables fi j we introduce binary design variables xi j ∈ Al(l+1)(N) to model this. xi j is set to 1 if fi j > 0.

Besides, if xi j = 1 then fpq = 0 for all (p, q) such that either 1 ≤ p ≤ i − 1 and j + 1 ≤ q ≤ nl+1, or i + 1 ≤ p ≤ nl

and 1 ≤ q ≤ j − 1. This allows us to define a list S i j of arcs incompatible (i.e. crossing) with arc (i, j) ∈ Al(l+1)(N)

as

S i j = {(p, q) ∈ Al(l+1)(N) : 1 ≤ p ≤ i − 1, j + 1 ≤ q ≤ nl+1; i + 1 ≤ p ≤ nl, 1 ≤ q ≤ j − 1} l = 1, 2, . . . , L. (2)

Then, we obtain the following MILP fomulation for MCNFP.

MCNFP: min
∑

(s, j)∈A12(N)

cs j fs j +

L−2∑
l=2

∑
(i, j)∈Al(l+1)(N)

ci j fi j +
∑

(i,t)∈AL−1L(N)

cit fit (3)

s.t.
∑

(s, j)∈A12(N)

fs, j = bs (4)∑
(i, j)∈Al(l+1)(N)

fi j −
∑

(j,i)∈A(l−1)l(N)

f ji = bi i ∈ Vl(N); l = 2, 3, . . . , L − 1 (5)

−
∑

(i,t)∈A(L−1)L(N)

fit = bt (6)

0 ≤ fi j ≤ ui jxi j (i, j) ∈ Al(l+1)(N); l = 1, 2, . . . , L − 1 (7)

xpq + xi j ≤ 1 (p, q) ∈ S i j; (i, j) ∈ Al(l+1)(N); l = 1, 2, . . . , L − 1 (8)

xi j ∈ {0, 1} (i, j) ∈ Al(l+1)(N); l = 1, 2, . . . , L − 1. (9)

Without constraints (8) and (9), and with ui j instead of ui jxi j in constraints (7) the formulation is the one of

ordinary minimum cost flow problem on the layered network illustrated in Figure 3.1. We call constraints (8) and

(9) compatibility constraints; flow can only be sent through only noncrossing arcs.

Another equivalent formulation of MCNFP is obtained by replacing inequalities (8) with

∑
(p,q)∈S i j

xpq + |S i j|xi j ≤ |S i j| (i, j) ∈ Al(l+1)(N); l = 1, 2, . . . , L − 1. (10)

As can be noticed, this formulation gives a weaker LP bound since inequalities (10) are obtained by aggregating

inequalities (8) over the list S i j for each arc (i, j).

6. A polynomially solvable special case

Let us assume that the network N = (V(N), A(N)) is not only layered but also complete (i.e. all arcs between

the vertices of layer l and l + 1 exist) and the unit costs are nonnegative, symmetric and additive for i , j, and

14

ci j = 0 for i = j. Namely,

cii = 0, (11)

ci j ≥ 0, (12)

ci j = c ji, (13)

ci j =

j−1∑
k=i

ck(k+1). (14)

Notice that (14) is valid if i < j. Otherwise we can interchange the limits of the summation and apply (13) as a

consequence of symmetry.

Recall that for a pair of crossing arcs (i1, j1) and (i2, j2), i1 < i2 and j2 < j1. Besides, there are six possible

orderings of these four vertices according to the convention we use for numbering the vertices (i.e. vertex labels

denote their orders from bottom in their layers):

i. i1 < i2 ≤ j2 < j1 iii. i1 ≤ j2 < j1 ≤ i2 v. j2 ≤ i1 < i2 ≤ j1

ii. j2 < j1 ≤ i1 < i2 iv. j2 ≤ i1 < j1 ≤ i2 vi. i1 ≤ j2 < i2 ≤ j1.

These six cases are illustrated in Figure 6.1 with six snapshots from two consecutive layers of a layered network.

Horizontal lines represent the inequalities of the orderings. Strict inequalities are reflected with additional nodes

below or underneath of the tail/head of the crossing arcs. Solid arcs represent the crossings, whereas dashed ones

represent their compatible equivalents. Observe that, if the flow conservation is satisfied and there is one unit of

flow on each one of the crossing (solid) arcs before the correction, there must be one unit of flow on the new

(dashed) arcs and zero unit of flow on the crossing arcs in order to correct the crossing and guarantee flow balance

equations at the same time. The next lemma shows such change does not increase total flow cost.

Proposition 5. The unit correction cost is nonincreasing under assumptions (11) – (14) of the unit flow costs.

Proof. We will evaluate the cost of one unit of flow on arcs (i1, j1) and (i2, j2) (i.e. fi1 j1 = fi2 j2 = 1 and fi2 j1 =

fi1 j2 = 0) with the cost of one unit of flow on arcs (i2, j1) and (i1, j2) (i.e. fi1 j1 = fi2 j2 = 0 and fi2 j1 = fi1 j2 = 1),

namely ci1 j1 + ci2 j2 with ci2 j1 + ci1 j2 for the six possible crossings.

i. i1 < i2 ≤ j2 < j1: ci1 j1 + ci2 j2 = ci1i2 + ci2 j2 + c j2 j1 + ci2 j2

= ci2 j1 + ci1 j2

ii. j2 < j1 ≤ i1 < i2: ci1 j1 + ci2 j2 = ci2i1 + ci1 j1 + c j1 j2 + ci1 j1

= ci2 j1 + ci1 j2

iii. i1 ≤ j2 < j1 ≤ i2: ci1 j1 + ci2 j2 = ci1 j2 + c j2 j1 + ci2 j1 + c j1 j2

= ci2 j1 + ci1 j2 + 2c j1 j2

iv. j2 ≤ i1 < j1 ≤ i2 : ci1 j1 + ci2 j2 = ci1 j2 + c j2 j1 + ci2 j1 + c j1 j2

= ci2 j1 + ci1 j2 + 2c j1 j2

v. j2 ≤ i1 < i2 ≤ j1 : ci1 j1 + ci2 j2 = ci1i2 + ci2 j1 + ci2i1 + ci1 j2

= ci2 j1 + ci1 j2 + 2ci1i2

vi. i1 ≤ j2 < i2 ≤ j1: ci1 j1 + ci2 j2 = ci1 j2 + c j2i2 + ci2 j1 + ci2 j2

= ci2 j1 + ci1 j2 + 2ci2 j2 .

15

Layer l Layer l+1

j2

j1

i2

i1

i. i1 < i2 ≤ j2 < j1

j2

j1

i2

i1

ii. j2 < j1 ≤ i1 < i2

Layer l Layer l+1

j2

j1

i2

i1

iii. i1 ≤ j2 < j1 ≤ i2

Layer l Layer l+1

j2

j1

i2

i1

iv. j2 ≤ i1 < j1 ≤ i2

Layer l Layer l+1

j2

j1

i2

i1

v. j2 ≤ i1 < i2 ≤ j1

Layer l Layer l+1

j2

j1

i2

i1

vi. i1 ≤ j2 < i2 ≤ j1

Layer l Layer l+1

Figure 6.1: Six possible crossings

Then, as a consequence of Proposition 5, it is possible to show that correcting the crossings in an optimal

alternate solution of MCFP results in an optimal noncrossing flow.

Proposition 6. If the unit costs satisfy assumptions (11) – (14), then the MCFP has an optimal solution with no

crossing arcs with positive flows.

16

Proof. Consider an optimal solution f∗ of the MCFP and crossing arcs (i1, j1) and (i2, j2), which means f ∗i1, j1 > 0

and f ∗i2, j2 > 0, and either i1 < i2 and j2 < j1 or i2 < i1 and j1 < j2. Without loss of generality we can assume

that i1 < i2 and j2 < j1. It is possible to correct the crossing by a simple operation and adjust the flows on the

corresponding arcs without harming its feasibility. If f ∗i1 j1
≥ f ∗i2 j2

> 0, then add new arcs (i2, j1) and (i1, j2) with

flows f ∗i2 j2
, adjust the flow on arc (i1, j2) by subtracting f ∗i1 j1

, and finally delete arc (i2, j1). However, if f ∗i2 j2
> f ∗i1 j1

,

then operate similarly by adding new arcs (i2 j1) and (i1 j2) with flows f ∗i1, j1 , adjust the flow on arc (i2, j1) by

subtracting fi1 j1 , and finally delete arc (i1 j2).

These operations are illustrated in Figure 6.2. The crossing represented by solid arcs is corrected by replacing

them with dashed arcs. Observe that flow balance is preserved at vertices i1, i2, j1, j2. Consequently, only cases (i)

and (ii) or cases (iv)-(vi) respectively with c j1 j2 = 0, ci1 j1 = 0, ci1i2 = 0 and ci2 j2 = 0 can occur in an optimal solution

of the MCFP, since otherwise it is possible to create a new feasible flow with one fewer crossing and smaller total

flow cost after implementing the above operations, which contradicts the optimality of flow f∗. Therefore, the

elimination of the crossings in an optimal solution of the MCFP results in an alternative optimal solution with no

crossings.

i2 j1
fi

2
j
2

Layer l Layer l+1

i1 j2

(f i 1
j 1

 –
 f i 2

j 2
)

 fi
1
j
1
 ≥ fi

2
j
2

(a)

f
i
2 j

2

f i 1
j 1

fi
2
j
2

i2 j1
fi

1
j
1

Layer l Layer l+1

i1 j2

(f
i

2 j
2 - f

i
1 j

1)

 fi
2
j
2
 > fi

1
j
1

(b)

f
i

2 j
2

f i 1
j 1

fi
1
j
1

Figure 6.2: Two possible corrections

Notice that Proposition 6 has an implicit assumption as well: the two correction operations are implementable,

which may not be possible if (i1, j1) or (i2, j2) are missing in the network, and/or there is not enough residual

capacity on both of them. However, in case the complete layered network is uncapacitated (i.e. ui j = ∞, (i, j) ∈

A(N)) they can be applied to correct the crossings.

Propositon 5 and Proposition 6 have also some implications when arcs have finite capacities. This is stated

with the following two corollaries.

Corollary 1. For positive (i.e. ci j > 0, i , j, (i, j) ∈ A(N)), symmetric and additive costs, and ci j = 0 for i = j, and

finite upper bounds, if an optimal solution of the MCFP has crossings of one of the types (iii) - (vi), then f ∗i2 j1
= ui2 j1

and f ∗i1 j2
= ui1 j2 .

Proof. Assume that an optimal solution f∗ of the MCFP has a crossing consisting of arcs (i1, j1) and (i2, j2).

As a consequence of the positivity assumption of unit costs and unit cost comparisons given in Proposition 5,

17

ci1 j1 + ci2 j2 > ci1 j2 + ci2 j1 , and as a consequence of correction operations given in Proposition 6, the new flow is

still feasible since this operation conserves flow balance at vertices i1, i2, j1, j2 and has smaller total cost, which

contradicts the optimality of f∗. Hence, this operation must have been blocked, which is possible only if f ∗i2 j1
= ui2 j1

and f ∗i1 j2
= ui1 j2 .

Corollary 2. For positive (i.e. ci j > 0, i , j, (i, j) ∈ A(N)), symmetric and additive costs, and ci j = 0, for i = j,

and finite upper bounds the crossing of arcs (i1, j1) and (i2, j2) can be corrected by one of the two operations given

in Proposition 6 if f ∗i2 j2
< min{ui1 j2 , ui2 j1 } for f ∗i1 j1

≥ f ∗i2 j2
or if f ∗i1 j1

< min{ui1 j2 , ui2 j1 } for f ∗i2 j2
> f ∗i1 j1

.

Proof. Directly follows from the definition of the correction operations.

7. Reducing the number of crossings

An optimal solution of the MCFP relaxation defined by (3)–(6), which is obtained after dropping compatibility

constraints (7) and (8), and replacing ui jxi j with ui j in (9), can have crossings. The efficiency of any exact solution

algorithm can be improved if some of the potential crossings can be detected and deleted in advance. The following

proposition and its corollary provide a tool in this direction.

Proposition 7. An arc (p, q) ∈ Al(l+1)(N) is crossed by an arc

i. (r, s) ∈ Al(l+1)(N) with r > p and s < q in an optimal solution f∗ of the MCFP if

−
∑

{ j∈Vl(N): j≤p}

∑
{(j,i)∈Al(l+1)(N):i<q}

f ∗ji >
∑

{i∈V−l+1(N):i<q}

bi

ii. (r, s) ∈ Al(l+1)(N) with r < p and s > q in an optimal solution f∗ of the MCFP if

−
∑

{ j∈Vl(N): j≥p}

∑
{(j,i)∈Al(l+1)(N):i>q}

f ∗ji >
∑

{i∈V−l+1(N):i>q}

bi

Proof. We only show part (i), since the proof of part (ii) is similar. Consider the flow balance equation of the

vertices of layer l + 1 with demand bi (i.e. the set V−l+1(N)) and and add them side by side for vertices i < q to

obtain ∑
{i∈V−l+1(N):i<q}

bi =
∑

{i∈V−l+1(N):i<q}

∑
(i, j)∈Al+1l+2(N)

f ∗i j −
∑

i∈V−l+1(N):i<q

∑
(j,i)∈Al(l+1)(N)

f ∗ji.

The second summation on the right hand side can be split into two for arcs (j, i) ∈ Al(l+1)(N) respectively for j > p

and j ≤ p which results in

∑
{i∈V−l+1(N):i<q}

bi =
∑

{i∈V−l+1(N):i<q}

∑
(i, j)∈Al+1l+2(N)

f ∗i j −
∑

{i∈V−l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N): j≤p}

f ∗ji −
∑

{i∈V−l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N): j>p}

f ∗ji.

Notice that the first two terms on the right hand side represent the difference between the total outflow from the

demand vertices of layer l + 1 which are below vertex q, and the total inflow to the same vertices from the vertices

18

of layer l which are below vertex p including p as well. Then,

∑
{i∈V−l+1(N):i<q}

bi ≥ −
∑

{i∈V−l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N): j≤p}

f ∗ji −
∑

{i∈V−l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N): j>p}

f ∗ji

≥ −
∑

{ j∈Vl(N):i<q}

∑
{(j,i)∈Al(l+1)(N): j≤p}

f ∗ji −
∑

{i∈V−l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N): j>p}

f ∗ji

follows since f ∗i j ≥ 0 for all (i, j) ∈ Al+1l+2(N), and

∑
{ j∈Vl(N):i<q}

∑
{(j,i)∈Al(l+1)(N): j≤p}

f ∗ji ≥
∑

{i∈V−l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N): j≤p}

f ∗ji.

Therefore, if the condition of the assertion is true, then

0 >
∑

{i∈V−l+1(N):i<q}

bi +
∑

{ j∈Vl(N):i<q}

∑
{(j,i)∈Al(l+1)(N): j≤p}

f ∗ji ≥ −
∑

{i∈V−l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N): j>p}

f ∗ji

and

0 <
∑

{i∈V−l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N): j>p}

f ∗ji

follows consequently. Hence, there must exist an arc (r, s) ∈ {(j, i) ∈ Al(l+1)(N) : j > p, i < q} with frs > 0.

Corollary 3. An arc (p, q) ∈ Al(l+1)(N) with positive flow cannot exist in an optimal solution of MCNFP if one of

the following conditions holds.

i.

−
∑

{ j∈Vl(N): j≤p}

∑
{(j,i)∈Al(l+1)(N):i<q,i∈V−l+1(N)}

min{u ji,−bi} >
∑

{i∈V−l+1(N):i<q}

bi

ii.

−
∑

{ j∈Vl(N): j≥p}

∑
{(j,i)∈Al(l+1)(N):i>q,i∈V−l+1(N)}

min{u ji,−bi} >
∑

{i∈V−l+1(N):i>q}

bi

Proof. Directly follows from Proposition 7 as a consequence of the fact that 0 ≤ f ∗ji ≤ min{u ji,−bi} for (j, i) ∈

Al(l+1)(N), i ∈ V−l+1(N).

First of all, notice that this rule is related to the satisfaction of the total demand of a subset of vertices in

Vl+1(N). Besides, although it provides a sufficient condition for an arc to be crossed, all possible crossings cannot

be prevented in an optimal solution of the MCFP relaxation by the condition described in Corollary 3. Nevertheless,

it can reduce the number of crossings by deleting arcs in the network. An arc (p, q) ∈ Al(l+1)(N) is crossed by

another arc (i, j) ∈ Al(l+1)(N) with p < i ≤ nl and 1 ≤ j < q ≤ nl+1 if the total demand associated with vertices

1 ≤ j < q cannot be satisfied by the total inflow to them from vertices 1 ≤ i ≤ p as stated in case (i) of Corollary

3. Case (ii) deals with the situation that (p, q) is crossed by an arc (i, j) with 1 ≤ i < p and 1 ≤ j < q ≤ nl+1.

It is also possible to state supply versions of Proposition 7 and Corollary 3. We give their statement in the

following without proof for the sake of completeness, since their proofs are very similar and can be done by

rewording the arguments for the supplies instead of the demands.

Proposition 8. An arc (p, q) ∈ Al(l+1)(N) is crossed by an arc

19

i. (r, s) ∈ Al(l+1)(N) with r > p and s < q in an optimal solution f∗ of the MCFP if

∑
{i∈Vl+1(N):i≥q}

∑
{(j,i)∈Al(l+1)(N): j>p}

f ∗ji <
∑

{ j∈V+
l (N): j>p}

b j

ii. (r, s) ∈ Al(l+1)(N) with r < p and s > q in an optimal solution f∗ of the MCFP if

∑
{i∈Vl+1(N):i≤q}

∑
{(j,i)∈Al(l+1)(N):k<p}

f ∗ji <
∑

{ j∈V+
l (N): j<p}

b j

Corollary 4. An arc (p, q) ∈ Al(l+1)(N) with positive flow cannot exist in an optimal solution of MCNFP if one of

the following conditions holds.

i. ∑
{i∈Vl+1(N):i≥q}

∑
{(j,i)∈Al(l+1)(N): j>p, j∈V+

l (N)}

min{u ji, b j} <
∑

{ j∈V+
l (N): j>p}

b j

ii. ∑
{i∈Vl+1(N):i≤q}

∑
{(j,i)∈Al(l+1)(N): j<p, j∈V+

l (N)}

min{u ji, b j} <
∑

{ j∈V+
l (N): j<p}

b j

This time, this rule is related to the satisfaction of the total supply of a subset of vertices in Vl(N). An arc

(p, q) ∈ Al(l+1)(N) is crossed by another arc (i, j) ∈ Al(l+1)(N) with 1 ≤ p < i ≤ nl and 1 ≤ j < q ≤ nl+1 if the total

outflow from vertices 1 ≤ p < i ≤ nl to vertices 1 ≤ q ≤ j ≤ nl+1 as stated as case (i) in Corollary 4. Case (ii) deals

with the situation that (p, q) is crossed by an arc (i, j) with 1 ≤ i < p ≤ nl and 1 ≤ q < j ≤ nl+1.

As a result, the efficiency of an exact solution algorithm may increase because the network size is smaller. The

preprocessing process that Corollary 3 suggests can be stated formally as Algorithm 1 given below. The process

Corollary 4 suggests is very similar and the corresponding algorithm is not included for the sake of brevity.

8. Computational results

We have realized a set of computational experiments on a large set of randomly generated test instances in

order to assess the strength of the relaxations (i.e. LP relaxations of the formulations and MCFP relaxation) and

the value of the preprocessing scheme.

A NETGEN-like [13] instance generator, which exploits the layered structure of the network, has been devel-

oped for generating test instances. After setting the number of layers L and the maximum number of vertices in a

layer nmax, the vertex number of vertices for layers 2, 3, . . . , L − 1 are generated uniformly within [1, nmax]. Layers

1 and L have a single vertex, namely s and t. Arcs are obtained by connecting the vertices of the adjacent layers,

and the crossing ones are determined according to the vertex numbering convention we use. Then, a skeleton,

which guarantees a feasible noncrossing flow, is constructed and its arcs are assigned large enough unit costs in

order to prevent them from participating in an optimal solution.

33 instances are generated with 10, 11, 12,. . . , 20 layers; three instances for each value. nmax is set to 15,

16, 17, 18, 19, and 20 arbitrarily, and exactly one instance is generated for each combination. The properties of

the test instances are reported in Table 1. The first column includes the instance numbers. Columns 2-5 list the

basic structural properties; these are the number of layers, maximum number of vertices at each layer, number of

20

Algorithm 1 Preprocessing for MCNFP
Input: A layered network N = (V(N), A(N)), arc capacities u and unit flow costs c;
Output: A preprocessed network;

1:begin
2: for l = 2, 3, . . . , L − 2 do
3: for all arc (p, q) ∈ Al(l+1)(N) such that p ≤ nl − 1, q ≥ 2 do
4: D = 0, C = 0
5: for j = 1, 2, . . . , q − 1 do
6: if b j < 0 then
7: D← D + b j

8: for all arc (i, j) ∈ Al(l+1)(N) do
9: if i ≤ p then

10: C ← C + min{ui j,−b j}

11: end if
12: end for
13: end if
14: end for
15: end for
16: if C < −D then
17: Delete (p, q)
18: else
19: D = 0, C = 0
20: for j = q + 1, q + 2, . . . , nl+1 do
21: if b j < 0 then
22: D← D + b j

23: for all arc (i, j) ∈ Al(l+1)(N) do
24: if i ≥ p then
25: C ← C + min{ui j,−b j}

26: end if
27: end for
28: end if
29: end for
30: if C < −D then
31: Delete (p, q)
32: end if
33: end if
34: end for
35:end

21

Table 1: Properties of the generated test instances

Instance
Number L nmax |V(N)| |A(N)| Crossing Arc

Pair Number
Max. Num.

Arcs
Arc Density

(%)
Max. Num.

Pairs

Crossing Arc
Pair Density

(%)
1 10 15 71 617 15,725 4,970 12.41 190,036 8.27
2 10 18 100 1,024 39,942 9,900 10.34 523,776 7.63
3 10 20 83 744 23,782 6,806 10.93 276,396 8.60
4 11 15 90 750 17,734 8,010 9.36 280,875 6.31
5 11 16 96 863 24,081 9,120 9.46 371,953 6.47
6 11 17 91 776 27,704 8,190 9.47 300,700 9.21
7 12 16 99 879 28,706 9,702 9.06 385,881 7.44
8 12 17 103 978 28,867 10,506 9.31 477,753 6.04
9 12 18 107 1,009 37,796 11,342 8.90 508,536 7.43

10 13 15 111 856 17,469 12,210 7.01 365,940 4.77
11 13 17 110 899 24,540 11,990 7.50 403,651 6.08
12 13 19 98 767 19,561 9,506 8.07 293,761 6.66
13 14 16 95 669 12,412 8,930 7.49 223,446 5.55
14 14 18 116 959 21,493 13,340 7.19 459,361 4.68
15 14 20 129 1,278 52,662 16,512 7.74 816,003 6.45
16 15 15 105 774 16,566 10,920 7.09 299,151 5.54
17 15 16 118 1,004 24,251 13,806 7.27 503,506 4.82
18 15 17 144 1,295 46,373 20,592 6.29 837,865 5.53
19 16 15 110 836 14,628 11,990 6.97 349,030 4.19
20 16 16 122 794 11,529 14,762 5.38 314,821 3.66
21 16 20 125 774 13,259 15,500 4.99 299,151 4.43
22 17 15 92 557 9,973 8,372 6.65 154,846 6.44
23 17 16 119 904 18,306 14,042 6.44 408,156 4.49
24 17 17 117 847 15,389 13,572 6.24 358,281 4.30
25 18 17 133 943 18,467 17,556 5.37 444,153 4.16
26 18 18 133 844 10,720 17,556 4.81 355,746 3.01
27 18 19 143 1,085 25,747 20,306 5.34 588,070 4.38
28 19 15 145 1,131 27,812 20,880 5.42 639,015 4.35
29 19 16 130 981 19,430 16,770 5.85 480,690 4.04
30 19 20 189 1,620 44,161 35,532 4.56 1,311,390 3.37
31 20 15 125 872 20,522 15,500 5.63 379,756 5.40
32 20 16 148 939 14,379 21,756 4.32 440,391 3.27
33 20 17 135 951 13,160 20,180 4.71 451,725 2.91

vertices and arcs. Column 6 includes the number of crossing arc pairs. The values given in columns 7 and 9 are the

maximum possible number of arcs and arc pairs in the network respectively. They are equal to |V(N)|(|V(N)| − 1)

and |A(N)|(|A(N)| − 1)/2. They are used to calculate the arc and crossing arc pair densities reported in columns 8

and 10, which are obtained by dividing the elements of column 4 by the elements of column 7 and the elements of

column 5 by the elements of column 9.

The computations are carried out on workstations with Intel Xeon CPU E5-2687W0 3.10 GHz processor and

64.0 GB RAM, and operating within Microsoft Windows 7 Professional environment. The programs are coded in

C++. The CPU times and objective values are obtained using CPLEX 12.6 with default options on.

8.1. Formulations and relaxations

We start our experiments with the MILP formulations and their relaxations. Based on the averages listed in the

last row of Table 2, we can say that the second formulation (i.e. (3)-(7), (9), (10)) is the most efficient one in terms

of relaxation, although the first formulation (i.e. (3) - (9)) gives 20.26% higher lower bound. This is probably

because its LP relaxation can be solved faster, which means a faster process of the nodes of the branch-and-bound

tree. The weakest lower bounds belong to the MCFP relaxation. Although their computation requires the solution

of MCFP, it can be done efficiently using one of the known algorithms(e.g. [10]). As a result, a very efficient

branch-and-bound algorithm can be developed by taking advantage of this.

8.2. The effect of preprocessing

In order to judge the effect of the preprocessing, we compare the CPU times of both formulations and relax-

ations with preprocessing. We prefer not to report preprocessing times since it takes less than 0.001 seconds for

22

Table 2: Formulations and relaxations

Instances First Formulation Second Formulation MCFP Relaxation

No. z∗
CPU

Optimum
(sec.)

CPU
Relaxation

(sec.)

Lower
Bound

CPU
Optimum

(sec.)

CPU
Relaxation

(sec.)

Lower
Bound

CPU
Relaxation

(sec.)

Lower
Bound

1 12,525 36.42 0.05 6,356.9 120.12 0.03 4,343.3 0.00 3,732.0
2 27,697 1,644.14 0.36 20,405.1 597.78 0.04 18,617.0 0.01 18,211.0
3 20,930 76.48 0.08 11,767.6 55.63 0.03 9,194.2 0.01 8,749.0
4 36,005 44.85 0.21 13,573.5 38.41 0.05 8,956.4 0.00 7,689.0
5 20,731 179.08 0.08 7,395.7 179.93 0.03 5,147.9 0.00 4,713.0
6 33,793 33.34 0.09 8,867.7 58.77 0.03 6,116.8 0.00 4,997.0
7 19,360 1,497.88 0.07 15,063.6 846.02 0.05 13,591.5 0.00 13,002.0
8 16,783 52.65 0.21 7,413.8 43.55 0.03 6,049.0 0.01 5,847.0
9 30,472 50.51 0.13 9,684.2 46.15 0.09 5,817.0 0.00 4,715.0

10 28,272 56.26 0.13 18,667.9 52.42 0.02 16,537.7 0.01 16,088.0
11 33,980 126.07 0.20 22,755.8 81.51 0.03 20,632.4 0.01 19,825.0
12 26,264 17.09 0.21 12,482.1 89.30 0.03 9,427.8 0.01 8,144.0
13 45,081 110.02 0.17 21,667.8 89.01 0.06 18,011.7 0.00 14,476.0
14 15,073 1,107.39 0.09 6,267.6 741.07 0.04 4,972.0 0.00 4,728.0
15 22,162 193.07 0.41 7,619.5 1,139.20 0.10 5,426.7 0.00 5,183.0
16 27,435 808.50 0.06 16,279.7 772.31 0.03 13,679.0 0.00 12,375.0
17 36,773 2,480.90 0.11 18,934.7 1,824.77 0.03 15,358.4 0.00 14,033.0
18 56,305 17.79 0.20 25,659.4 20.52 0.06 18,726.9 0.01 15,344.0
19 21,666 386.88 0.05 11,699.2 200.76 0.02 9,410.8 0.00 8,564.0
20 41,783 21.45 0.03 35,661.5 24.71 0.02 33,877.9 0.00 33,406.0
21 43,085 20.68 0.17 31,782.8 40.32 0.03 27,980.7 0.00 26,181.0
22 27,308 14.27 0.04 13,886.8 35.59 0.02 11,644.2 0.00 8,815.0
23 25,277 1,013.86 0.17 12,397.9 585.06 0.06 9,806.9 0.00 8,747.0
24 29,701 654.81 0.08 19,957.1 1,817.86 0.02 17,153.8 0.00 16,084.0
25 27,641 12.49 0.06 15,794.8 18.75 0.03 13,470.2 0.01 12,803.0
26 97,928 7.65 0.22 73,421.1 22.08 0.08 61,444.4 0.00 47,289.0
27 40,357 383.21 0.12 22,516.4 271.14 0.04 17,350.2 0.01 14,807.0
28 25,141 68.47 0.08 13,829.7 58.20 0.03 11,626.5 0.01 11,108.0
29 37,767 833.74 0.13 20,836.8 536.03 0.05 15,618.7 0.00 12,549.0
30 50,254 65.11 0.38 36,129.3 145.42 0.11 32,449.0 0.00 31,690.0
31 22,431 6.35 0.05 13,524.9 19.34 0.02 11,606.8 0.00 10,175.0
32 58,713 80.68 0.08 42,226.8 104.81 0.03 36,960.4 0.02 33,595.0
33 40,462 667.09 0.09 21,700.0 732.59 0.03 18,026.5 0.00 16,428.0

Average 33,308 386.94 0.14 19,279.63 345.73 0.04 16,031.29 0.00 14,366.42

23

Table 3: The effect of preprocessing

Instances First Formulation Second Formulation MCFP Relaxation

No. Deleted arcs
(%)

CPU
Optimum

(sec.)

CPU
Relaxation

(sec.)

Lower
Bound

CPU
Optimum

(sec.)

CPU
Relaxation

(sec.)

Lower
Bound

CPU
Relaxation

(sec.)

Lower
Bound

1 17.18 150.96 0.03 10,084.1 130.07 0.01 9,004.5 0.00 7,573.0
2 22.56 807.76 0.14 23,531.1 710.11 0.04 22,343.6 0.00 21,771.0
3 32.53 58.83 0.08 17,617.6 65.47 0.01 16,370.0 0.00 15,417.0
4 34.00 46.78 0.09 26,024.5 30.83 0.02 22,215.4 0.00 18,233.0
5 33.37 199.91 0.05 13,353.6 154.49 0.02 11,405.4 0.00 10,459.0
6 39.95 29.14 0.05 17,744.5 34.02 0.02 14,853.7 0.00 11,790.0
7 17.75 813.49 0.05 15,517.5 736.54 0.02 13,927.2 0.00 13,211.0
8 27.20 54.24 0.06 11,002.1 26.60 0.02 10,051.0 0.00 9,780.0
9 41.43 46.01 0.04 19,005.1 49.86 0.02 17,008.1 0.00 13,809.0

10 26.99 47.25 0.04 23,194.2 67.05 0.01 22,016.2 0.00 21,062.0
11 27.03 84.58 0.08 26,659.7 82.01 0.02 24,549.0 0.00 22,621.0
12 31.94 36.89 0.07 17,829.4 43.48 0.03 14,982.2 0.01 12,828.0
13 31.09 73.31 0.14 30,034.7 137.09 0.02 26,735.0 0.00 21,627.0
14 22.42 1,549.86 0.07 10,500.2 902.51 0.01 9,372.4 0.00 8,876.0
15 37.72 270.41 0.07 16,377.9 246.04 0.02 14,871.8 0.00 13,818.0
16 25.97 629.98 0.05 20,596.6 801.53 0.02 18,740.5 0.00 16,511.0
17 27.29 855.85 0.06 29,049.0 1,415.23 0.02 26,260.6 0.00 23,116.0
18 40.62 11.62 0.05 40,105.0 19.06 0.02 36,289.8 0.01 32,746.0
19 23.92 120.99 0.03 16,242.7 162.94 0.00 14,291.0 0.00 13,226.0
20 20.15 15.63 0.03 39,794.9 25.82 0.02 38,818.5 0.02 37,431.0
21 39.66 25.94 0.01 40,188.5 34.07 0.01 38,722.2 0.00 35,262.0
22 33.75 16.27 0.02 21,957.7 19.31 0.01 20,464.6 0.00 15,803.0
23 25.66 834.77 0.04 19,232.2 623.70 0.02 17,545.0 0.00 15,479.0
24 26.21 641.70 0.03 24,720.9 750.19 0.02 23,241.9 0.00 22,516.0
25 32.77 10.27 0.06 23,398.6 8.97 0.02 21,655.9 0.01 18,863.0
26 26.78 15.27 0.09 81,890.1 24.32 0.03 74,967.9 0.00 61,555.0
27 24.06 242.85 0.12 29,029.3 346.73 0.04 25,195.9 0.01 21,840.0
28 34.39 58.08 0.05 21,149.7 50.28 0.02 20,268.8 0.00 18,964.0
29 21.71 660.31 0.08 27,530.7 764.88 0.02 24,636.9 0.00 21,660.0
30 30.43 89.73 0.06 45,592.5 71.62 0.02 43,524.6 0.00 42,261.0
31 33.83 7.73 0.03 19,353.6 16.16 0.02 18,220.8 0.00 14,838.0
32 30.56 64.70 0.06 51,554.2 78.23 0.02 49,395.0 0.00 43,606.0
33 32.07 599.35 0.06 27,870.6 502.49 0.02 25,607.8 0.00 23,013.0

Average 29.48 277.89 0.06 25,991.91 276.72 0.02 23,865.25 0.00 21,259.55

24

all test instances. According to the results summarized in Table 3, we can say that the effect of preprocessing is

remarkable. First of all, the values in the second column indicate that, on the average, 29.48% of the arcs have been

deleted. There is also a considerable decrease in the running times. The average CPU time decreases by 28.18%

and 19.96% for the first and second formulations respectively. The second formulation is 0.4% with preprocessing

compared to the first formulation. There is a higher improvement in the efficiency of the first formulation due to

preprocessing, which makes its average performance comparable with that of the second formulation after prepro-

cessing. An interesting observation is related to the lower bounds; preprocessing makes them 34.82%, 48.87%,

and 48.08% higher on the average.

9. Conclusions

In this work we have considered a variant of the well-known minimum cost network flow problem, which

allows positive flow values on only noncrossing arcs. This problem can be often faced in real applications. First,

we show that the problem is NP-complete. Then, we introduce polynomially solvable special cases applicable

to well-known practical problems such as the crane scheduling problem encountered in container terminals: the

problem becomes polynomially solvable when the traveling distances are used as set-up costs, which is a common

practice. We also propose mixed-integer linear programming formulations. Because of the introduced conflicting

arc lists they can be easily adopted for general network topologies and conflict types different from crossings.

Finally, we develop a preprocessing scheme and experimentally study its effect on the formulations. It turns out

that it increases the efficiency of the formulations and relaxations at the expense of a very low computational effort.

We should point out that MCNFP is very likely to be strongly NP-hard and this might be shown using a strongly

NP-hard path problem for the reduction. Yet another research challenge is to consider MCNFP for network struc-

ture more general than layered networks and conflicts more general than crossings.

Acknowledgements—We gratefully acknowledge the support of TÜBİTAK (The Scientific and Technological

Research Council of Turkey) under the grant no: 213M441. We also would like to send our gratitudes to the

anonymous referees for their comments and suggestions they made.

[1] Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Networks Flows. New-York: Prentice-Hall.

[2] Bierwirth, C., F. Meisel. 2010. A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal

of Operational Research 202 615–627.

[3] Bierwirth, C., F. Meisel. 2015. A follow-up survey of berth allocation and quay crane scheduling problems in container terminals.

European Journal of Operational Research 244 675–689.

[4] Boysen, N., D. Briskorn, F. Meisel. 2017. A generalized classification scheme for crane scheduling with interference. European Journal

of Operational Research 258 343–357.

[5] Carlo, H.J., I.F.A. Vis, K.J. Roodbergen. 2015. Seaside operations in container terminals: literature overview, trends and research

directions. Flexible Services and Manufacturing Journal 27 224–262.

[6] Darmann, A., U. Pferschy, Schauer. 2009. Determining a minimum spanning tree with disjunctive constraints. Algorithmic Decision

Theory, ADT 2009, Lecture Notes in Computer Science, vol. 5783, Springer, 414–423.

[7] Darmann, A., U. Pferschy, J. Schauer, G. J. Woeginger. 2011. Paths, trees and matchings under disjunctive constraints. Discrete Applied

Mathematics 159 1726–1735.

[8] Ford, L. R., Jr., D. R. Fulkerson. 1962. Flows in Networks. New Jersey: Princeton University Press.

[9] Garey, M. R., D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-completeness. San Francisco: Freeman.

[10] Goldberg, A. V., R. E. Tarjan. 1990. Solving minimum cost flow problem by successive approximation. Mathematics of Operations

Research 15 430–466.

[11] Goossens, D. R., F. C. R. Spieksma. 2009. Structured modeling: survey and future research directions. 4OR 7(1) 51–60.

25

[12] Gouveia, L., Leitner M., M. Ruthmair. 2018. Layered graph approaches for combinatorial optimization problems. URL

http://www.optimization-online.org/DB HTML/2018/04/6564.html.

[13] Klingman, D., A. Napier, J. Stutz. 1974. Netgen: A program for generating large scale capacitated assignment, transportation, and

minimum cost flow networks. Management Science 20 814–820.

[14] Lee, D.-H., H. Q. Wang, L. Miao. 2008. Quay crane scheduling with non-interference constraints in port container terminals. Trans-

portation Research Part E 44 124–135.

[15] Öncan, T., R. Zhang, A. P. Punnen. 2013. The minimum cost perfect matching problem with conflict pair constraints. Computers &

Operations Research 40 920–930.

[16] Pferschy, U., J. Schauer. 2013. The maximum flow problem with disjunctive constraints. Journal of Combinatorial Optimization 26

109–119.

[17] Samer, P., S. Urrutia. 2015. A branch and cut algorithm for minimum spanning trees under conflict constraints. Optimization Letters 9

41–55.

[18] Steenken, D., S. Voß, R. Stahlbock. 2004. Container terminal operation and operations research – a classification and literature review.

OR Spectrum 26 3–49.

[19] Sun, M. 1998. A tabu search heuristic procedure for solving the transportation problem with exclusionary side constraints. Journal of

Heuristics 3 305–326.

[20] Sun, M. 2002. The transportation problem with exclusionary side constraints and two branch-and-bound algorithms. European Journal

of Operational Research 140 629–647.

[21] Türkoğulları, Y.B., Z. C. Taşkın, N. Aras, K. Altınel. 2016. Optimal berth allocation, time-variant quay crane assignment and scheduling

with crane setups in container terminals. European Journal of Operational Research 254 985–1001.

[22] Zhang, R., S. N. Kabadi, A. P. Punnen. 2011. The minimum spanning tree problem with conflict constraints and its variations. Discrete

Optimization 8 101–205.

26

