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We study an integrated market selection and production planning problem. There is a set of markets with

deterministic demand and each market has a certain revenue, which is obtained if the market’s demand

is satisfied throughout a planning horizon. The demand is satisfied with a production scheme that has a

lot-sizing structure. The problem is to decide on which markets’ demand to satisfy and plan the produc-

tion simultaneously. We consider both single and multi-objective settings. The single objective problem

maximizes the profit, while the multi-objective problem includes the maximization of the revenue and the

minimization of the production cost objectives. We develop a decomposition-based exact solution algorithm

for the single objective setting, and show how it can be used in a proposed three-phase algorithm for the

multi-objective setting. The master problem chooses a subset of markets, and the subproblem calculates an

optimal production plan to satisfy the selected markets’ demand. We investigate the subproblem from a

cooperative game theory perspective to devise cuts and strengthen them based on lifting. We also propose

a set of valid inequalities and preprocessing rules to improve the proposed algorithm. We test the efficacy of

our solution method over a suite of problem instances and show that our algorithm substantially decreases

solution times for all problem instances.
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1. Introduction

The economic lot-sizing problem is a production planning problem where the goal is to

satisfy a set of deterministic dynamic demand over a planning horizon at minimum produc-

tion cost. In this traditional problem, the set of demands to be satisfied are predetermined

and there is no option for partial satisfaction by choosing some percentage of the demand.

However, in today’s competitive business environment, global companies make decisions

not only on the supply side but also on the demand side (Geunes et al. 2011). Specifically,

these companies select the set of markets whose demands they would like to satisfy instead

of satisfying a predetermined deterministic demand. Hence, the problem has two decision

stages: first, to determine the markets whose demand will be satisfied, and then, plan the

lot-sizing decisions to satisfy the whole demand. Since the lot-sizing decisions are affected

by the total demand to be satisfied, it is important to select the markets wisely to satisfy

their demands. Hence, the market selection and production decisions need to be made

simultaneously.

Van den Heuvel et al. (2012) consider a production planning problem where a set of

markets with known demands and corresponding revenues exists. The problem is to select

the markets whose demands will be fully satisfied through a single product that has a

lot-sizing production cost structure. They develop an integer programming formulation for

the economic lot-sizing problem with market selection, which they refer to as the market

selection problem. Then, they prove that the problem is NP-hard, introduce polynomially

solvable special cases and a heuristic for the general case. The problem that we consider



Van den Heuvel, Ağralı, and Taşkın: Integrated Market Selection and Production Planning
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 3

focuses on a similar problem as Van den Heuvel et al. (2012) within a single and a multi-

objective problem setting. More specifically, we consider a lot-sizing problem with market

selection where the objectives are (i) the maximization of the net profit that is calculated

by subtracting the total production cost from the revenue obtained by demand satisfaction

(in the single-objective setting), (ii) the maximization of the revenue that we obtain by

selecting the markets whose demand will be satisfied throughout the planning horizon,

and (iii) the minimization of the total production and inventory holding cost of items that

satisfy the selected markets’ demands.

A version of the market selection problem, which is called order selection problem, is first

studied by Geunes et al. (2002). They consider a production planning problem where there

exists a set of outstanding orders with associated amounts, delivery periods and profits

over a planning horizon, and the marketing and production planning departments together

select from these orders the ones they wish to satisfy in order to maximize the net profit

from the production. If it is not profitable to satisfy a certain amount of demand, then this

amount of the order can be rejected. Hence, revenue is obtained only from the portion of

the demand that is satisfied. Then, Geunes et al. (2011) consider a similar problem where

in the first stage they select the markets whose demands will be fully satisfied, and in the

second stage, they minimize the total production cost and the lost revenues that arise from

rejecting to serve the markets in the first stage. They propose approximation algorithms

for solving this economic lot-sizing problem with market selection.

Market selection in the context of Economic Order Quantity (EOQ) (Geunes et al. 2004,

Geunes 2012), and newsvendor problems (Taaffe et al. 2008, Chahar and Taaffe 2009,

Strinka et al. 2013) are also studied in the literature. Geunes (2012) provides the model

and solution methods for a set of EOQ problems where it is possible to choose whether
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to satisfy multiple markets. Taaffe et al. (2008) consider the newsvendor problem where

the price of the item is market-dependent and the demands of the markets depend on the

marketing effort applied. In this setting the firm decides on which markets to serve prior to

procuring the items. The proposed model implicitly accounts for inventory pooling across

markets, which in turn decreases the safety stock costs.

Market selection decisions are not only included in production planning problems but

also in other areas such as the classical transportation problem as done by Damcı-Kurt

et al. (2015). They consider a transportation problem where the suppliers have the choice

of selecting the markets to satisfy their demands, which they refer to as transportation

problem with market choice (TPMC). They prove that the TPMC is strongly NP-hard

while the classical transportation problem is polynomially solvable. Aardal and Le Bodic

(2014) provide polynomial-time reductions from TPMC to the capacitated facility loca-

tion problem and give approximation algorithms. Walter et al. (2016) extend TPMC by

adding a cardinality constraint that limits the number of markets that are rejected. They

show that the cardinality constrained simple transportation problem with market choice

is polynomially solvable.

The market selection decisions are also studied in disaster relief context. Kimiagari and

Montreuil (2018) consider a market deployment planning problem for a natural disaster

relief supply business venture, where it is crucial to determine the markets before designing

and planning the activities, resources and financial flows. The decision is to choose in

which period to deploy which market. They develop a multi-objective mixed-integer goal

programming approach as a part of a solution method where the objectives are maximizing

the expected present value from a time-phased market deployment and minimizing the

goal deviation costs over a planning horizon.
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Lot-sizing problems in a multi-objective setting are considered from different perspec-

tives in the literature. Romeijn et al. (2014) consider a bi-objective economic lot-sizing

problem where the objectives are minimizing the traditional lot-sizing costs over the whole

planning horizon, and minimizing the maximum production and inventory expenses cal-

culated over consecutive and disjoint blocks of time. The second objective is motivated

by examples from limited physical capacities of scarce resources or from carbon emis-

sion limitations. They provide polynomially solvable cases for the Pareto efficient outcome

problem in case of non-speculative lot-sizing costs. Mehdizadeh et al. (2016) study a multi-

item capacitated lot-sizing problem with setup times and costs related with the demand

shortage and safety stock deficit. They aim to minimize both the storage space required

and the classical total cost. They propose two Pareto-based meta-heuristic algorithms.

A similar study is considered by Ben Ammar et al. (2020) where demand backlogging is

possible. They consider the inventory level as a separate objective function rather than

including it in the total cost. They develop a particle swarm optimization to obtain a set of

Pareto optimal solutions. There exist multiple studies that consider the lot-sizing problem

with supplier selection in a multi-objective setting. Besides the classical lot-sizing total

cost function, the objectives include the quality level of the products ordered (Rezaei and

Davoodi 2011), total environmental score (Azadnia et al. 2015) and defect rate (Ustun and

Demirtas 2008).

Application of decomposition-based algorithms in lot-sizing related problems is limited

in the literature. Bahl and Zionts (1987) develop a Benders decomposition algorithm to

solve a lot-sizing problem that minimizes the inventory and capacity costs where the sub-

problem becomes a transportation problem. Martinez et al. (2019) study an integrated

process configuration, lot-sizing and scheduling problem where products can be produced
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by different process configurations. They propose a branch-and-check algorithm that uses

logic-based Benders cuts. Bayley et al. (2018) consider a coordinated capacitated lot-sizing

problem with multiple product families. They propose a solution algorithm that combines

Benders decomposition with an evolutionary algorithm. They strengthen the Benders mas-

ter problem by adding valid inequalities. However, Caserta and Voß (2021) show that one

of the valid inequalities added to the master problem cuts off some feasible solutions, and

hence, is not valid. Witthayapraphakorn and Charnsethikul (2019) use Benders decom-

position to solve a lot-sizing problem with uncertain demand where the subproblem is

solved with a special-purpose method. Gruson et al. (2021) study a three-level stochastic

lot-sizing and replenishment problem that includes a distribution structure. They develop

a Benders-based branch-and-cut algorithm to solve the problem by exploiting the network

substructures identified in the decomposition.

We consider a lot-sizing problem with market selection in a single and multi-objective

setting. The main contributions of our paper are: (i) it is the first time that an exact

solution method based on a decomposition algorithm is proposed as a solution method for

the integrated market selection and production planning problem, (ii) the decomposition

algorithm is based on a game theoretical interpretation, which allows us to devise an effi-

cient algorithm for solving the subproblem, (iii) we develop a multi-objective optimization

model for a practically relevant lot-sizing problem with market selection and develop a

three-phase algorithm that finds the complete Pareto frontier by incorporating our decom-

position algorithm, (iv) our solution methods decrease the solution times substantially.

The remainder of this article is organized as follows. In Section 2, we formally define our

problem. Section 3 provides our solution method that we developed for a single-objective

problem. Then, Section 4 gives the multi-objective problem and our solution method to find
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the complete Pareto frontier. We give the results of our computational study in Section 5

and conclude the paper in Section 6.

2. Problem Description and Mathematical Model for Single-Objective
Problem

We study an integrated market selection and single-item lot-sizing problem over a set of

planning periods T , indexed by t. We consider a set of markets M , indexed by m, each of

which has a deterministic demand, dmt , for each period t∈ T . We have the option of either

selecting a market to satisfy its demand throughout the planning horizon or rejecting the

market and not including its demand in our planning. If we decide to satisfy the demand

of the market throughout the planning horizon, then we obtain a certain revenue, Rm.

There is a fixed set up cost, Kt, that we pay if we decide to produce in period t∈ T , and a

variable production cost, pt, per every unit we produce. We pay an inventory holding cost

of ht for every unit that we put in the inventory at the end of period t∈ T .

In order to formulate the problem, we introduce the following decision variables. The

first set of decision variables are the market selection variables; zm, which take the value

of 1 if we decide to satisfy the demand of market m∈M ; and 0, otherwise. Then, we have

lot-sizing decision variables: yt is a binary variable that takes the value of 1, if we decide

to produce in period t ∈ T ; and 0, otherwise. The variable xmit gives the amount of units

produced in period i∈ T to satisfy the demand of market m∈M in period t∈ T .

Note that we use the well-known change of decision variables commonly used in the lot-

sizing literature (see Krarup and Bilde (1977) who introduced this reformulation), leading

to a stronger formulation compared to one using variables in which production quantities

are aggregated. Let Cit represent the unit cost of producing in period i∈ T and holding cost

from period i to period t∈ T , i.e., Cit = pi +
∑t−1

j=i hj. Then, we can write our mathematical

model as follows:
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(MIP) max
∑
m∈M

Rmzm−
∑
t∈T

(
Ktyt +

∑
i≤t

∑
m∈M

Citx
m
it

)
(1)

s.t.
∑
i≤t

xmit = dmt zm, t∈ T ;m∈M (2)

xmit ≤ dmt yi, i, t∈ T ; i≤ t;m∈M (3)

xmit ≥ 0, i≤ t∈ T ;m∈M (4)

yi, zm ∈ {0,1}, i∈ T ;m∈M. (5)

The objective function (1) maximizes the net profit that is obtained by subtracting the

lot-sizing cost from the revenue obtained from the markets that are selected. Constraints (2)

are demand satisfaction constraints for the markets that we select throughout the planning

horizon. Constraints (3) make sure that we can produce only if we pay the setup cost

and the amount of production for period t does not exceed the demand at that period.

Constraints (4) and (5) are the nonnegativity and binary restrictions for the decision

variables, respectively.

3. Solution method for Single-objective Market Selection

In this section we provide our solution method, which is based on a decomposition algo-

rithm. First, we provide a solution approach to model the subproblem that is related to

cooperative game theory. Then, we propose algorithmic improvements on the decomposi-

tion method.

We propose a decomposition-based cutting plane algorithm to solve problem (MIP). The

main idea is to decompose the problem into a master problem and a subproblem where

the master problem concerns the markets to be selected while the subproblem takes care

of the lot-sizing cost. With this in mind, the master problem can be written as

(MP) max
∑
m∈M

Rmzm− θ (6)
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s.t. θ= ν(z), (7)

zm ∈ {0,1}, m∈M, (8)

where ν(z) represents the lot-sizing cost for market selection z = (z1, . . . , z|M |).

For a fixed set of market selection variables z̃, the subproblem can be formulated as:

(SP) ν(z̃) = min
∑
t∈T

(
Ktyt +

∑
i≤t

∑
m∈M

Citx
m
it

)
(9)

s.t.
∑
i≤t

xmit = dmt z̃m, t∈ T ;m∈M (10)

xmit ≤ dmt yi, i≤ t∈ T ;m∈M (11)

xmit ≥ 0, i≤ t∈ T ;m∈M (12)

yi ∈ {0,1}, i∈ T ;m∈M. (13)

The aim is to formulate (7) as a set of linear inequalities or cuts in the z-variables that

represent the subproblem’s objective value in a valid way for a given market selection.

That is, such a cut should (i) represent the lot-sizing cost for the given market selection,

and (ii) not overestimate the cost of any other market selection. To derive these cuts, we

take an approach based on economic lot-sizing games (Van den Heuvel et al. (2007), Chen

and Zhang (2016)), which is in the field of cooperative game theory.

3.1. Cooperative game theory - Economic Lot-sizing games

We introduce the economic lot-sizing games in this section. To show the relation between

the game and the market selection problem, we reuse some notation (instead of introducing

more notation). Let us consider a set of retailers, M , that sell the same item to the market

where all the demand over a set of planning period, T , are known to them. Suppose that

there is a single manufacturer from which all retailers buy the items, and this manufacturer

charges ordering cost for each order and a production cost for units ordered, which is linear.
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Retailers may order from the manufacturer at amounts to cover a single or more periods’

demand. A holding cost is incurred per item put in the inventory at the end of a period,

which is linear and equal for all retailers. In this setting, if a subset of retailers cooperates

to place a joint order instead of individual orders, a cost saving will be obtained in general.

Let us formally define the problem:

Definition 1. Let di = (di1, . . . , d
i
|T |) represent retailer i’s demand vector and dN rep-

resent the demand of coalition N ⊆M (a subset of retailers that cooperates), i.e., dN =∑
i∈N di. The optimal procurement plan for coalition N can be defined as a lot-sizing

problem with demand dN where the cost of this procurement plan is given as CLS(N).

Now, the costs CLS(N) need to be allocated to the retailers in a ‘fair’ way such that (i)

all costs are divided among the retailers in the coalition N , and (ii) no subsets of markets,

i.e. the coalition S ⊆N , should be worse off compared to only cooperating with retailers

in set S, and hence have an incentive to stop the cooperation. With βr denoting the cost

allocated to retailer r, this translates to

∑
r∈N

βr =CLS(N), and (14)

∑
r∈S

βr ≤CLS(S) for all S ⊆N. (15)

Equation (14), known as the efficiency constraint in cooperative game theory, ensures

that all costs are divided among retailers, while Equation (15), known as the rationality

constraints, makes sure that no subcoalition S is worse off.

Definition 2. As a well-known concept in cooperative game theory, all cost allocations

satisfying (14) and (15) are called the core of the game, denoted by

core(N) =

{
β ∈R|N | :

∑
r∈N

βr =CLS(N) and
∑
r∈S

βr ≤CLS(S) for all S ⊆N

}
. (16)
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3.2. Formulating the lot-sizing costs

It turns out that the core elements in the economic lot-sizing games can be used to for-

mulate the lot-sizing cost in a valid way in terms of the z variables, and hence, form the

basis of our decomposition algorithm.

Proposition 1. Let βN ∈ core(N) be the cost allocation vector for some subset of mar-

kets N ⊆M . Then constraint (7) in (MP) can be replaced by cuts

θ≥
∑
m∈N

βN
mzm for all N ⊆M. (17)

Proof: In order to prove the proposition, we need to show that for a given market

selection N , the term
∑

m∈N β
N
mzm (i) represents the optimal lot-sizing cost CLS(N) cor-

responding to this market selection N , and (ii) it is valid for another market selection

N ′ ⊆M , that is, it does not overestimate the cost CLS(N ′) and potentially cut off an

optimal solution.

By definition, the variables z representing market selection N satisfy zm = 1 if and only

if m∈N . Using the efficiency constraints (14) of core(N) we have

∑
m∈N

βN
mzm =

∑
m∈N

βN
m =CLS(N). (18)

Now consider another market selection N ′ represented by the variables z′ with z′m = 1 if

and only if m∈N ′. It follows that

∑
m∈N

βN
mz
′
m =

∑
m∈N ′∩N

βN
m ≤CLS(N ′ ∩N)≤CLS(N ′), (19)

where the first inequality follows from the rationality constraints (15) of core(N) applied

to S =N ′∩N , and the second inequality from the fact that satisfying more markets cannot

lead to lower lot-sizing cost. �
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Lifting cut set (17)

Note that no βN
m coefficients appear for markets m /∈N in constraints (17), and hence

no zm variables appear for m ∈M\N . Since θ in (MP) represents the lot-sizing cost, we

can add the zm variables (m∈M\N) with a positive coefficient, taking into account that

at least some variable cost are incurred. In order to specify these coefficients, define V Cm

as the lowest possible variable cost of satisfying market m’s demand among any possible

solution, computed by solving a lot-sizing problem only serving demand dm and assuming

that Kt = 0. Clearly, this constitutes a valid lower bound on the cost of serving market m.

Using this result, we can lift (17), which results in Proposition 2. When analyzing the

proof, we are essentially exploiting the slack in the last inequality of (19) to do the lifting.

Proposition 2. Replacing constraints (17) by

θ≥
∑
m∈N

βN
mzm +

∑
m∈M\N

V Cmzm for all N ⊆M (20)

leads to a stronger and still valid formulation.

Proof: Using the lifted cut, it is clear that the constraints are stronger as the mar-

kets m /∈ N have non-negative coefficients. To show that they are valid for any market

selection N ′, represented by the variables z′ with z′m = 1 if and only if m ∈N ′, it follows

that

∑
m∈N

βN
mzm+

∑
m∈M\N

V Cmzm =

∑
m∈N ′∩N

βN
m +

∑
m∈N ′\N

V Cm ≤CLS(N ′ ∩N) +
∑

m∈N ′\N

V Cm ≤CLS(N ′), (21)

where the last inequality follows from the fact that for serving the additional markets

N ′\N on top of markets N ′∩N , there will be a cost increase of at least the lowest possible

variable cost to serve these additional markets. �
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3.3. Decomposition Algorithm

We are ready to present the decomposition algorithm. Let θ represent the lot-sizing cost

for selected markets. Then, using Proposition 2, the master problem can be formulated as

(MP2) max
∑
m∈M

Rmzm− θ (22)

s.t. θ≥
∑
m∈N

βN
mzm +

∑
m∈M\N

V Cmzm for all N ⊆M, (23)

zm ∈ {0,1}, m∈M (24)

θ≥ 0. (25)

The issues with this formulation are that (i) there is an exponential number of con-

straints (23), and (ii) we need a procedure to find the βN
m coefficients in (23). To deal

with issue (i), instead of pre-computing all constraints (23) upfront, we generate them in

a cutting plane fashion. This leads to the algorithm given in Algorithm 1.

Algorithm 1 Decomposition Algorithm

Initialization:

Set of cuts, C←∅

Solve (MP2) with cut set C, resulting in an optimal solution (z̃, θ̃)

while θ̃ < ν(z̃) do

Generate cut of type (23)

Add newly generated cut to set C

Solve (MP2) with cut set C, resulting in an optimal solution (z̃, θ̃)

end while

Output the optimal solution

Issue (ii) can be dealt with by using results from the literature on economic lot-sizing

games. For a given market selection z̃ corresponding to markets N = {m ∈M : z̃m = 1},
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finding the coefficients βN
m in (23) is equivalent to finding an element βN ∈ core(N) as given

in (16). Chen and Zhang (2016) study the economic lot-sizing game in detail and show how

to efficiently find βN ∈ core(N) by using the duals of the simple plant location formulation

(see Theorem 1, p. 1206). To be precise, let µt be the dual variables of the demand satis-

faction constraints of this formulation (i.e., first constraint set of formulation (2) in Chen

and Zhang (2016)) with the demands set to dt =
∑

m∈N d
m
t =

∑
m∈M z̃md

m
t for t= 1, . . . , T .

Note that these constraints correspond to constraints (10) of our subproblem (SP) but

aggregated over the markets. Then the βN
m coefficients required in (23) should be set to

βN
m =

T∑
t=1

µtd
m
t for m∈N. (26)

In turn, this dual formulation is analyzed in detail by Wagelmans et al. (1992). They show

that the dual variables µt can be calculated efficiently by a recursive scheme instead of

solving an LP.

Remark 1

Formulation (MIP) contains (M +T ) binary variables and O(MT 2) continuous variables.

On the other hand, the master problem of our decomposition algorithm (MP2) contains

M binary variables and a single continuous variable. As explained above, we solve the

subproblem using the algorithm of Wagelmans et al. (1992) and calculate dual variables

without explicitly solving an optimization model. Thus, the total number of variables

is significantly reduced in our decomposition approach. On the other hand, (MIP) con-

tains a polynomial number of constraints whereas (MP2) has an exponential number of

constraints, which our decomposition algorithm generates dynamically in a cutting-plane

fashion.

Remark 2

Note that (MIP) can be solved using Benders decomposition. In the classical Benders
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decomposition, integer variables (i.e., y and z variables) constitute the master problem,

where the continuous x variables and the corresponding constraints are handled in the

subproblem. Van den Heuvel et al. (2012) show that it is possible to relax either the y

or z variables in (MIP) as continuous variables, and prove that the relaxed variables will

take on integer values in an optimal solution. This property suggests an alternative Ben-

ders decomposition strategy, where we relax the y variables and only keep z variables as

binary. In this approach, the z variables and the corresponding objective function term

constitute the master problem, which is similar to our decomposition approach. The x, y

variables and Constraints (2)–(4) constitute the subproblem, which is solved as a linear

programming problem to generate Benders cuts. Note that due to the interpretation based

on economic lot-sizing games, we are able to lift the cuts (see Proposition 2 and Equa-

tion (20)), something that will be absent in a classical Benders decomposition approach.

We test the efficacy of this approach and compare it with our decomposition algorithm in

Section 5.

3.4. Algorithmic Improvements

We provide some algorithmic improvements that will be applied on the decomposition

algorithm in this section.

3.4.1. Preprocessing Let TCm denote the optimal total cost of serving market m indi-

vidually, and let V Cm denote the lowest possible variable cost of serving market m. (Note

that TCm =CLS({m}), but we prefer to introduce a separate notation for clarity.) We cal-

culate TCm by running any lot-sizing algorithm (in our case the algorithm of Wagelmans

et al. (1992)) for market m considering demand dmt , setup cost Kt, production cost pt and

inventory holding cost ht. Similarly, we calculate V Cm for market m assuming that Kt = 0.

The following are valid in an optimal solution:

zm = 1 m∈M :Rm ≥ TCm, (27)
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zm = 0 m∈M :Rm <V Cm. (28)

Preprocessing rule (27) is based on the observation that if the revenue of a market is larger

than the total cost (setup + variable cost) of serving that market by itself, then it will be

selected in an optimal solution. On the other hand, (28) implies that if the revenue of a

market is smaller than the variable cost of serving that market, then it cannot be selected

in an optimal solution.

3.4.2. Valid Inequalities In the initial solution of the master problem (MP2) all zm =

1 and θ = 0, which yields a weak upper bound on the optimal objective function value. We

can add some valid inequalities to obtain a tighter upper bound. We first observe that θ

cannot be less than the minimum total cost of a selected market m plus the summation of

the lowest possible variable cost of satisfying the demand of each other selected market,

that is,

θ≥ TCmzm+
∑

m′∈M,m′ 6=m

V Cm′zm′ , m∈M. (29)

For our second valid inequality, let TC denote the total cost of satisfying demand of all

markets, which we calculate by considering dt =
∑

m∈M dmt , setup cost Kt, production cost

pt and inventory holding cost ht. Then, the following is valid:

θ≥ TC −
∑
m∈M

TCm(1− zm). (30)

Valid inequality (30) is based on our observation that in earlier iterations the master

problem tends to set most zm values to 1 while significantly underestimating the cost θ.

This inequality ensures that θ correctly estimates the true cost if all markets are selected,

and yields a valid bound for other market selections.
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To derive the last set of valid inequalities, recall from (27) that any market having

Rm ≥ TCm must be selected in an optimal solution. However, for any market m having

Rm < TCm, if m is selected then a number of other markets must also be selected to

compensate for the loss, leading to the valid inequality

∑
m′∈M,m′ 6=m

(Rm′ −V Cm′)zm′ ≥ (TCm−Rm)zm, m∈M with Rm <TCm. (31)

Building on this idea, we can generalize (31) as

∑
m′∈M,m′ 6=m

(Rm′ −V Cm′)zm′ + (Rm−TCm)zm ≥LB m∈M, (32)

where LB denotes the objective function value of a known feasible solution. Note that the

cost terms at the left hand side are a lower bound on the lot-sizing cost as in (29), showing

the validity of the inequality. In our case we use the heuristic of Van den Heuvel et al.

(2012) as a lower bound.

4. Multi-objective Market Selection Problem

In this section, we consider the market selection problem in a multi-objective setting. We

start with providing the motivation for studying the integrated market selection problem

in this setting. Then, we give our solution approach, which we call a three-phase method,

that is able to compute the complete Pareto frontier.

4.1. Motivation

While the main goal of a company is to maximize profit, companies often try to increase

their market share for strategic reasons at the expense of sacrificing some profit. Hence a

company could be interested in the trade-off between revenue and cost. Let z1 (resp. z2)

be the first (resp. second) objective. Then we can model this trade-off as a multi-objective

model where the objectives are

(z1, z2) =

(∑
m∈M

Rmzm,
∑
t∈T

(
Ktyt +

∑
i≤t

∑
m∈M

CitX
m
it

))
. (33)
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Another motivation for the multi-objective setting emerges from the economics area,

where it is important to calculate the return on investment (ROI) before committing to

an investment opportunity, where ROI is defined as the ratio of the net return of an

investment and the cost of the investment. In our market selection setting, this corresponds

to maximizing the objective∑
m∈M Rmzm−

∑
t∈T
(
Ktyt +

∑
i≤t
∑

m∈M CitX
m
it

)∑
t∈T
(
Ktyt +

∑
i≤t
∑

m∈M CitXm
it

) . (34)

Although this objective function makes the formulation nonlinear, Megiddo (1979) shows

that this type of problem can be solved as a parametric optimization problem, which in

turn can be considered as a weighted multi-objective problem. In other words, the market

selection problem with maximizing ROI can be tackled by solving a “Net revenue vs. cost”

multi-objective problem.

Besides the more practical motivation, there is also a technical reason why we consider

the multi-objective setting of the problem. Note that points which are close to each other

on the Pareto frontier correspond to solutions of optimization problems that are slightly

different from each other. This suggests that reusing cuts could help to warm start the

problem of finding a new Pareto point on the frontier, and hence, reusing cuts could help

in determining the entire Pareto frontier in an efficient way. In the next section we propose

an approach where this idea is exploited.

4.2. Solution approach

A common approach to solve a multi-objective problem is to use the so-called weighted

method, where the different objectives are weighted and transformed into a single objective.

A disadvantage of this method is that only the extreme supported Pareto points are found.

An alternative is to use the well-known ε-constraint approach, where one objective is
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bounded by ε and added as a constraint, while the other objective is optimized. The

possible number of values of ε, and hence, the optimization problems to be solved can be

huge, which is a disadvantage of this approach. Therefore, an alternative is to use a two-

phase method, where in the first phase one starts with a partial Pareto frontier (typically

consisting of the extreme supported points), while in the second phase one searches for

additional points between points on the partial frontier. For an overview of approaches to

solve multi-objective problems we refer the interested reader to Ehrgott (2005). Inspired

by the two-phase method, we propose a three-phase algorithm tailored to our problem

where the relevant values of the second objective are computed first.

The general idea of our three-phase algorithm to compute the entire Pareto frontier is as

follows. In Phase I we create a set of basis points containing the relevant objective values,

i.e., the possible revenue amounts and their corresponding lot-sizing costs, in Phase II we

perform a dominance check to get an approximate frontier, and finally in Phase III we check

for optimality. To formalize our approach, we represent a point on the Pareto frontier as a

tuple p = (Revp,Cp,Np), where Np is the market selection, with the corresponding revenue

Revp =
∑

m∈Np
Rm and the lot-sizing cost Cp = CLS(Np). The Pareto frontier consists of

all non-dominated points, where a point q is dominated by p if Revq ≤Revp and Cq ≥Cp

where strict inequality holds in one of the two. We now describe the three phases in more

detail.

Phase I:

In this phase we construct points (possibly including dominated ones) such that all

possible revenues considering all markets are attained. We denote the set of all attainable

revenues by R, which is formally defined as R=
⋃

N⊆M
{∑

m∈N Rm

}
, and the corresponding

Pareto points by P . We can obtain these sets by starting from an empty market selection,
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and iteratively extending the current market selection by a single market. The details of

this phase are found in Algorithm 2.

Algorithm 2 Phase I of three-phase algorithm

Create initial p := (0,0,∅)

Set P ←{p} (the set of Pareto points)

Set R←{Revp} (the set of attained revenues)

for each m∈M do

while there is a point p∈ P which has not been extended by m do

Extend q from p with Nq←Np ∪{m}, Revq =
∑

m∈Nq
Rm and Cq =CLS(Nq)

If Revq ∈R, then update cost of corresponding point (if it has improved)

If Revq /∈R, then P ← P ∪{q} and R←R∪{Revq}

end while

end for

Phase II:

Remove all dominated points from P , which can be done efficiently once the points are

sorted by one of the objectives. After this phase we have an approximate Pareto frontier.

Phase III:

We now check the approximate Pareto frontier for optimality. Let p and q be two

consecutive points on the approximate frontier, i.e., there is no other point with revenue

value in the interval 〈Revp,Revq〉. We solve a market selection problem (MOp,q) where the

revenue is bounded in 〈Revp,Revq] while minimizing the cost. The problem (MOp,q) can

be formulated as

(MOp,q) min θ (35)
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s.t. Revp <
∑
m∈M

Rmzm ≤Revq (36)

θ≥
∑
m∈N

βN
mzm +

∑
m∈M\N

V Cmzm for all N ⊆M (37)

zm ∈ {0,1}, m∈M, (38)

θ≥ 0. (39)

where the strict inequality in (36) can be replaced by Revp + 1≤
∑

m∈M Rmzm in case of

integer data. There are three possible results we may get after solving (MOp,q):

1. We find no solution with cost lower than Cq, which means the approximate frontier

is optimal on the interval 〈Revp,Revq].

2. We find a point r with cost Cr < Cq and Revr = Revq. We can now replace q by r

and there can be no other Pareto points in 〈Revp,Revq].

3. We find a point r with cost Cr <Cq and Revr <Revq. We add point r to the frontier

and perform a dominance check. We need to solve (MOr,q) on 〈Revr,Revq] in search for

further Pareto points.

Note that problem (MOp,q) can be solved using our decomposition approach of Section 3,

where constraints (37) are generated in a cutting plane fashion. Suppose that we have

three consecutive points p, q and r where we solve (MOp,q) and (MOq,r) over the intervals

〈Revp,Revq] and 〈Revq,Revr]. As the problems are similar, it is likely that common cuts

will be generated. This suggests that when one problem is solved, we can ‘warm start’ the

next problem by including the cuts that have been generated so far. Note that (MOp,q)

can be strengthened by adding valid inequalities (29)–(30) of Section 3.4.2. This does

not hold for the pre-processing step and inequalities (31) and (32), as the Pareto frontier

may contain solutions that are not profitable, i.e., the cost is higher than the revenue. A

pseudocode of Phase III is provided in Algorithm 3. Note that Algorithm 3 focuses on
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the optimization problems that need to be solved. Points that are verified to be Pareto

optimal are stored in a separate list and not shown in the pseudocode. The effectiveness

of our three-phase approach including the reuse of cuts is tested in Section 5.2.

Algorithm 3 Phase III of three-phase algorithm

Input: sorted list of points P of approximate Pareto frontier

Set C ← ∅ (set of generated cuts)

while |P | ≥ 2 do

Let p and q be the last two points in P

Solve (MOp,q) with set of cuts C

Let C∗ be optimal objective value with market selection z∗ and revenue Rev∗

if C∗ <Cq and Rev∗ <Revq then

Add new point r = (Rev∗,C∗) to P

else if C∗ <Cq and Rev∗ =Revq then

Update Cq←C∗

end if

Remove q from list P

Update C with newly generated cuts

end while

5. Computational Study

We provide the results of a computational study in which we compare the performance

of the solution algorithms provided for the single and multiple objective problem with

the direct solution of the problems (MIP) using a commercial solver. We use the data set

provided in (Van den Heuvel et al. 2012) except for a modification of the production cost,

which were equal to zero in the original data. In our instances we have set the production
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cost in such a way that it comprises a third of the total cost in case all markets are selected

(next to a third of setup cost and holding cost), and the average revenues per item are

increased by the production cost. A summary of the parameter values can be found in

Table 1, where d̄= 5 is the average demand, n=
√

2α is the expected time between orders

and α controls this value. For more details on the data generation process we refer to

Van den Heuvel et al. (2012).

Table 1 Parameters settings

parameter dt Kt pt ht Rm

value Unif[0,2d̄] αMd̄ (2n− 1)2/3 1 T d̄((2n− 1)/2 + pt)

We implemented all formulations and solution algorithms in C++, and performed all

tests on a computer with Intel Xeon Silver 4214R 2.4 GHz CPU, 64 GB RAM running

Windows Server 2019 operating system. We used CPLEX 20.1 as the solver for all imple-

mentations, where we used default solver settings except limiting the maximum number

of threads to 4. We enforce a time limit of 1200 seconds for all instances.

5.1. Single-Objective Problem Computational Analysis

We provide the performance of the MIP formulation, the automatic Benders algorithm

of CPLEX (BA) and the decomposition algorithm (DA) that we propose to solve the

single-objective problem in this section.

First, we test the performance of MIP, BA and DA without any additional improvements

given in Section 3.4, and provide the corresponding results in Table 2. Each problem set,

given as a row in Table 2, includes ten problem instances that are created using different

number of markets, time periods and α values. For each of these problem sets, we report the

following statistics, calculated over ten random instances: “Time”: The average amount of
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time in seconds spent by each algorithm, “Gap”: The average final percentage optimality

gap, and “#Cut”: The total number of cuts generated by the algorithm over ten instances.

We provide the averages over all problem sets at the bottom line of the table.

Table 2 Summary for Single-objective Problem

|M | |T | α MIP BA DA

Time Gap Time Gap Time Gap #Cut

(s) (%) (s) (%) (s) (%)

40 40 2 5.6 0 11.9 0 0.3 0 3542

5 6.6 0 27.8 0 0.5 0 4474

8 10.4 0 67.4 0 1.7 0 7579

11 6.2 0 31.0 0 0.2 0 3074

40 80 2 131.2 0 237.0 0 2.2 0 9716

5 101.0 0 215.2 0 0.4 0 4327

8 90.7 0 280.9 0 0.3 0 3452

11 166.4 0 611.9 0 2.4 0 8510

Avg 64.8 0 185.4 0 1.0 0 5584

As we see in Table 2, all instances are solved to optimality within the given time limit for

all settings. For MIP and BA, as the number of time periods increases, it takes considerably

longer to solve the instances. In terms of CPU time, MIP performs consistently better than

BA on all settings with an average of 64.8 seconds over all instances while it takes 185.4

seconds for BA. When we analyze our solution algorithm DA, we see that all instances

are solved to optimality within a few seconds with an average of 1.0 seconds. The number

of cuts generated by the algorithm is insensitive to the number of periods. Overall, we

can conclude that our proposed solution algorithm improves the solution performance

substantially.
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Next, we test the effect of the algorithmic improvements that we introduce in Section 3.4.

In order to see the individual effect of each improvement, we add each separately to our

decomposition algorithm and provide the results for five different settings where “PP” rep-

resents the addition of (preprocessing) inequalities (27) and (28), and the valid inequalities

that are given with their equation numbers in Table 3.

Table 3 Effect of Algorithmic Improvements on the Decomposition Algorithm

|M | |T | α PP VI(29) VI(30) VI(32)

Time #Cut Time #Cut Time #Cut Time #Cut

(s) (s) (s) (s)

40 40 2 0.3 3353 0.3 3354 0.3 3531 0.3 3630

5 0.5 4382 0.5 4264 0.6 4455 0.5 4284

8 1.4 7684 1.4 7545 1.8 7654 1.4 7571

11 0.2 2965 0.2 3069 0.2 2973 0.2 3150

40 80 2 2.0 9959 2.1 9347 2.8 10123 2.1 9581

5 0.4 4296 0.4 4194 0.4 4322 0.4 4179

8 0.3 3504 0.4 3557 0.3 3359 0.4 3489

11 1.8 8125 1.7 8163 2.0 8253 1.8 8088

Avg 0.9 5534 0.9 5437 1.0 5584 0.9 5497

As we see in Table 3, the addition of valid inequalities has incremental effect, where

all valid inequalities help the decomposition algorithm to find an optimal solution faster

except inequality (30). Therefore, we omit this valid inequality for the other computational

tests.

We also analyse the effect of these improvements on the MIP and BA. Hence, we add all

effective algorithmic improvements to the MIP (“Imp-MIP”), Benders algorithm (“Imp-

BA”) and our decomposition algorithm (“Imp-DA”), and provide the results in Table 4.

As seen in Table 4, the preprocessing rules and valid inequalities help MIP converge to
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optimality faster within an average of 32.0 seconds, which means the average solution

time is now 50% lower. When we analyze the BA with improvements, while the average

time to solve all instances decreases to 106.9 seconds, one of the instances is not solved to

optimality within the given time limit. Finally, when we add all effective improvements to

DA, we see slightly better results within an average solution time of 0.8 seconds.

Table 4 Comparison of Our Algorithm with MIP and Benders Algorithm

|M | |T | α Imp–MIP Imp–BA Imp–DA

Time Time Gap #Sol Time #Cut

(s) (s) (%) (s)

40 40 2 2.8 7.6 0 10 0.2 2973

5 3.8 17.5 0 10 0.5 3987

8 6.3 44.4 0 10 1.4 7284

11 4.0 21.0 0 10 0.1 2753

40 80 2 70.3 123.7 0 10 1.8 9301

5 44.4 111.3 0 10 0.4 3872

8 47.7 160.4 0 10 0.2 2869

11 76.95 369.3 6.7 9 1.7 7741

Avg 32.0 106.9 0.8 9.9 0.8 5098

We visualize the computational results by using a performance profile chart (Dolan and

Moré 2002) for the set where M = 40 and T = 40. We use CPU time as the performance

metric. Figure 1 shows Ps(τ), which is the percentage of times that algorithm s can find

optimal solution within factor τ of the minimum solution time among all algorithms. For

example, if we choose τ = 100, the MIP method finds an optimal solution with a CPU time

within a factor of 100 of the minimum solution time in about 75% of the problem instances

while this value is around 25% for BA. Note that Ps(1) shows the percentage of times that
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algorithm s can find the optimal solution with minimum CPU value over all problem sets.

Also note that the solution times are not aggregated for different computational settings,

which means that we take all 4× 10 problem instances’ solution times.

No-imp.pdf

(a) Basic Algorithms

Imp.pdf

(b) Algorithms with Improvement

Figure 1 Performance Profile Chart

The trend is similar for both basic algorithms and the improved ones, where DA and

Imp-DA significantly outperform the other algorithms for all instances. The MIP can solve

all instances with a CPU time within a factor of approximately 150 of the minimum solution

time while this value is 450 for BA. These values get smaller when we use the improved

algorithms. For Imp-MIP and Imp-BA, all instances are solved with a CPU time within a

factor of approximately 100 and 300 of the minimum solution time, respectively.

5.2. Multi-Objective Problem Computational Analysis

Before we present the efficacy of our solution approach for the multi-objective setting, we

first show how a typical multi-objective solution looks like. Figure 2 shows the revenue and

cost objective function values and the complete Pareto frontier with the proposed solution

algorithm obtained for one of the problem instances in our test suite. As expected (0, 0) is
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a Pareto point in which none of the markets is selected. Similarly, selecting all markets also

yields a Pareto efficient solution having maximum revenue and maximum cost. The red

dot in the figure shows the optimal single objective solution maximizing the profit. Note

that while the set of extreme supported Pareto points results in a convex curve, since our

algorithm calculates complete Pareto frontier, the curve is not convex. As illustrated in

Figure 2, our algorithm can help decision makers better understand the tradeoff between

the additional revenue generated by increasing selected markets and the corresponding

operating costs.
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Figure 2 Revenue vs Cost for a Problem Instance

We now discuss the computational results for the multi-objective setting. We generate

data according to the same setting given in the single-objective part except that we have

different number of markets, which are 10, 20, 30 and 40, and a single setting for the time

period, which is 40. Since the algorithm does not give acceptable results within a given

time limit, we omit the results for the ones that have 80 time periods.



Van den Heuvel, Ağralı, and Taşkın: Integrated Market Selection and Production Planning
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 29

We report the results for different phases separately in Table 5, where for every row

we have 10 problem instances. In this table “Time” refers to the average amount of CPU

time in seconds per instance; “#points” refers to the total number of revenue-cost pairs

(possibly Pareto points) generated in Phase I; “#eff” refers to the total number of Pareto

points found in Phase II over ten instances; “%new eff” refers to the percentage of new

Pareto points found in Phase III; and finally “%imp” refers to the percentage of solutions

improved in Phase III (i.e., having the same revenue but less cost). Since the time required

for Phase II is in the order of milliseconds, we do not report it. Furthermore, the CPU

time of Phase III will be discussed in detail in Table 6 as there are two ways of performing

this phase.

Table 5 Summary for Multi-objective Problem

M T α Phase I Phase II Phase III

Time (s) #points #eff #new eff (%) #imp(%)

10 40 2 0.1 9167 332 0.00 0.00

5 0.1 9780 384 0.00 0.00

8 0.1 9738 328 0.00 0.00

11 0.1 9830 313 0.00 0.00

20 40 2 5.5 117898 1142 0.00 0.09

5 8.8 197826 1246 0.00 0.00

8 10.7 256660 1206 0.00 0.00

11 11.9 299606 1210 0.08 0.00

30 40 2 19.2 199700 2590 0.08 0.04

5 33.0 348890 2510 0.15 0.00

8 41.9 435434 2703 0.09 0.06

11 50.2 543976 2778 0.00 0.00

40 40 2 39.7 269894 4450 0.06 0.11

5 70.9 481981 4766 0.03 0.00

8 89.4 424177 3260 0.26 0.14

11 110.4 771142 5031 0.12 0.00

Avg 30.8 274106 2141 0.05 0.03
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As we see in Table 5, the required time to solve Phase I is less than one second for

small problem sizes. As the problem size increases, the required time also increases, where

the average time for all instances is 30.8 seconds. We can see the same trend for the

number of potential Pareto points generated with an average of 274,106 over all batches

of 10 instances. The number of Pareto points found in Phase II also increases with the

problem size in line with the number of points generated in Phase I. In Phase III, we solve

(MOp,q) over bounded intervals to possibly find a new Pareto point and/or improve the

already existing Pareto points. For only half of the instances we can find additional Pareto

points as seen in Table 5 and the percentage of these newly discovered points is 0.05% on

the average. Moreover, we can improve the points only for five out of 20 settings, and the

average improvement is 0.03%. These results show that the output of Phase II is a very

good approximation to the true Pareto efficient frontier.

We also test the effect of using the improved decomposition algorithm in Phase III

of our three-phase algorithm. We use the same setting as in the previous tests except

we use the improved decomposition algorithm that includes eligible and effective valid

inequalities (i.e., (29)). As we stated previously, since we run the decomposition algorithm

over bounded revenue intervals and these intervals are close to each other, we can reuse

the already generated cuts as starting point in the decomposition algorithm. We provide

the results of our computational study in Table 6, where the first four columns present the

results of the improved decomposition algorithm and the last four columns represent the

improved decomposition algorithm reusing cuts. In Table 6 “#iter” shows the number of

optimization problems solved in Phase III; “%prog” shows the ratio of segments that have

been processed to the number of segments after Phase II within the allowed time limit of

1200 seconds for each algorithm.
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Table 6 Analysis of Phase III

M T α Imp–DA Imp–DA–Pool

Time (s) #iter %prog #cuts Time (s) #iter %prog #cuts

10 40 2 0.7 322 100 916 0.5 322 100 701

5 0.8 374 100 929 0.5 374 100 687

8 0.7 318 100 928 0.5 318 100 709

11 0.6 303 100 798 0.4 303 100 616

20 40 2 17.1 1132 100 26201 15.6 1132 100 24489

5 17.3 1236 100 25758 15.3 1236 100 23942

8 15.8 1196 100 23334 13.9 1196 100 21462

11 18.7 1202 100 24699 17.0 1202 100 23011

30 40 2 1196.8 1587 62.8 164166 1189.3 1589 62.9 163494

5 891.0 1691 71.6 140733 882.8 1691 71.5 140618

8 772.8 1947 77.7 144380 765.9 1959 78.1 144966

11 945.2 1915 73.2 155132 931.9 1927 73.6 156356

40 40 2 1200 1773 40.5 131196 1200 1778 40.6 128606

5 1200 1539 34.5 115731 1200 1542 34.6 113599

8 1200 1329 42.4 126921 1200 1329 42.4 123308

11 1200 1850 37.5 126421 1200 1859 37.7 124190

Avg 542.4 1232 77.5 75515 539.6 1235 77.6 74422

As we see in Table 6, our algorithm provides provably optimal Pareto frontiers for the

setting with the market number of 10 and 20, and its progress reduces as the number of

markets increases. When we add all previously generated cuts as a pool (implemented via

CPLEX user cuts), the average time and the number of cuts slightly decrease, while the

number of optimization problems solved and the progress at the end of Phase II increase.

6. Conclusion

In this paper we study an integrated market selection and lot-sizing problem where a pre-

defined set of markets with demands throughout a deterministic set of time periods exists.

The demand for these markets are satisfied with a production plan that follows a lot-sizing

cost structure: fixed cost for each production period and a variable cost for each produc-

tion unit. The planner makes a decision on which markets to choose to satisfy the demand

throughout a planning horizon and obtain certain amount of revenue by this demand sat-

isfaction while planning the production periods. We consider the single-objective problem
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where the aim is to maximize the total net profit, which is calculated as the difference

between the total revenue obtained by market demand satisfaction and the total produc-

tion cost. We also introduce the multi-objective version of this integrated market selection

lot-sizing problem where the aims are to maximize the revenue and minimize the total

cost.

We propose a decomposition-based solution algorithm, in which the master problem

chooses markets whose demand is to be satisfied. Then, given a market selection, the sub-

problem for the decomposition algorithm turns out to be a lot-sizing problem for which

obtaining the dual variables can be done in polynomial-time. For the multi-objective prob-

lem, we propose a three-phase solution approach employing the decomposition algorithm

to find the full Pareto frontier. We test our algorithms on a set of instances provided in

the literature and show that we substantially improve the solution times.

As a future research direction it is possible to extend the problem so that market selection

and production planning is integrated with pricing. Including stochastic demand structure

for the markets can be considered as another future research avenue.
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