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Abstract We consider a supply chain setting where multiple uncapacitated facilities

serve a set of customers with a single product. The majority of literature on such prob-

lems requires assigning all of any given customer’s demand to a single facility. While

this single-sourcing strategy is optimal under linear (or concave) cost structures, it

will often be suboptimal under the nonlinear costs that arise in the presence of safety

stock costs. Our primary goal is to characterize the incremental costs that result from a

single-sourcing strategy. We propose a general model that uses a cardinality constraint

on the number of supply facilities that may serve a customer. The result is a complex

mixed-integer nonlinear programming problem. We provide a generalized Benders de-

composition algorithm for the case in which a customer’s demand may be split among

an arbitrary number of supply facilities. The Benders subproblem takes the form of an

uncapacitated, nonlinear transportation problem, a relevant and interesting problem

in its own right. We provide analysis and insight on this subproblem, which allows us

to devise a hybrid algorithm based on an outer approximation of this subproblem to

accelerate the generalized Benders decomposition algorithm. We also provide compu-

tational results for the general model that permit characterizing the costs that arise

from a single-sourcing strategy.
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1 Introduction and Motivation

Classical transportation problems determine the assignment of customers to supply

facilities in order to minimize total transportation cost while obeying supply limits

and meeting (deterministic) customer demands. In the absence of supply capacities,

an optimal solution exists for the transportation problem such that each customer’s

demand is assigned entirely to a single supply facility. The classical uncapacitated

facility location problem (UFLP) contains an embedded transportation subproblem,

with the addition of fixed costs for open supply facilities (see, e.g., [1, 10]). Because

this problem has a concave cost objective function (such that an extreme point optimal

solution exists), we again find that an optimal solution for the UFLP exists such that

a given customer’s demand is entirely assigned to a single supply facility. More recent

work considers practical generalizations of this class of problems that account not only

for fixed operating and variable assignment costs, but also for inventory-related costs

at facilities. In particular, when we consider contexts with uncertain demands, it is

important to consider the impacts of safety stock costs.

Chopra and Meindl [2] discuss general trends in supply chain costs as a function

of the number of facilities. For example, it is clear that an increase in the number of

facilities in a supply chain network results in a corresponding increase in facility costs.

Reducing the number of facilities, however, tends to increase outbound transportation

costs, which must be balanced against facility and inventory costs. Similarly, Chopra

and Meindl [2] note that an increase in the number of facilities tends to increase total

supply chain inventory costs due to the need to increase total system-wide safety stock

in order to meet customer service level expectations. Conversely, a reduction in the

number of facilities that hold safety stock permits a reduction in total safety stock cost

as a result of the risk-pooling benefits from aggregating safety stock in fewer locations.

As our results later illustrate, aggregation of safety stock at fewer location is not

necessarily required to gain risk-pooling benefits. That is, it is possible to increase the

number of supply facilities without a corresponding increase in safety stock cost, even

while maintaining a prescribed cycle service level at each facility. As we later discuss,

these risk-pooling benefits arise from splitting customer demands among facilities and

mixing multiple customer demands within a facility.

Because safety stock costs represent a non-trivial component of overall facility-

related costs, recent literature has recognized the need to account for safety stock costs

when making facility location decisions (e.g., [32]). The majority of this work, however,

continues to enforce single-sourcing restrictions, which are optimal for the UFLP and

uncapacitated transportation problems embedded in these larger inventory-location

problems. Unfortunately, safety stock costs cannot be represented, in general, as a

linear or concave function of the assignment decision variables. Thus, imposing single-

sourcing requirements on such inventory-location problems may be suboptimal when

compared to the problem in the absence of this requirement. Our primary goal in this

paper is, therefore, to improve our understanding of the degree of loss that may result

from enforcing a single-sourcing requirement.

Clearly there are some benefits to enforcing single-source requirements, although

these benefits are typically difficult to quantify. From a practical standpoint, customers

often prefer having a single point of contact for delivery and problem resolution. Simi-

larly, suppliers face lower coordination complexity under a single-sourcing arrangement.

Algorithmically, heuristic solution approaches are often easier to construct because of

the combinatorial nature of solutions to problems that use single-sourcing requirements.
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In contrast, in the absence of single sourcing, a customer has a built-in backup plan

when their demand is split among multiple sources, and one of the sources is unable

to deliver. With our goal of understanding the costs of single-sourcing in mind, we

address the following problem: Given a set of supply facilities, each with some fixed

location cost, and a set of customers, each with uncertain demand, determine which

supply facilities to open, which customers to assign to which supply facilities and what

level of inventory to hold in order to minimize total location, assignment and safety

stock costs, while achieving specified service levels and obeying a pre-determined limit

on the number of facilities that can supply any given customer.

Note that when the limit on the number of facilities that can supply any given

customer equals one, we have the single-sourcing constraint. When this limit equals N

(where N is the number of facilities), we effectively have no limit on the number of sup-

pliers that can serve a customer. This problem falls in the class of mixed-integer nonlin-

ear programming problems and is NP-hard (by virtue of generalizing the UFLP). Shen

et al. [32] consider a similar joint location-inventory problem with a single-sourcing

requirement that minimizes the cost of facility location, transportation, and holding

working process inventory and safety stock. Their model is similar to ours, except that

we do not require single sourcing and our model includes a cardinality constraint on the

number of sources that can supply a customer. Interestingly, when single-sourcing is

required and customer demands are normally distributed, the expression typically used

for safety stock cost is concave in the assignment decision variables (when we consider

the continuous relaxation of these assignment variables). When single sourcing is not

required, however, this expression is instead convex, destroying the concavity of the

objective function. Thus, the problem studied by Shen et al. [32] contains structural

properties that are lost when the single-sourcing requirement is dropped. França and

Luna [12] also study a similar problem where demand splitting is allowed (i.e., when a

customer’s demand may be split among multiple supply facilities). Instead of consid-

ering inventory-related costs at the supplier echelon, however, they consider inventory

holding and shortage costs at the customer stage, and provide a generalized Benders

decomposition algorithm to solve the problem.

In this paper, we first define and formulate a general model for assigning customers

to supply facilities when supplier safety stock costs are considered, demand splitting

is permitted, and customer demand distributions are approximated by a normal dis-

tribution (as in [32]). We analyze the special case with zero fixed facility costs, which

results in an interesting and practically relevant transportation problem with safety

stock costs. We demonstrate important properties of optimal solutions for special cases

of this class of transportation problems that, in some cases, lead to closed-form solu-

tions. Moreover, these optimal solution properties provide insight on effective ways to

manage risk due to uncertain demand in supply chains. We provide a generalized Ben-

ders decomposition algorithm and an acceleration strategy to solve the general problem

with fixed supply-facility operating costs. We then discuss the results of an empirical

study intended to characterize the cost of single-sourcing requirements.

The rest of this paper is organized as follows. Section 2 next reviews related lit-

erature on location-inventory problems. We define the general problem and model

formulation in Section 3, and discuss solution methods for special cases in which no

fixed cost component exists. Then we present the generalized Benders decomposition

algorithm in Section 4 and propose a hybrid algorithm that significantly accelerates

the generalized Benders approach. Section 5 discusses the results of our computational

study. Finally, concluding remarks are provided in Section 6.
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2 Literature Review

Since this paper addresses a location-inventory model, the literature on both facility

location and inventory theory is relevant to our work. We thus consider past work in

both of these areas, as well as at the intersection of these areas. In the classical facility

location problem, the aim is to determine locations of facilities and assignments of

retailers to these facilities that minimize the fixed facility location and transportation

costs. Thus, inventory related costs are not addressed. We refer the reader to [4, 6, 19,

25, 34] for a comprehensive review of facility location problems. On the other hand, the

inventory theory literature typically assumes that location decisions have been made

beforehand, and, based on this assumption, it evaluates inventory related decisions.

The aim is therefore to find the policy that minimizes inventory related costs while

meeting appropriate service levels at distribution centers or retailers (for examples,

please see [39]).

Joint location-inventory models have gained increased attention recently (see [22,

23, 24, 26, 30, 31, 32, 37]). The problem analyzed by Shen et al. [32] is closely related

to our work. In particular, Shen et al. [32] consider a joint location-inventory problem,

where multiple retailers−each with stochastic demand−are assigned to distribution

centers (DCs). Because of uncertain demand, some amount of safety stock must be

carried at distribution centers. In their model, they enforce a single-sourcing require-

ment, i.e., each customer’s demand must be assigned to a single DC. Shu et al. [33]

study a similar problem with one supplier and multiple retailers, where each retailer

can serve as a distribution center in order to achieve risk pooling benefits.

The solution methods applied to these location-inventory models typically depend

on the form of the objective function. The form of the objective function, in turn, de-

pends on the decision variable restrictions. For instance, if we have binary assignment

variables and an objective function that uses the squared values of these binary vari-

ables, then these squared terms can be linearized by simply replacing them with their

original binary values (since x = x2 for binary variables). This affects the convexity of

the safety stock cost component of the objective function and, therefore, the solution

techniques that can be successfully applied. We model our problem as a mixed-integer

nonlinear programming problem with continuous assignment variables. We, therefore,

need to consider solution techniques relevant to mixed-integer nonlinear programming

problems in general, and location-inventory problems in particular.

Recently, Ozsen et al. [27] studied a logistics system with a single plant and a set

of capacitated warehouses that serve as intermediaries between the plant and a set of

retailers, each of whom faces stochastic demand, which is Poisson distributed. They

assume that warehouses order a product from a single plant and carry safety stock in

order to meet appropriate service levels, and do not require single sourcing. Their model

assumes that each unit of retailer demand is randomly assigned to one of a number of

warehouses permitted to serve the associated retailer. The resulting model is a mixed

integer nonlinear program (MINLP) with an objective function that is neither convex

nor concave, and they propose a Lagrangian relaxation solution algorithm for solving

the model. We also relax the single-sourcing requirement by allowing a customer’s de-

mand to be split among supply facilities if it is economical to do so. However, while

Ozsen et al. [27] use a policy that randomly assigns each unit of retailer demand to

one of its supply facilities, our model assigns a predetermined fraction of each period’s

demand to a supply facility. Moreover, their model has an additional supply stage

from which DCs order replenishment batches, and they propose a Lagrangian relax-
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ation algorithm, while we propose an exact algorithm that uses generalized Benders

decomposition. Our modeling approach also departs from theirs in our demand distri-

bution assumptions, i.e., we assume normality of retailer demands, while they assume

Poisson. Their Poisson assumption leads to an important and nontrivial difference in

the functional form of the safety stock cost at each facility with respect to our model,

which is closely related to our discussion in the previous paragraph. In particular, their

approach leads to a safety stock term that is concave in the assignment variables, while

our safety stock function is convex in these variables. Thus, in addition to differences

in practical operational assumptions, our model differs from theirs in the mathematical

structure of the resulting optimization problem.

Lagrangian relaxation based algorithms have been widely used in the location-

inventory literature for problems that require single sourcing. Daskin et al. [5] consider

a problem similar to the one addressed in Shen et al. [32], where they account for

both working inventory and safety stock cost terms. They model this problem as a

nonlinear integer programming problem with binary assignment variables, and pro-

pose a Lagrangian relaxation solution algorithm. Similarly, Sourirajan et al. [36] apply

Lagrangian relaxation to a problem in which a production facility replenishes a single

product at multiple retailers. Their model determines the DC locations that minimize

total location and inventory costs. Snyder et al. [35], Ozsen et al. [26] and Miranda

and Garrido [20] also propose solution methods based on Lagrangian relaxation for

mixed-integer nonlinear models. However, each of these papers assumes that single

sourcing is required. Moreover, Lagrangian relaxation based solution methods do not

provide strictly better solutions than the continuous relaxation for several important

special cases of the problem we define in this paper (because of the so-called integrality

property; see [14]).

Several heuristic solution methods have also been proposed in the literature for

location-inventory problems. Erlebacher and Meller [9] consider a problem where prod-

ucts are distributed from plants to DCs and from DCs to retailers. Their aim is to

minimize the sum of the fixed operating costs of open DCs, inventory holding costs

at DCs, total transportation costs from plants to DCs, and transportation costs from

DCs to customers. DCs and customers are located on a grid, and each customer must

be assigned to a single DC; thus demand splitting is not allowed. They propose a

location-allocation heuristic that uses the better solution obtained using two differ-

ent approaches. The first approach assigns each customer to its closest DC and then

reduces the number of DCs by greedily reassigning customers to other DCs, until reach-

ing a predetermined number of open DCs. The second approach starts by assigning

one customer to each open DC (where the number of open DCs equals a predeter-

mined number), and then adds the remaining (unassigned) customers to DCs until all

customers are assigned.

As we have noted, our solution method uses generalized Benders decomposition

(see [13]), which has been used effectively for certain classes of mixed-integer nonlinear

programming problems [15, 18, 21]. For example, Hoc [16] considered a transportation

and computer communication network design problem with a budget constraint. Hoc

[16] formulated this problem as a mixed-integer nonlinear programming model and

proposed an approach using generalized Benders decomposition. França and Luna [12]

also proposed a similar algorithm for a location-inventory problem that is closely re-

lated to our work. In their model, they allow backordering with an associated penalty

function. Their model considers inventory holding cost at the retail level, whereas our
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model takes the supplier’s point of view, considering inventory costs at the supplier

level.

Benders decomposition is a powerful solution algorithm that has been applied to

many cases; however, as noted by [28] and [17], the straigthforward application of the

classical Benders decomposition algorithm leads to slow convergence in some cases.

Most acceleration methods are related to the generation of cuts and their properties.

Magnanti and Wong [17] propose an acceleration method that is based on selecting the

best optimal solution out of alternative optimal solutions of the subproblem, if any,

such that the generated Benders cut is pareto optimal. Saharidis et al. [29] observe

that the cuts produced by classical Benders algorithm are usually low-density cuts,

meaning that the number of decision variables of the master problem used in these

cuts are small, which have limited effect on stregthening the master problem. They

propose a new strategy in which multiple low-density cuts are produced instead of

a single cut at every iteration of the algorithm, which improves the efficiency of the

algorithm significantly. Generation of multiple cuts is also proposed by Saharidis and

Ierapetritou [28]. Their strategy is effective in cases where the number of feasibility

cuts produced is more than the optimality cuts.

Solving the master and subproblem can also be time consuming in some algorithms.

Cote and Laughton [3] propose an acceleration strategy in which, instead of solving

an integer program at every step, they relax the integrality constraint of the master

problem and solve its LP relaxation. Then, they apply a heuristic to determine when

to force integrality constraints in the master problem in order to guarantee conver-

gence. Zakeri et al. [38] suggest an algorithm that can be used to accelerate Benders

decomposition when solving the subproblem is the main issue related to the conver-

gence speed of the algorithm. They propose an inexact cut algorithm, in which cuts

are not obtained from an ectreme point solution of the subproblem, but instead they

used primal-dual-interior point algorithm to obtain a feasible dual solution, which will

yield a valid cut. As we will explain in Section 4, we use a similar idea to accelerate

the generalized Benders algorithm proposed in this paper. The next section formally

defines our problem, provides the mathematical model and analyzes two special cases.

3 Problem Definition and Mathematical Model

We consider a set J = {1, . . . , N} of potential supply facility locations, indexed by j,

such that opening a supply facility at location j results in a fixed cost of Fj for all

j ∈ J . We wish to satisfy the demand of a set I = {1, . . . ,M} of customers, indexed

by i, using some subset of the open facilities. Each customer has a random demand

of di per time period, and we assume that successive demands in different time incre-

ments are independent and identically distributed with mean µi and variance σ2
i . Each

supply facility requires achieving a prespecified service level which is supply-facility-

dependent. Because customer demands are random, each supply facility carries some

amount of safety stock to achieve this service level. The parameters and the decision

variables used in the model are as follows.

Parameters
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I set of customers, i.e., I = {1, 2, . . . ,M}, indexed by i

J set of supply facilities, i.e., J = {1, 2, . . . , N}, indexed by j

cij cost of assigning customer i to facility j

ĉij cost per unit of flow from facility j to customer i

hj annual cost of holding a unit of inventory at supply facility j

di random variable for customer i demand per year

µi expected value of di
σi standard deviation of di
Dj

∑

i∈I dixij , i.e., total demand allocated to supply facility j per year

Fj annualized fixed cost of opening supply facility j

Sj stock level at supply facility j at the beginning of a year (we assume zero supply lead time)

Ni maximum number of supply facilities that may serve customer i.

Decision Variables

xij proportion of customer i demand allocated to supply facility j

tij 1 if any supply is sent to customer i from supply facility j; 0 otherwise

yj 1 if supply facility j is opened; 0 otherwise

If we assign the fraction xij of customer i’s demand to supply facility j, then the

expected assignment cost equals cijxij , where cij = ĉijµi. We assume that all customer

demands are independent and normally distributed. Note that the demand seen by

supply facility j in a time period is normally distributed with mean µ(j) =
∑

i∈I µixij

and variance σ2(j) =
∑

i∈I σ
2
i x

2
ij , i.e., Dj ∼ N(µ(j), σ2(j)).

We assume that supply facility j follows a base stock policy, and orders up to a stock

level Sj at the beginning of every period, such that Pr{Dj ≤ Sj} = δj ; let z
δ
j =

Sj−µ(j)
σ(j)

denote the corresponding z value, i.e., Φ(zδj ) = δj . The expected annual safety stock

cost at supply facility j is then given by hjz
δ
j

√

∑

i∈I σ
2
i x

2
ij . This set of assumptions

is consistent with situations in which the supply facility corresponds to a distribution

center that receives regular periodic shipments (e.g., weekly) from external suppliers,

and is required to meet prespecified service level targets. Observe that although the

demands seen by different facilities in a period may be correlated, because we assume

that facilities do not share inventory, this correlation does not affect the stock level

set at a facility. That is, each facility independently manages stock at its own facility

based on the distribution of demand it observes, and there is not mechanism to centrally

use information regarding demand correlation at different facilities within a period to

better manage stock levels.

We wish to decide which supply facilities to open and how to allocate the demand

of each customer i to at most Ni of these open supply facilities in order to minimize

the total expected cost. We formulate this location-inventory problem (LIP) as follows:
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(LIP) Z = Minimize
∑

j∈J

Fjyj +
∑

i∈I

∑

j∈J

cijxij +
∑

j∈J

hjz
δ
j

√

∑

i∈I

σ2
i x

2
ij

(1)

Subject to
∑

j∈J

xij ≥ 1, ∀i ∈ I, (2)

∑

j∈J

tij ≤ Ni, ∀i ∈ I, (3)

0 ≤ xij ≤ tij ≤ yj , ∀i ∈ I, j ∈ J, (4)

yj , tij ∈ {0, 1}, ∀i ∈ I, j ∈ J. (5)

The objective function (1) minimizes the sum of the fixed cost of locating supply

facilities, the assignment and variable cost from supply facilities to customers, and

the safety stock costs. Constraint set (2) ensures that each customer’s demand is fully

assigned to supply facilities. Note that this constraint will be satisfied at equality in

an optimal solution. Constraint set (3) limits the number of supply facilities that can

serve customer i to at most Ni. Constraint set (4) permits assigning customer demand

only to open supply facilities, forces yj to 1 if tij = 1 and tij to 1 if xij > 0. This

constraint also ensures nonnegativity of the assignment proportion variables (xij ’s).

Constraint set (5) reflects the integrality requirements.

Letting φ(x) =
∑

i∈I

∑

j∈J cijxij+
∑

j∈J hjz
δ
j

√

∑

i∈I σ
2
i x

2
ij , the following lemma

helps in characterizing the structure of the objective function of (LIP).

Lemma 1 φ(x) is convex in x.

Proof: Please see the Appendix. �

Lemma 1 implies that (LIP) becomes a convex program for given yj and tij vari-

ables. We will use this fact later when constructing a Benders decomposition algorithm.

Before discussing a solution technique for the general model, we would like to analyze

two special cases of (LIP). Both of these special cases assume that locations are fixed,

or equivalently, a fixed value of the vector of yj variables, which we denote by ỹ (note

that this is equivalent to the assumption of zero fixed costs). These special cases also

assume that Ni = N for all i = 1, . . . , N , which permits dropping constraint set (3)

and the t-variables from the formulation. The resulting problem is an uncapacitated

transportation problem with safety stock costs which, to the best of our knowledge, has

not been considered in the literature. While the resulting problem is a convex program

(and is therefore readily solved using commercial optimization packages), the analy-

sis of particular special cases of this problem class leads to some interesting structural

properties of optimal solutions, and provides insight on managing the tradeoffs between

transportation and safety stock costs.

3.1 Nonlinear transportation problem

This section analyzes two special cases of the uncapacitated nonlinear transportation

problem (where all locations decisions are fixed and no cardinality constraint exists

on the number of suppliers that can serve a customer). The first special case assumes
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identical customer variances and supply-facility-invariant costs, while the second special

case considers a two-by-two problem with specially structured assignment and holding

costs that lead to a simple closed-form optimal solution.

3.1.1 Identical supply costs and customer variances

We first consider a special case with identical supply facilities (in terms of supply

facility costs) where customer demand variances are identical. For this special case and

the one discussed in the following subsection, we assume that locations are fixed, which

results in an uncapacitated transportation problem with safety stock costs.

By Lemma 1 we know that the objective function of this special case is a convex

function of x. Since all of the constraints of (LIP) are linear in x, the problem with

zero fixed costs for facilities is a convex programming problem such that the KKT

conditions are necessary and sufficient for optimality for this special case (note that

any feasible solution such that
∑

i∈I xij = 0 violates the differentiability assumption

required for application of the KKT conditions at the associated point; however, we

are able to consider such solutions separately in our analysis).

For this special case, we assume the assignment cost is customer-specific and equal

to ci for customer i, i.e., cij = ci for all j ∈ J and for each customer i. We will refer

to cases in which transportation costs are facility invariant as cases with symmetric

transportation costs. We also assume that the supply facility unit holding costs and

required cycle service levels are identical for all supply facilities, and that all customer

demand variances are equal, i.e., hj = h and zδj = zδ for all j ∈ J and σ2
i = σ2 for

all i ∈ I . Letting µ and β denote the vectors of KKT multipliers for the assignment

constraints (2) and nonnegativity constraints on the xij variables, we next analyze the

KKT conditions for this special case, which can be written as follows.

ci + hzδσ
xij

√

∑

i∈I x
2
ij

− µi − βij = 0, ∀i ∈ I, j ∈ J, (6)

µi

(

1−
∑

j∈J
xij

)

= 0, ∀i ∈ I, (7)

βijxij = 0, ∀i ∈ I, j ∈ J, (8)
∑

j∈J
xij ≥ 1, ∀i ∈ I, (9)

µi, βij , xij ≥ 0, ∀i ∈ I, j ∈ J. (10)

Given a solution and any supply facility j, let I(j) denote the set of customers

such that xij > 0. Similarly, denote J(i) as the set of facilities such that xij > 0. The

following theorem characterizes the structure of optimal solutions for this special case.

Theorem 1 Any feasible solution such that

1. xij = 1
ωj

for some finite ωj ≥ 1 ∀j ∈ J, i ∈ I(j) (with xij = 0 ∀i /∈ I(j)); and

2.
∑

j∈J(i)
1
ωj

= 1 for all i ∈ I

satisfies the KKT conditions, and is therefore optimal for the special case we have

described.

Proof: Please see the Appendix. �
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Theorem 1 implies that any balanced solution is optimal under identical supply costs

and identical customer variance values. That is, provided that all customers assigned

to a supply facility have an equal fraction of their expected demand allocated to the

supply facility, the solution is optimal. Thus, for example, an optimal solution exists

such that all customers are assigned to a single supply facility, which is consistent with

the well known use of inventory aggregation to obtain safety stock risk pooling benefits.

Theorem 1 illustrates that we can obtain the same degree of risk pooling benefits in

a number of different ways, without requiring inventory aggregation. That is, given a

problem with N facilities and N customers, for example, a solution such that all N

facilities are open, and 1
N of each customer’s demand is allocated to each open facility

achieves the same degree of risk pooling benefits of aggregating all inventory at a single

facility (for this special case). This illustrates the fact that one can achieve risk pooling

benefits without physical aggregation by splitting customers’ demands among different

facilities, and mixing the demands of multiple customers within a facility. Clearly,

when accounting for fixed costs of identical facilities, the solution that aggregates all

customers at one facility (a single-sourcing solution) is preferred when all customers

and facility costs are identical. When neither facilities nor customers are identical,

however, solutions that require single sourcing are often suboptimal, as we later show

in our computational results section, and as the special case discussed in the following

subsection illustrates.

3.1.2 Specially structured assignment and holding costs

We next consider a specially structured case with two suppliers and two customers. For

this special case, we assume that facility holding costs and service levels are equal, as

are customer variances, i.e., hj = h and zδj = zδ for j = 1, 2 and σ2
i = σ2 for i = 1, 2.

Then, letting H = hzδσ, we assume the following assignment cost relationship holds

for some α between 0 and 1:

c11 = c12 +Hg(α), (11)

c22 = c21 +Hg(α), (12)

where g(α) =
(1−2α)√

α2+(1−α)2
. Note that this permits values of c11 ∈ [c12 − H, c12 +

H ] and c22 ∈ [c21 − H, c21 + H ]. Observe that when α = 1
2 we have a symmetric

transportation cost instance with c11 = c12 and c22 = c21, which results in the special

case in which assignment costs are facility independent (as in the special case discussed

in the previous subsection). For the two-by-two special case in which facility holding

costs and customer variances are equal, and assignment costs obey (11) and (12), we

have the following proposition.

Proposition 1 For a two-supplier, two-customer problem instance with identical sup-

plier holding costs, service levels, and customer demand variances, when the assign-

ment costs obey (11) and (12), an optimal solution exists such that x11 = x22 = α

and x12 = x21 = 1− α, with minimum cost c11 + c22 + 2H α√
α2+(1−α)2

= c12 + c21 +

2H
(1−α)√

α2+(1−α)2
.

Proof: Please see the Appendix.
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Observe that when α = 1
2 , the symmetric cost case, the optimal cost equals c12 +

c22 +
√
2H = c11 + c21 +

√
2H = c11 + c22 +

√
2H = c12 + c21 +

√
2H . In this

case, any one of the following solutions is optimal: (x11, x12, x21, x22) =
(

1
2 ,

1
2 ,

1
2 ,

1
2

)

;

(x11, x12, x21, x22) = (0, 1, 0, 1); (x11, x12, x21, x22) = (1, 0, 1, 0). This case is consistent

with the special case covered in the previous section, where an optimal solution exists

that allocates 1
ωj

of each customer’s demand to each active facility, where ωj is the

number of customers assigned to facility j. When α = 1 (α = 0), an optimal solution

sets (x11, x12, x21, x22) = (1, 0, 0, 1) ((x11, x12, x21, x22) = (0, 1, 1, 0)) with an optimal

cost of c11 + c22 + 2H (c12 + c21 + 2H). In this case, the difference in transportation

cost does not offset any benefits from risk pooling. While in each of the cases with

α ∈
{

0, 12 , 1
}

an optimal single-sourcing solution exists, the following corollary shows

that this is not the case for the remaining values of α on the interval [0, 1].

Corollary 1 For the two-supplier, two-customer problem class described, the differ-

ence between the objective function value of the minimum-cost single-sourcing solution

and that of the minimum-cost solution with demand splitting equals H × ρ(α), where

ρ(α) = min

{

2

(

1− max{α,1−α}√
α2+(1−α)2

)

;
√
2− 1√

α2+(1−α)2

}

.

Proof: Please see the Appendix.

Figure 1 illustrates the value of ρ(α) for α ∈ [0, 1]. We can show that the peak val-

ues occur at the values of α such that the terms in the minimum operator given in the

corollary are equal. This occurs at α = 0.2725 and α = 0.7275, where ρ(α) = 12.7%.

At either of these values of α the minimum cost single-sourcing solution exceeds the

minimum possible cost by 0.127H , while the actual percentage cost increase associated

with single sourcing depends on the transportation and holding cost parameter values.

This analysis illustrates the fact that single-sourcing solutions are either optimal or

close-to-optimal when transportation costs are symmetric (as is the case when α = 1
2 )

or severely asymmetric (as is the case when α = 0 or 1). In the former case, multiple op-

timal solutions exist (using either one or two facilities) while in the latter case, a single

optimal solution exists that uses the dominant facility (in terms of lower transportation

costs). For intermediate cases, however (when transportation costs are neither symmet-

ric nor grossly asymmetric), the cost of a single-sourcing strategy can exceed that under

a demand splitting strategy by a non-trivial amount. Our computational tests on the

general model with location decisions (and associated costs), presented later in Section

5, illustrate this phenomenon further, by showing cost increases associated with single

sourcing on the order of 2− 7%.

4 Solution Algorithms for (LIP)

This section returns to the general (LIP) model and provides an effective solution ap-

proach for this problem class. We present our solution algorithm in two sections. We

start by reformulating problem (LIP) in a form that is amenable to applying general-

ized Benders decomposition algorithm. Then, we use an outer approximation approach

to solve the subproblem that results in our hybrid Benders decomposition/outer ap-

proximation approach.
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Fig. 1 Cost increase multiplier for single-sourcing as a function of α.

4.1 A Generalized Benders Decomposition Approach for (LIP)

This subsection provides the generalized Benders decomposition algorithm that we

propose to solve (LIP). Recall that for a fixed location vector ỹ and a feasible binary

assignment vector t̃, from Lemma 1, we know that the remaining problem is a convex

program. Let us temporarily fix the location vector at ỹ and the binary assignment

vector at t̃, such that constraints (3), (4) and (5) admit a feasible solution in the xij
variables. Then the associated restricted problem becomes

(LIP(̃t, ỹ)) Minimize
∑

j∈J

Fj ỹj +
∑

i∈I

∑

j∈J

cijxij +
∑

j∈J

hjz
δ
j

√

∑

i∈I

σ2
i x

2
ij

Subject to
∑

j∈J

xij ≥ 1, ∀i ∈ I,

0 ≤ xij ≤ t̃ij , ∀i ∈ I, j ∈ J. (13)

Note that the fixed-charge component,
∑

j∈J Fj ỹj , in the objective function is a con-

stant for a given vector ỹ. Similarly, the right-hand-side value of each constraint in set

(13) is either 0 or 1, depending on the value of t̃ij . We also note that (LIP(̃t, ỹ)) is

feasible if and only if
∑

j∈J t̃ij ≥ 1 for all i ∈ I .

We can then write our original problem (LIP) in the space of the vector of tij and

yj variables as

(LIP′) Minimize
∑

j∈J

Fjyj + v(t)

Subject to
∑

j∈J

tij ≤ Ni, ∀i ∈ I,

∑

j∈J

tij ≥ 1, ∀i ∈ I, (14)

tij ≤ yj , ∀i ∈ I, j ∈ J,

tij , yj ∈ {0, 1}, ∀i ∈ I, j ∈ J,
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where, for any given vector t, the value v(t) is determined by the following subproblem

(LISP):

(LISP) v(t) = Minimize
∑

i∈I

∑

j∈J

cijxij +
∑

j∈J

hjz
δ
j

√

∑

i∈I

σ2
i x

2
ij

Subject to
∑

j∈J

xij ≥ 1, ∀i ∈ I,

0 ≤ xij ≤ tij , ∀i ∈ I, j ∈ J. (15)

(Note that constraint set (14) in LIP′ ensures feasibility of the subproblem LISP.)

Since (LISP) is a convex program with linear constraints for a fixed t vector, its KKT

conditions are necessary and sufficient for optimality (note that since the square root

function is not differentiable at zero, the KKT conditions do not apply at this single

point; if, however, we consider the approximate problem with each square root term

replaced by
√

ε+
∑

i∈I σ
2
i x

2
ij , for arbitrarily small ε > 0, then the KKT conditions

are necessary and sufficient for this approximate problem). Problem (LISP) is therefore

amenable to dualization techniques, and its optimal dual objective function value equals

the optimal primal objective function value. Define the vectors of dual variables µ =

(µ1, . . . , µm) ≥ 0 and λ = (λ11, . . . , λmn) ≥ 0 corresponding to the two constraint sets

in (LISP). Then we can write the Lagrangian dual as

v(t) = max
µ≥0,λ≥0



min
x≥0



φ(x) +
∑

i∈I

µi(1−
∑

j∈J

xij) +
∑

i∈I

∑

j∈J

λij(xij − tij)







 , (16)

where φ(x) =
∑

i∈I

∑

j∈J cijxij +
∑

j∈J hjz
δ
j

√

∑

i∈I σ
2
i x

2
ij .

Problem (LIP) is therefore equivalent to the following Master Problem (MP):

(MP) Minimize
∑

j∈J

Fjyj + θ

Subject to θ ≥ min
x≥0

[φ(x) +
∑

i∈I

µi(1−
∑

j∈J

xij) +
∑

i∈I

∑

j∈J

λij(xij − tij)],

∀µ ≥ 0, λ ≥ 0,

(17)
∑

j∈J

tij ≤ Ni, ∀i ∈ I, (18)

∑

j∈J

tij ≥ 1, ∀i ∈ I,

tij ≤ yj , ∀i ∈ I, j ∈ J,

tij , yj ∈ {0, 1}, ∀i ∈ I, j ∈ J,

θ ≥ 0.

Clearly we cannot write the above formulation with a constraint of the form (17) for all

possible values of µ and λ. We therefore generate valid cuts successively that correspond

to specific values of the vectors µ and λ and add them to the formulation in an iterative

fashion (such cuts are generally referred to as Benders cuts). Given a particular binary
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vector tk we can solve the convex program (LISP) and recover corresponding optimal

dual multiplier vectors µk and λk. We can then write

v(tk) = min
x≥0





∑

i∈I

∑

j∈J

cijxij +
∑

j∈J

hjz
δ
j

√

∑

i∈I

σ2
i x

2
ij +

∑

i∈I

µk
i (1−

∑

j∈J

xij) +
∑

i∈I

∑

j∈J

λkij(xij − tkij)





=
∑

i∈I

µk
i −

∑

i∈I

∑

j∈J

λkij t
k
ij +min

x≥0





∑

i∈I

∑

j∈J

(cij + λkij − µk
i )xij +

∑

j∈J

hjz
δ
j

√

∑

i∈I

σ2
i x

2
ij



 .

(19)

We therefore have that minx≥0

[

∑

i∈I

∑

j∈J (cij + λkij − µk
i )xij +

∑

j∈J hjz
δ
j

√

∑

i∈I σ
2
i x

2
ij

]

=

v(tk)−
∑

i∈I µ
k
i +

∑

i∈I

∑

j∈J λkij t
k
ij . Substituting this in (17) provides the following

Benders cut for (MP) corresponding to the dual multipliers µk and λk

θ ≥ v(tk)−
∑

i∈I

∑

j∈J

λkij(tij − tkij). (20)

Our Relaxed Master Problem (RMP) then becomes

(RMP) Minimize
∑

j∈J

Fjyj + θ

Subject to θ ≥ v(tk)−
∑

i∈I

∑

j∈J

λkij(tij − tkij), ∀k = 1, . . . ,K,

∑

j∈J

tij ≤ Ni, ∀i ∈ I,

∑

j∈J

tij ≥ 1, ∀i ∈ I,

tij ≤ yj , ∀i ∈ I, j ∈ J,

tij , yj ∈ {0, 1}, ∀i ∈ I, j ∈ J,

θ ≥ 0,

where K denotes the number of Benders cuts we have generated. For a given tk vector,

the above Benders cut implicitly accounts for all constraints of the form of (17) (for

all possible µ and λ), because λk and µk maximize v(tk) over all µ and λ. Note that

the (RMP) formulation is a 0-1 integer program plus a single continuous variable θ. At

each iteration, we solve the (RMP) to obtain a (possibly) new tk vector. Given this tk

vector, we then solve the subproblem (LISP) to determine the corresponding optimal

dual (KKT) multiplier values. We then add the new constraint (20) to the (RMP)

formulation. If the value of θ at the previous iteration does not violate this new cut

at the previous tk, then the current solution is optimal. Otherwise we re-solve (RMP)

and repeat this procedure until the same tk vector is optimal in successive iterations.

In the worst case, if we were to generate a constraint of the form of (20) for all possible

t vectors, the resulting (RMP) formulation would be equivalent to (MP). In practice,

however, a relatively small number of such cuts are needed to find an optimal solution.

We next formalize the algorithm as follows.
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Step 1: Choose an initial pair of vectors y0 and t0 that ensure a feasible solution

for (LISP) and select an optimality tolerance ε. Solve (LISP) at t = t0, obtaining x0

and corresponding optimal µ0 and λ0 vectors. Set UB =
∑

j∈J Fjy
0
j + v(t0) and let

(x̄, t̄, ȳ) = (x0, t0,y0) denote the initial incumbent solution.

Step 2: Solve the (RMP) with all previously generated cuts. Let (θ∗, t∗) denote

an optimal solution to (RMP), and let LB = θ∗ +
∑

j∈J Fjy
∗
j . If UB − LB < ε, stop.

Step 3: Solve (LISP) at t = t∗, denoting x∗ as the optimal solution vector

and v(t∗) as the optimal solution value. If
∑

j∈J Fjy
∗
j + v(t∗) < UB, set UB =

∑

j∈J Fjy
∗
j + v(t∗) and update the incumbent solution, i.e., let (x̄, t̄, ȳ) = (x∗, t∗,y∗).

If UB − LB < ε, stop; (x̄, ȳ) is a ε-optimal solution. Otherwise, recover the optimal

dual multiplier vectors µ∗ and λ∗, add the corresponding cut (20) to the (RMP) for-

mulation and return to Step 2.

Remark 1 If Ni = N for all i ∈ I , then the t-variables are not needed and can be

removed from the master problem, thus significantly reducing the number of binary

variables. In this case RMP can be simplified as:

(RMPN) Minimize
∑

j∈J

Fjyj + θ

Subject to θ ≥ v(tk)−
∑

i∈I

∑

j∈J

λkij(yj − ykj ), ∀k = 1, . . . ,K,

(21)
∑

j∈J

yj ≥ 1, (22)

yj ∈ {0, 1}, ∀j ∈ J,

θ ≥ 0,

where yk represents the y-vector generated at iteration k. The Benders cut can be

written in terms of the y-variables as (21). Finally, (22) ensures feasibility of LISP,

which needs to be updated so that Constraints (15) are replaced by

0 ≤ xij ≤ yj , ∀i ∈ I, j ∈ J.

4.2 Hybrid Benders Decomposition/Outer Approximation Algorithm

Our preliminary computational results revealed that solving the subproblem actually

serves as a bottleneck for our generalized Benders decomposition approach. We note

that the subproblem should be solved to optimality at each iteration to ensure validity

of the generated Benders cuts. However, in our initial computational tests, we observed

that repeatedly solving the subproblem, which is a nonlinear programming problem,

to optimality is computationally expensive. Observe that the subproblems solved at

successive iterations of our decomposition algorithm are closely related. However, this

similarity cannot be exploited without a practical warm-start capability, and the sub-

problem therefore must be solved from scratch at each iteration. In this section, we

develop an algorithm for the subproblem to remedy these difficulties.

Recall that our subproblem has a convex objective function and linear constraints.

Since the tij variables only appear in constraints (15), only the upper bounds on the
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x-variables are modified between iterations, and the objective function does not depend

on t. Our main observation is that if we can reformulate the objective function as a

set of linear constraints, then our subproblem can be solved as a linear program. Since

linear programs can be solved to optimality efficiently and can also be re-optimized

efficiently after changing variable bounds, we expect such a reformulation to yield a

computationally attractive solution algorithm for our subproblem.

These observations inspired us to design an algorithm that can use information

from previous iterations to solve the subproblem, and that eliminates the need to re-

solve the subproblem to optimality at each iteration. This section provides an outer

approximation method that can be used to solve (LISP). Outer approximation was

proposed by Duran and Grossmann [7, 8] for a class of MINLP problems containing

continuous variables whose feasible set is nonempty, compact, and convex, and such

that functions of these continuous variables are continuous and differentiable. Our

subproblem (LISP) possesses these properties, and, therefore, outer approximation can

be employed for its solution.

The idea behind outer approximation (linearization) is similar to that applied in

generalized Benders decomposition: at each iteration we generate upper and lower

bounds on the problem’s optimal solution. By using the variable values obtained using

a linear approximation to the problem, we can compute these upper and lower bounds.

The lower bound is the objective function value of the approximate problem, and the

upper bound results from inserting the resulting x variable values into the original

objective function. As this algorithm proceeds, the lower and upper bounds become

closer, and they converge within ε in a finite number of iterations (see Floudas [11]).

Recall the subproblem for fixed assignment variables tk (henceforth we will refer

to this subproblem as the primal problem of the linearization):

η(t) = Minimize φ(x)

Subject to
∑

j∈J

xij ≥ 1, ∀i ∈ I,

0 ≤ xij ≤ tkij , ∀i ∈ I, j ∈ J.

where φ(x) =
∑

i∈I

∑

j∈J cijxij+
∑

j∈J hjz
δ
j

√

∑

i∈I σ
2
i x

2
ij . (Recall that we overcome

any infeasibility issues by adding a constraint to the master problem that requires

assigning customers to at least one facility, i.e.
∑

j∈J tij ≥ 1, for all i ∈ I .)

Our linearization of η(t) will be defined in terms of an infinite set of supporting

functions, which corresponds to a linearization of φ(x) at all feasible xk points. We also

note that φ(x) contains the linear term,
∑

i∈I

∑

j∈J cijxij , and we need not, therefore,

linearize φ(x). Instead, we will only linearize the nonlinear term,
√

∑

i∈I σ
2
i x

2
ij , for each

facility. Then, the primal problem for the linearized subproblem (LISP) can be written

as

(PPOA) π(t) = Minimize
∑

i∈I

∑

j∈J

cijxij +
∑

j∈J

hjz
δ
jκj(x)

Subject to
∑

j∈J

xij ≥ 1, ∀i ∈ I,

0 ≤ xij ≤ tkij , ∀i ∈ I, j ∈ J, (23)
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where κj(x) =
√

∑

i∈I σ
2
i x

2
ij . Because of the convexity and continuous differentiability

of κj(x) (except at 0), the following condition is satisfied for all feasible xk and all

facilities j ∈ J :

κj(x) ≥ κj(x
k) +∇κj(x

k)(x− xk) (24)

Then, we can write the master problem for our linearization approach as

(MPOA) χ(t) = Minimize
∑

i∈I

∑

j∈J

cijxij +
∑

j∈J

hjz
δ
j ξ

OA
j

Subject to ξOA
j ≥ κj(x

k) +∇κj(x
k)(x− xk), ∀j ∈ J, k ∈ F

∑

j∈J

xij ≥ 1, ∀i ∈ I,

0 ≤ xij ≤ tkij , ∀i ∈ I, j ∈ J

κj(x
k) +∇κj(x

k)(x− xk) ≥ 0, ∀j ∈ J,

where F = {k : xk is a feasible solution to the primal problem (PPOA)}. Then, the
formal algorithm for the linearization approach can be given as follows:

Algorithm OA

Step 0: Input: Feasible t, an optimality tolerance ε and a counter k.

Step 1: Solve the master problem of the outer approximation (MPOA) for t with

all previously added constraints, and obtain an optimal solution xk and corresponding

optimal dual λ vector. Set the lower bound LBOA = χ(t).

Step 2: Solve (PPOA) to calculate the value of π(tk) by using the optimal xk

values obtained in the previous step. Set UBOA = π(tk). If UBOA − LBOA ≤ ε, go

to Step 3. Otherwise, calculate ∇κj(x
k) for each j ∈ J , obtain a new constraint (24),

add it to (MPOA), set k = k + 1 and return to Step 2.

Step 3: Output: Optimal xk and λk vectors, and χ(tk).

Note that at each iteration, by adding supporting vectors to (MPOA), we obtain a

better approximation of the subproblem. We can use these valid cuts at each successive

iteration of the Benders algorithm because at each iteration we add a new constraint

that provides a better approximation of the objective function and is independent of

the vector t.

The new Benders cut that we obtain from the linearization approach is

θ ≥ χ(tk)−
∑

i∈I

∑

j∈J

λkij(tij − tkij) (25)

where λk denotes the vector of dual variables associated with constraints (23) at iter-

ation k. This Benders cut is valid for any ε that is selected to solve the linearization

because χ(t) gives us a lower bound on the optimal subproblem solution at any it-

eration of the linearization algorithm. Since we do not need to solve the subproblem

to optimality to obtain valid cuts, and because we can use the previously generated

supporting vectors for the subproblem at any iteration, we have designed a hybrid al-

gorithm that uses Benders decomposition with an embedded linearization algorithm.
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Hybrid Algorithm. In this hybrid algorithm, we use the linearization algorithm to

solve the subproblems of the Benders decomposition algorithm. We start with feasible

y and t variables and solve the subproblem with a higher value of optimality tolerance,

ε′. The reason for not solving the subproblem to optimality, i.e., with a smaller value

of an optimality tolerance, is because we do not want to spend a lot of time solving the

subproblem for values of y and t that may not serve as a good choice with respect to

the Benders master problem. We first solve the subproblem approximately, i.e., with

a higher optimality tolerance, obtain a new Benders cut that we add to the master

problem, and then obtain new y and t-variables. We continue solving the subproblem

approximately until we obtain y and t variables that have previously been investi-

gated. When we encounter previously investigated variables, we solve the subproblem

to optimality, i.e., with a smaller optimality tolerance, ε′′, where ε′′ << ε′. We then

obtain a new Benders cut and continue the procedure until the Benders decomposi-

tion algorithm terminates within an optimality tolerance of ε. This approach saves an

important amount of CPU time, and therefore permitted solving much larger problem

instances.

The formal algorithm can be given as follows:

Step 1: Choose an initial pair of vectors y0 and t0 that ensure a feasible solution

for (LISP). Add (y0, t0) to the set S. Select an optimality tolerance ε for the Benders

algorithm, and set the counter l = 0 and UBB = ∞.

Step 2: Solve the subproblem using Algorithm OA with input tl and ε′ to obtain

a χl value and xl and λl vectors.

Step 3: Calculate the current upper bound ŪBB =
∑

j∈J Fjy
l
j+π(tk). If ŪBB <

UBB , set UBB = ŪBB and update the incumbent solution, i.e., let (x̄, t̄, ȳ) =

(x∗, t∗,y∗).

Step 4: Add a Benders cut (25) to (RMP). Solve (RMP) with all previously gen-

erated cuts. Let (θ∗,y∗, t∗) denote an optimal solution to (RMP), and let LBB =

θ∗ +
∑

j∈J Fjy
∗
j .

Step 5: If UBB − LBB < ε, stop. Otherwise, let (yl, tl) = (y∗, t∗). If (y∗, t∗) ∈
S, go to Step 2 and solve the subproblem to within an optimality tolerance of ε′′.

Otherwise, add (yl, tl) to the set S, set l = l+1, and go to Step 2 using an optimality

tolerance of ε′.

Remark 2 Our hybrid algorithm is similar to Zakeri et al. [38]’s method for acceler-

ating Benders decomposition for problems where the subproblem is a large-scale linear

programming problem. In particular, Zakeri et al. [38] propose solving the linear sub-

problem using a primal-dual interior point method, terminating the solution process

before optimality is reached and generating “inexact Benders cuts.” Recall that our

subproblem is a convex nonlinear programming problem, whose repeated solution to

optimality requires a significant amount of CPU time. We solve the subproblem ap-

proximately using an outer approximation approach and generate inexact Benders cuts

before optimality is reached. Furthermore, similar to Zakeri et al. [38], we modify the

optimality tolerance dynamically to ensure that the subproblem is initially solved to

a coarse approximation and the approximation is refined when necessary. Therefore,

our approach can be viewed as an acceleration method for generalized Benders decom-

position similar to Zakeri et al. [38]’s acceleration method for the classical Benders

decomposition.
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5 Computational Results

In this section we first compare the efficacy of our hybrid algorithm with the direct

solution of the problem (LIP) using a commercial solver and the implementation of the

classical generalized Benders decomposition algorithm on small and medium problem

instances. We then present computational results on our hybrid algorithm for large

problem instances. Finally, we provide a computational characterization of the incre-

mental costs that result from a single-sourcing strategy.

5.1 Comparison of Our Hybrid Algorithm with GAMS/BARON and Generalized

Benders Algorithm

We first attempted to solve the problem (LIP) using GAMS/BARON, a commercial

mixed-integer nonlinear solver. We use six different data sets that have different pa-

rameter settings, as shown in Table 1. Our test instances contain five supply facilities,

each of which has a fixed cost that is uniformly distributed between 400 and 500, i.e.,

Fj ∼ U [400, 500], and five customers, each of which has demand that has an average

that is uniformly distributed between 4000 and 6000, i.e. µi ∼ U [4000, 6000]. We take

two different coefficient of variation values for demand as shown in the third column

of Table 1. We take holding cost of items at each facility as 1, and vary the unit flow

cost as shown in the second column of Table 1.

Table 1 Data parameter settings for algorithm comparison.

Data Set # cij CoV (σ/µ)
1 U [0.05, 0.55] 0.3
2 U [0.05, 0.95] 0.3
3 U [0.05, 1.35] 0.3
4 U [0.05, 0.55] 0.4
5 U [0.05, 0.95] 0.4
6 U [0.05, 1.35] 0.4

For each data set given in Table 1, we generated 10 random instances, resulting in

60 test instances in total. In all these instances, we assume that Ni = 5, which means

practically there is no limit on the number of supply facilites to which a customer

can be assigned. We limit the CPU time to 1200 seconds for each problem instance

while using GAMS/BARON to solve these instances. We implemented the problem on

GAMS 23.6 and performed all tests on a Windows XP PC with a 3.4 GHz CPU and

2 GB RAM.

GAMS/BARON was able to solve only 24 instances out of 60 to optimality within

the given time limit. We provide the number of instances that are solved to optimality

in the column labeled “# of Solved” in Table 2. For those instances that are solved

to optimality we calculate the average CPU times that GAMS/BARON spent and

provide them in the column labeled “Avg CPU” under GAMS/BARON column. As

it can seen, the average CPU time varies between 273.74 sec. and 1304.33 sec. There

are 36 instances that GAMS/BARON failed to solve within 1200 seconds. We report

the average gap for these instances that were reported at the end of the time limit and

present them in the column labeled “Avg Gap.” These averages vary between 13.11%

and 31.51%.
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Table 2 Comparison of the three solution approaches.

GAMS/ Generalized Hybrid
BARON Benders Algorithm

Avg Avg Avg Avg Avg
Data # of CPU Gap CPU CPU Density
Set Solved (sec) (%) (sec) (sec) (%)
S1 3 447.43 13.11 1.98 0.098 94.2
S2 4 646.81 13.75 1.91 0.092 91.5
S3 6 594.27 14.38 1.88 0.080 91.9
S4 1 1304.33 23.01 2.09 0.090 93.5
S5 5 273.74 31.51 1.74 0.092 93.5
S6 5 324.11 23.71 1.89 0.073 93.6

In order to solve problems of reasonable size we developed code for the general-

ized Benders algorithm and our hybrid algorithm described in the previous section for

application to problem (LIP). We implemented the generalized Benders algorithm on

the same version of GAMS, where we used CPLEX 11.2 for solving the 0-1 integer

programming master problem (RMP) and CONOPT for solving the convex subprob-

lem (LISP). The Generalized Benders algorithm was able to solve all instances within

a few seconds. The average CPU times are provided in column “Avg CPU” under

“Generalized Benders.” Finally, we implemented our hybrid algorithm in C++ on the

same computer. We used CPLEX 11.2 for solving both (RMP) and linearization of the

subproblems (MPOA). Our hybrid algorithm solved all instances to optimality within

a fraction of a second. The average CPU times are given in the column labeled “Avg

CPU” under “Hybrid Algorithm” column. We also calculated the density of the Ben-

ders cuts used in the instances given above and provide them in the last column of

Table 2. The density of the cuts are calculated by dividing the number of binary vari-

ables that have positive coefficients in each cut to the number of all binary variables

that we have in that instance. As it can seen from the table, the cuts that are produced

by our hybrid algorithm are high density cuts whose density vary between 91.5% and

94.2%.

Our next experiment is aimed at comparing the performances of the generalized

Benders decomposition and our hybrid algorithm on larger problem instances. We use

the same data generation procedure for generating problem instances having 10 supply

facilities and 5 customers. We set the limit on the number of supply facilities to which

a customer can be assigned to 5. The results are given in Table 3.

Table 3 Comparison of generalized Benders Algorithm with Hybrid Algorithm.

Generalized Benders Hybrid Algorithm

Avg Avg Avg Avg
Data # of CPU Gap CPU Density
Set Solved (sec) (%) (sec) (%)
M1 3 66.40 34.28 1.35 94.50
M2 8 346.88 8.35 1.38 92.47
M3 10 192.46 - 1.88 91.32
M4 3 34.02 65.80 1.44 96.18
M5 2 886.84 35.52 1.92 92.14
M6 7 203.11 6.49 1.98 92.05
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Generalized Benders algorithm solved 43 instances out of 60 to optimality within

the given time limit of 1200 seconds. We provide the number of these instances in the

column labeled “# of Solved”. For those instances we calculate the average CPU times,

provide them in the column “Avg CPU” under “Generalized Benders” column. The

average CPU time varies between 34.02 and 886.84 seconds. For the instances that are

interrupted because of the time limit, we calculate the average gap at the end of the

time limit and provide them in column “Avg Gap.” We observe that the average gap

can be as high as 65.8% for some data sets. On the other hand, our hybrid algorithm

solved all instances within a few seconds. We provide the average CPU times in the

column labeled “Avg CPU” under “Hybrid Algorithm” column. Moreover, we provide

the average density of the cuts for each instance in column labeled “Avg Density.” As

seen in this column, the Benders cuts that we generate are high density cuts.

The results shown on Table 3 show that our hybrid algorithm significantly outper-

forms the generalized Benders decomposition algorithm on data sets with 10 customers

and 5 supply facilities. However, the size of these instances is relatively small compared

to potential practical problems. Therefore, we also test the performance of our algo-

rithm for larger problem instances. We used the values of the parameters given in Table

1 corresponding to Data Set 6, which is the data set that takes the longest to solve

using our algorithm as shown on Table 3. Using these parameter settings, we generated

data sets for different numbers of customers and supply facilities. These data sets are

given in Table 4. For each data set given in Table 4, we generated 10 random instances,

Table 4 Numbers of supply facilities and customers for large problem instances

Data set M N Data set M N
L1 20 5 L6 40 15
L2 20 10 L7 50 10
L3 30 5 L8 50 15
L4 30 10 L9 60 10
L5 40 10 L10 60 15

resulting in 100 test instances in total. We limit the CPU time to 1200 seconds for each

data set-cardinality pair. As explained in the algorithm section, we first solve the model

with no cardinality constraint and obtain the maximum number of facilities to which

a customer is assigned. Then, we start solving the model with a cardinality constraint

that is equal to the actual cardinality at the previous step minus one.

Table 5 summarizes the results. We provide the cardinality in column labeled “Ni”

and the number of instances solved to optimality within the time limit in column labeled

“Solved”. The optimality gap is calculated as the ratio of the difference between the

best upper and lower bound to the best lower bound at the time limit. We calculate

the gap for every test instance that is not solved to optimality within the time limit.

Then we take the averages of these gaps and provide these figures in the column labeled

“Avg Gap.”

As shown in Table 5, most of the test instances were solved optimally when no

cardinality constraint exists on the number of facilities to which a customer can be

assigned, although exceptions exist for data sets L6, L8 and L10. As the cardinality

constraint becomes tighter, the amount of time that the algorithm spends finding the

optimal solution for the master problem increases. However, because at each iteration

we add cutting planes to the subproblem and better approximate the objective function,
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Table 5 Computational results of hybrid algorithm for large problem instances

Data Set M N Ni Solved Avg Gap Data Set M N Ni Solved Avg Gap
L1 20 5 4 10 - L7 50 10 6 10 -

20 5 3 10 - 50 10 5 10 -
20 5 2 10 - 50 10 4 10 -

L2 20 10 5 10 - 50 10 3 9 0.03%
20 10 4 10 - 50 10 2 - 0.56%
20 10 3 10 - L8 50 15 6 5 2.79%
20 10 2 9 1.11% 50 15 5 5 1.85%

L3 30 5 4 10 - 50 15 4 5 1.80%
30 5 3 10 - 50 15 3 3 1.10%
30 5 2 6 0.34% 50 15 2 - -

L4 30 10 5 10 - L9 60 10 6 10 -
30 10 4 10 - 60 10 5 10 -
30 10 3 10 - 60 10 4 9 0.04%
30 10 2 3 0.47% 60 10 3 6 0.10%

L5 40 10 5 10 - 60 10 2 - 0.62%
40 10 4 10 - L10 60 15 6 3 2.26%
40 10 3 7 0.12% 60 15 5 5 1.67%
40 10 2 - 0.78% 60 15 4 4 1.04%

L6 40 15 6 9 2.41% 60 15 3 3 0.38%
40 15 5 10 - 60 15 2 - 1.15%
40 15 4 5 2.00%
40 15 3 6 1.26%
40 15 2 5 0.81%

in some cases the gap may decrease as the cardinality constraint becomes tighter. For

example, for data set L6, where M = 40 and N = 15, and data set L8, where M = 50

and N = 15, the gap decreases as Ni decreases.

In other data sets, the solution time of the master problem increases as Ni decreases

and the gap becomes larger. Among these test instances, the highest gap is 2.79% for

data set L8 with no cardinality constraint. As Table 5 shows, our algorithm is able

to provide optimal or near optimal solutions for problems of practical size within a

reasonable amount of computing time.

5.2 Analysis of Single-Sourcing Strategy

We would like to characterize the percentage difference in the costs of problem in-

stances when single-sourcing is enforced relative to the case in which demand splitting

is allowed. With this goal in mind, we conducted a broad set of computational tests

using a range of parameter settings, and then compared the results that we obtained

for both problems. All of the test problems discussed in the rest of this section used

M = 10 customers and N = 5 supply facilities.

The limit on the number of supply facilities that can serve each customer, i.e.,

Ni for customer i ∈ I , is an important parameter for our model. Since the maximum

number of supply facilities for all instances was 5, we parametrically varied Ni between

1 and 5 for each problem instance (and used the same value of Ni for each customer).

Obviously, when we set Ni to 1 for each customer i ∈ I , we obtain an optimal so-

lution for the problem with single-sourcing requirements. Let Zk denote the optimal

objective function value when Ni = k. Our main goal is to analyze the effect of differ-

ent parameters on the percentage difference between the minimum cost when demand
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splitting is allowed and when single-sourcing is imposed. We therefore calculated the

percentage difference, ∆Zk, as ∆Zk = (Z1−Zk)/Zk for k = 1, . . . , 5 and for each set of

parameter values. Note that ∆Z5 characterizes the percentage cost difference between

the single-sourcing case and the case in which demand splitting is unrestricted.

The relative values of average assignment cost and holding cost play important

roles in our model. We would therefore like to analyze the impacts of these parameters

simultaneously. Since these parameters tend to have opposing effects on the relative

cost difference ∆Z5, we analyze the effect of the expected value of the ratio of the (per

unit) assignment cost to the holding cost, i.e. E[ĉ/h]. We used 5 different parameter

settings for E[ĉ], i.e., 0.3, 0.4, 0.5, 0.6, and 0.7 and we set the holding cost equal to

1 for all facilities (therefore E[ĉ/h] = E[ĉ]). The individual cij values were randomly

generated from a uniform distribution that ensures the prescribed value of E[ĉ/h].

Table 6 provides the uniform distribution parameters for each setting of E[ĉ/h]. Our

choice of values of E[ĉ] was based on the fact that in practice, the holding cost is

often a percentage of the total value of an item. That is, suppose h = ic′, where i is a

percentage holding cost rate (often between 15% and 25%) and c′ is the item’s value.

Next, suppose ĉ = ı̂c′, i.e., where ı̂ reflects the percentage of total value that constitutes

transportation cost. Then, for example, if ı̂ = 10%, and i = 20%, we have ĉ = 0.5.

The ratio of the standard deviation to the mean demand is another important pa-

rameter that affects the cost performance of single-sourcing relative to demand split-

ting. Since the standard deviation affects the magnitude of safety stock holding cost

and the mean affects the magnitude of assignment costs, instead of analyzing the ef-

fects of these two parameters separately, we analyzed their ratio, i.e., the coefficient

of variation (CoV= σ/µ) of demand. We randomly generated mean demands between

4000 and 6000 and used 3 different values for CoV, 0.35, 0.40, and 0.45, to determine

the associated standard deviation values.

The other important parameter affecting cost performance is the fixed cost of a

supply facility. A high fixed cost decreases the number of open supply facilities, which

in turn affects the assignment of customers to supply facilities. We randomly generated

four different data sets for Fj values from the uniform distributions shown in Table 6.

While these values of fixed costs may appear relatively small, these values might reflect

the portion of fixed cost that is allocated to the single product in question. Clearly,

as our results later show, higher fixed costs lead to a choice of fewer facilities. In such

cases, the difference in cost between an optimal single-sourcing strategy and an optimal

demand-splitting strategy will naturally decrease.

Table 6 Data parameter settings.

E[ĉ/h] cij µi CoV (σ/µ) Fixed Cost (Fj)
0.3 U [0.05, 0.55] U [4000, 6000] 0.30 U [100, 200]
0.4 U [0.05, 0.75] 0.35 U [200, 300]
0.5 U [0.05, 0.95] 0.40 U [300, 400]
0.6 U [0.05, 1.15] 0.45 U [400, 500]
0.7 U [0.05, 1.35] 0.50

By using the cross combinations of these three parameter settings, i.e., E[ĉ/h],

CoV, and Fj , we generated 100 (5 × 5 × 4) different data sets. For each data set we

generated 10 random test instances, resulting 1000 test instances in total. We set the

service level to 97.5% (zδ = 1.96) for all test instances.
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First, we analyzed the effect of E[ĉ/h]. Table 7 summarizes the results for different

values of E[ĉ/h]. We provide the maximum and minimum values of ∆Z5 from among

the 6000 instances in the columns labeled max and min, respectively, with the average

value in the column labeled average.

Table 7 The maximum, minimum, and average value of ∆Z5 for different values of E[ĉ/h].

∆Z5

E(ĉ/h) max min average
0.3 6.57% 0.00% 1.40%
0.4 7.43% 0.00% 2.66%
0.5 6.80% 0.00% 2.81%
0.6 5.64% 0.00% 2.65%
0.7 5.80% 0.00% 2.41%

The highest percentage difference obtained among 6000 instances equals 7.43%.

The minimum percentage difference is 0%, which means that in some of the cases a

single-sourcing solution is optimal even though single sourcing is not enforced. As seen

in Figure 2, both low and high levels of E[ĉ/h] lead to the optimality of single-sourcing

solutions. At higher levels of E[ĉ/h], the problem becomes similar to an uncapaci-

0.3 0.4 0.5 0.6 0.7
1

1.5

2

2.5

3

E[ĉ/h]

∆Z5(%)

Fig. 2 The effect of E[ĉ/h] on ∆Z5.

tated facility location problem, where single sourcing is optimal. Also, at lower levels

of E[ĉ/h], the facility and safety stock costs dominate the objective function. In the

presence of fixed facility location costs, the model reduces the number of facilities and

uses aggregation to obtain risk pooling benefits. However, at intermediate values of

the ratio of the transportation cost to the holding cost, the model seeks to reduce
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transportation costs by utilizing more locations, and simultaneously benefits from risk

pooling by mixing the demands of multiple customers at the open locations. This illus-

trates the fact that even in the presence of fixed facility costs, the benefits of deviating

from a single-sourcing policy are non-negligible. However, when the facility and/or

transportation costs dominate, the best single-sourcing solution value approaches the

optimal solution value.

We illustrate the average value of ∆Zk for different values of k (where k = Ni

for each i ∈ I) in Figure 3. As can be seen from Figure 3, when there is no limit on
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E[ĉ/h] = 0.5

Fig. 3 The effect of Ni on ∆Zk for different values of E(ĉ/h).

the number of facilities that can supply any customer, i.e., when Ni = 5, an optimal

solution assigns customers to at most 3 different supply facilities. In the majority of

cases, assigning each customer to at most 2 supply facilities is optimal. The gap between

the performance of the single sourcing and multiple sourcing solutions is significant.

However, the difference when we increase Ni from 2 to 3 is not significant.

Next, we analyze the effect of CoV. Table 8 summarizes the results. As we can see

Table 8 The maximum, minimum, and average value of ∆Z5 values for different values of
CoV.

∆Z5

CoV max min average
0.3 5.60% 0.00% 2.30%
0.35 7.43% 0.00% 2.46%
0.4 5.97% 0.00% 2.44%
0.45 6.80% 0.00% 2.30%
0.50 5.98% 0.00% 2.25%
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Fig. 4 The effect of Ni on ∆Zk for different values of CoV.

in both Table 8 and Figure 4, as the coefficient of variation increases from 0.3 to 0.5,

the percentage cost difference between optimal single sourcing and demand splitting

solutions first increases and then decreases. The main reason for this is that as the CoV

increases, the standard deviation of demand increases. In turn, this leads to higher

safety stock holding costs. The model tends to open fewer supply facilities and benefits

from risk pooling by assigning more customers to fewer supply facilities. Similarly, the

percentage cost difference decreases as the CoV approaches the origin because, in this

case, the safety stock holding cost becomes so small that the problem becomes similar

to an uncapacitated facility location problem. We next analyze the effect of the fixed

Table 9 The maximum, minimum, and average value of ∆Z5 for different values of fixed cost.

∆Z5

fixed cost max min average
U(100,200) 6.80% 0.00% 2.57%
U(200,300) 7.43% 0.00% 2.42%
U(300,400) 5.94% 0.00% 2.22%
U(400,500) 5.52% 0.00% 2.20%

facility opening cost. This effect is shown in Table 9. As we would expect, as the fixed

cost increases, fewer locations are opened, and customers are therefore assigned to

fewer locations. Thus, the benefits of demand splitting decrease as the fixed facility

costs increase.

Finally, we consider the CPU times for different values of Ni. In each of these

tests, we first solve the model without a cardinality constraint, i.e., Ni = N , and
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determine the actual cardinality at optimality (we call this the unconstrained optimal

cardinality level). We do not then re-solve the problem for the cardinality constraint

levels that are between the unconstrained optimal cardinality level and N . That is, if

the unconstrained optimal cardinality level equals N̄ when Ni = N , then we only re-

solve the problem for cardinality constraint value of k < N̄ . Therefore, the CPU times

for these unsolved instances are taken as equal to the CPU time when Ni = N . Figure

6 illustrates these results. As Figure 6 shows, the greatest CPU time is needed when

Ni = 2. In most of the instances when there is no cardinality limit for a customer, the

optimal solution assigns a customer to at most 3 or 4 supply facilities. When we limit

the number of supply facilities to Ni = 2, the corresponding constraint becomes tight

and the required CPU time increases. This increase in CPU time comes as a result of

the increased time CPLEX must spend solving the 0-1 integer master problem (RMP).

However, when Ni = 5, the constraint is loose in almost all instances, and the required

CPU time is significantly lower (when this constraint is loose, CPLEX is able to solve

the (RMP) much more quickly). In most of these test instances, the model finds optimal

solutions in less than a second.

6 Conclusion and Future Research Directions

In this paper, we discussed a supply chain setting where customers with stochastic

demand are assigned to uncapacitated supply facilities. Our model determines the lo-

cations of facilities and the assignment of customers to supply facilities in order to

minimize the total supply facility opening cost, customer-supply facility assignment

cost and the safety stock costs at supply facilities. In the literature, similar problems

have been investigated with a single-sourcing requirement for each customer. We relax

this constraint and apply an upper bound on the number of facilities to which a cus-

tomer can be assigned. Our goal was to characterize the difference between the costs

of problems where demand-splitting is allowed and those that enforce single-sourcing.

The resulting location-inventory problem falls into a class of difficult mixed-integer

nonlinear programming problems. The structure of the objective function, however,

leads us to characterize interesting solution properties for some special cases. For the

general problem, we proposed a generalized Benders decomposition algorithm and a

hybrid algorithm that allows us to solve significantly larger problem sizes to optimality.

We implemented our algorithm and conducted a broad set of computational tests

to analyze the effects of key parameters on the percentage difference in costs when

demand-splitting is allowed and when single sourcing is required. According to our

computational study, with the parameter settings we tested, this percentage difference

can be as high as 7%.

The relative values of assignment holding costs, the coefficient of variation of cus-

tomer demands, and the fixed opening costs of facilities are the most important pa-

rameters that affect the optimal assignment of customers. Therefore, we analyzed the

effects of these parameters by using a range of settings. According to our computational

study, both low and high levels of the ratio of assignment cost to holding cost lead to

solutions where single sourcing is optimal (or near optimal). However, at intermediate

values, the model benefits from risk pooling by mixing the demands of multiple cus-

tomers at the open locations. Similarly, low and high levels of coefficient of variation

lead to solutions where single sourcing is optimal because either the assignment cost or

the safety stock cost is dominant. At intermediate values, where there is a balance in
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the costs, the model benefits from multiple-sourcing. Furthermore, high values of fixed

cost naturally lead to opening fewer facilities, which in turn leads to the assignment

of customers to fewer locations. Therefore, as the fixed cost increases, the benefits of

demand splitting decrease.

This research can be extended in a number of different ways. One possible extension

would consider the addition of finite capacities to supply facilities. Another extension

might be adding a penalty cost for assigning a customer to more than one facility,

instead of using a restriction on the number of facilities to which a customer can be

assigned. However, this affects the form of the objective function, leading to an objec-

tive function that is neither convex nor concave. An additional interesting extension

considers service-level-dependent assignment costs, which reflect cases in which some

facilities may require a higher service level and increase in associated assignment cost.

In this setting, customers may accept reduced service levels instead of paying higher

costs. Thus, instead of defining pre-specified service levels at the supply facilities, we

may treat facility service levels as decision variables.
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Appendix

Note: This appendix may be included as an on-line appendix if required.

Proof of Lemma 1: Let fij(xij) = σixij and F (x) =
√

∑

i∈I [fij(xij)]
2. Now we

need to show that F (x) is convex. Let F(x) = [f11(x11), . . . , fij(xij)]. Then F (x) is

the l2 norm of F(x), i.e.,F (x) = ‖F(x)‖.

F (λx1 + (1− λ)x2) = ‖F(λx1 + (1− λ)x2)‖
= ‖λF(x1) + (1− λ)F(x2)‖ (because F(x) is linear in xij)

≤ ‖λF(x1)‖+ ‖(1− λ)F(x2)‖ (triangular inequality)

= λF (x1) + (1− λ)F (x2).

Since hj and zδj are nonnegative constants, hjz
δ
j

√

∑

i∈I [fij(xij)]
2 is also convex. More-

over, since the first term of φ(x) is linear and the second term is the summation of

convex functions, φ(x) is convex in x. �

Proof of Theorem 1: When |I(j)| = 0, no customers are assigned to supply facility

j. Without loss of generality, we assume that this supply facility is not open and we

exclude this supply facility from consideration in our problem. Therefore we consider

the KKT conditions for j ∈ J such that |I(j)| > 0. Clearly each xij is between 0 and

1. Since 1
ωj

> 0, using condition (8) we set βij = 0 for all i ∈ I(j). From condition (6),

we require

ci + hzσ
1/ωj

√

|I(j)|/ω2
j

− µi = 0, ∀j ∈ J, i ∈ I(j),

⇒ µi =
hzσ

√

|I(j)|
+ ci, ∀j ∈ J, i ∈ I(j).

Thus we have µi ≥ 0 for all j ∈ J and i ∈ I(j). For each i /∈ I(j) we set xij = 0 and

βij = ci, which ensures that (6) holds for all i ∈ I and j ∈ J . We have therefore con-

structed a solution satisfying (6), (8), and (10). By assumption we have
∑

j∈J(i)
1
ωj

= 1

for all i ∈ I , which implies that (7) and (9) hold, and all KKT conditions are satisfied

by the solution we have constructed. �

Proof of Proposition 1: From Lemma (1) we know that this two-supplier, two-

customer problem is a convex programming problem. Therefore the generalized KKT

Conditions are necessary and sufficient for optimality. The KKT conditions for this
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problem can be written as follows:

cij +H
xij

√

∑

i∈I x
2
ij

− µi − βij = 0 for i = 1, 2 and j = 1, 2 (A-1)

µi(1−
∑

j∈J

xij) = 0 for i = 1, 2 (A-2)

βijxij = 0 for i = 1, 2 and j = 1, 2 (A-3)

1−
∑

j∈J

xij ≤ 0 for i = 1, 2 (A-4)

xij ≥ 0 for i = 1, 2 and j = 1, 2 (A-5)

µi ≥ 0 for i = 1, 2 (A-6)

βij ≥ 0 for i = 1, 2 and j = 1, 2 (A-7)

For the given solution, x11 = x22 = α and x12 = x21 = 1 − α where 0 < α < 1,

from condition (A-3) we set βij = 0 for i = 1, 2 and j = 1, 2. Since x11 + x12 =

x21 + x22 = 1, condition (A-2) is already satisfied. From condition (A-1), we require

µ1 = c12 + H
(1−α)√

α2+(1−α)2
and µ2 = c21 + H

(1−α)√
α2+(1−α)2

. Thus we have µ1 ≥ 0

and µ2 ≥ 0. Hence, the given solution satisfies all KKT conditions from (A-1) to

(A-7) and is therefore optimal. The value of the objective function, Zopt, equals

c12 + c21 + 2H
(1−α)√

α2+(1−α)2
which also equals c11 + c22 + 2H α√

α2+(1−α)2
.

Proof of Corollary 1: Define Zopt be the objective function value for the given

solution, x11 = x22 = α and x12 = x21 = 1−α, let Z1 be the objective function value

when x11 = x22 = 1; x12 = x21 = 0, let Z2 be the objective function value when

x12 = x21 = 1; x11 = x22 = 0, and finally let Z3 be the objective function value when

x11 = x21 = 1; x12 = x22 = 0 (from symmetry Z3 also gives the objective value when

x12 = x22 = 1; x11 = x21 = 0). Then these objective function values can be calculated

as follows:
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Zopt = c12 + c21 + 2H
(1− α)

√

α2 + (1− α)2

Z1 = c11 + c22 + 2H

= c12 + c21 + 2H
(1− α)

√

α2 + (1− α)2
+ 2H

(

1− α
√

α2 + (1− α)2

)

= Zopt + 2H

(

1− α
√

α2 + (1− α)2

)

Z2 = c12 + c21 + 2H

= c12 + c21 + 2H
(1− α)

√

α2 + (1− α)2
+ 2H

(

1− 1− α
√

α2 + (1− α)2

)

= zopt + 2H

(

1− 1− α
√

α2 + (1− α)2

)

Z3 = c11 + c21 +
√
2H(or c12 + c22 +

√
2H)

= c12 + c21 + 2H
(1− α)

√

α2 + (1− α)2
+H

(

√
2− 1

√

α2 + (1− α)2

)

= zopt +H

(

√
2− 1

√

α2 + (1− α)2

)

Let ∆Z1 = Z1 − Zopt, ∆Z2 = Z2 − Zopt and ∆Z3 = Z3 − Zopt. Clearly, the

objective function value of the minimum-cost single-sourcing solution minus that of the

minimum-cost solution with customer demand splitting, ∆Zmin, equals the minimum

of ∆Z1, ∆Z2 and ∆Z3.

∆Zmin = min
{

∆Z1;∆Z2;∆Z3
}

= min

{

2H

(

1− α
√

α2 + (1− α)2

)

; 2H

(

1− 1− α
√

α2 + (1− α)2

)

;H

(

√
2− 1

√

α2 + (1− α)2

)}

= H

[

min

{

2

(

1− max{α, 1− α}
√

α2 + (1− α)2

)

;
√
2− 1

√

α2 + (1− α)2

}]

= H × ρ(α)

where ρ(α) =

[

min

{

2

(

1− max{α,1−α}√
α2+(1−α)2

)

;
√
2− 1√

α2+(1−α)2

}]

.
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