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Abstract

We consider a problem dealing with the efficient delivery of Intensity Modulated Ra-

diation Therapy (IMRT) to individual patients. IMRT treatment planning is usually

performed in three phases. The first phase determines a set of beam angles through

which radiation is delivered, followed by a second phase that determines an optimal

radiation intensity profile (or fluence map). This intensity profile is selected to en-

sure that certain targets receive a required amount of dose while functional organs are

spared. In order to deliver these intensity profiles to the patient, a third phase must

decompose them into a collection of apertures and corresponding intensities. In this

paper, we investigate this last problem. Formally, an intensity profile is represented

as a nonnegative integer matrix; an aperture is represented as a binary matrix whose
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ones appear consecutively in each row. A feasible decomposition is one in which the

original desired intensity profile is equal to the sum of a number of feasible binary ma-

trices multiplied by corresponding intensity values. In order to most efficiently treat

a patient, we wish to minimize a measure of total treatment time, which is given as

a weighted sum of the number of apertures and the sum of the aperture intensities

used in the decomposition. We develop the first exact algorithm capable of solving

real-world problem instances to optimality within practicable computational limits,

using a combination of integer programming decomposition and combinatorial search

techniques. We demonstrate the efficacy of our approach on a set of 25 test instances

derived from actual clinical data and on 100 randomly generated instances.

1 Introduction and Literature Survey

Cancer is one of the leading causes of death throughout the world. In the last century,

external beam radiation therapy has emerged as a very important and powerful modality for

treating many forms of cancer, either in primary form or in conjunction with other treat-

ment modalities such as surgery, chemotherapy, or medication. In the United States today,

approximately two-thirds of all newly diagnosed cancer patients receive radiation therapy

for treatment. Since the radiation beams employed in radiation therapy damages all cells

traversed by the beams, both in targeted areas in the patient that contain cancerous cells as

well as any cells in healthy organs and tissues, the treatment must be carefully designed. This

can partially be achieved by delivering radiation from several different directions, also called

beam orientations. Therefore, patients receiving radiation therapy are typically treated on

a clinical radiation-delivery device that can rotate around the patient. The most common

device is called a linear accelerator, and is typically equipped with a so-called multileaf colli-

mator (MLC) system which can be used to judiciously shape the beams by forming apertures,

thereby providing a high degree of control over the dose distribution that is received by a

patient (see Figure 1). This technique has been named intensity modulated radiation therapy

(IMRT).

Since the mid 1990’s, large-scale optimization of the fluence applied from a number of
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Figure 1: (a) A multileaf collimator system1; (b) the projection of an aperture onto a patient.

beam orientations around a patient has been used to design treatments from MLC-equipped

linear accelerators. A typical approach to IMRT treatment planning is to first select the

number and orientations of the beams to use as well as an intensity profile or fluence map

for each of these beams, where the fluence map takes the form of a matrix of intensities.

This problem has been studied extensively and can be solved satisfactorily, in particular

when (as is common in clinical practice) the beam orientations are selected manually by the

physician or clinician based on their insight and expertise regarding treatment planning. For

optimization approaches to the fluence map optimization problem with fixed beam orienta-

tions we refer to the review paper by Shepard et al. [35]. More recently, Romeijn et al. [33]

proposed new convex programming models, and Hamacher and Küfer [14] and Küfer et al.

[23] considered a multi-criteria approach to the problem. Lee et al. [25, 26] studied mixed-

integer programming approaches to the extension of the fluence map optimization problem

that also optimizes the number and orientations of the beams to be used. However, to en-

able delivery of the optimal fluence maps by the MLC system, they need to be decomposed

into a collection of deliverable apertures. (For examples of integrated approaches to fluence

map optimization, also referred to as aperture modulation, we refer to Shepard et al. [34],

Preciado-Walters et al. [29], and Romeijn et al. [32].)

The vast majority of MLC systems contain a collection of leaves that can be moved in

parallel, thereby blocking part of the radiation beam. This architecture implies that we can

1Varian Medical Systems; http://www.varian.com/orad/prd056.html.
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view each beam as a matrix of beamlets or bixels (the smallest deliverable square beam that

can be created by the MLC), so that each aperture can be represented by a collection of rows

(or, by rotating the MLC head, columns) of bixels, each of which should be convex. In other

words, each fluence map should be decomposed into either constant-intensity row-convex

apertures or constant-intensity column-convex apertures. Due to the time required for setup

and verification, clinical practice prohibits using both types of apertures for a given fluence

map, so that without loss of generality we will in this paper focus on row-convex apertures

only. Note that while some manufacturers of MLC systems impose additional constraints

on the apertures, we will assume throughout this paper that all row-convex apertures are

deliverable. As an example, consider the fluence map given by the following 2× 3 matrix of

bixel intensities (see Baatar [5]): 
 3 6 4

2 1 5


 .

If we represent an aperture by a binary matrix in which an element is equal to one if and only

if the associated bixel is exposed (i.e., not blocked by either the left or right leaf of the MLC

system), row-convexity corresponds to the property that, in each row of the corresponding

matrix, the elements that are equal to one are consecutive (often referred to as the consecutive

ones property). Now observe that this fluence map can be decomposed into three apertures

with corresponding intensities:


 3 6 4

2 1 5


 = 1×


 1 0 0

0 1 1


 + 2×


 1 1 0

1 0 0


 + 4×


 0 1 1

0 0 1


 .

Since, in general, there are many ways of decomposing a given fluence map into row-

convex apertures, it is desirable to select the decomposition that can be delivered most

efficiently. The two main efficiency criteria that play a role are the total beam-on-time, i.e.,

the total amount of time that the patient is being irradiated, and the total setup time, i.e.,

the total amount of time that is spent shaping the apertures. The former metric is propor-

tional to the sum of intensities used in the decomposition, while the latter is approximately

proportional to the number of matrices used in the decomposition. Although closely related,

these two efficiency criteria are not equivalent. The example given above shows the unique
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decomposition using only three apertures and with a beam-on-time of 7. However, the min-

imum beam-on-time for this fluence map is 6, which can be realized by four apertures using

the following decomposition:


 3 6 4

2 1 5


 = 1×


 1 1 0

1 0 0


 + 1×


 0 1 0

1 1 1


 + 2×


 1 1 1

0 0 1


 + 2×


 0 1 1

0 0 1


 .

The problem of decomposing a fluence map while minimizing beam-on-time is polyno-

mially solvable and has been widely studied, leading to several solution approaches for this

problem. Bortfeld et al. [7] proposed the sweep method, which Ahuja and Hamacher [2]

(who derived an equivalent method) showed to indeed yield an optimal solution; other exact

algorithms were proposed by Kamath et al. [18], and Siochi [36]. In addition, Baatar et al.

[5], Boland et al. [6], Kalinowski [16], Kamath et al. [19, 20, 21, 22], Lenzen [27], and Siochi

[36] studied the problem of minimizing beam-on-time under additional hardware constraints,

while Kalinowski [17] studied the benefits of allowing rotation of the MLC head.

Although the time required by the MLC system to transition between apertures formally

depends on the apertures themselves, the fact that these times are similar and the presence

of significant (aperture-independent) verification and recording overhead times justifies the

use of the total number of setups (or, equivalently, the total number of apertures) to measure

the total setup time. In addition, delivering IMRT with a small number of apertures provides

the additional benefits of less wear-and-tear on the collimators (less stopping and starting)

and a less error-prone delivery as IMRT delivery errors are known to be proportional to the

number of apertures (see Stell et al. [39]). The problem of decomposing a fluence map into

the minimum number of row-convex apertures has been shown to be strongly NP-hard (see

Baatar et al. [5]), leading to the development of a large number of heuristics for solving

this problem. Notable examples are the heuristics proposed by Baatar et al. [5] (who also

identify some polynomially solvable special cases), Agazaryan and Solberg [1], Dai and Zhu

[8], Que [30], Que et al. [31], Siochi [36, 37, 38], Van Santvoort and Heijmen [40], Xia and

Verhey [41]. In addition, Engel [11], Kalinowski [16], and Lim and Choi [28] developed

heuristics to minimize the number of apertures while constraining the total beam-on-time to

be minimal. Finally, Langer et al. [24] developed a mixed-integer programming formulation
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of the problem, while Kalinowski [15] proposed an exact dynamic programming approach

for the related problem of minimizing the number of apertures that yields the minimum

beam-on-time. Baatar et al. [4] described integer programming and constraint programming

models for the same problem, and Ernst et al. [12] proposed a constraint programming

approach for minimizing the number of apertures. However, computational studies reported

in [4, 12, 15, 24] reveal that these approaches can only be used to efficiently solve small

problem instances to optimality. The primary contribution of this paper is that we develop

the first algorithm capable of solving clinical problem instances to optimality (or to provably

near-optimality) within clinically acceptable computational time limits.

In this paper, our focus is on the problem of finding a decomposition of a fluence map

into row-convex apertures that minimizes total treatment time, as measured by the sum of

the total setup time and beam-on-time. In Section 2 we develop our decomposition-based

solution approach. In Section 3 we discuss the application of our algorithm on a collection

of clinical and randomly generated test data, and compare its performance with alternative

exact and heuristic techniques. We conclude the paper in Section 4.

2 Decomposition Algorithm

Throughout this paper, we will denote the fluence map to be delivered by a matrix B ∈ Nm×n,

where the element at row i and column j, (i, j), corresponds to a bixel with required intensity

bij. Let w1 be the time required by the MLC to form an aperture and w2 denote the time

required for the delivery of one unit of fluence. We refer to the problem of minimizing the

total treatment time, i.e., the sum of the aperture transition times and the total delivery

time, as the optimal leaf sequencing problem.

We start this section by describing a decomposition framework for the optimal leaf se-

quencing problem in Section 2.1 and use this to formulate our master problem in Section

2.2. We introduce our subproblem in Section 2.3, prove its complexity, and provide a combi-

natorial search algorithm for its solution. We then enhance the empirical performance of our

decomposition algorithm by introducing classes of valid inequalities to the master problem

in Section 2.4, and finally describe an algorithm for constructing a feasible solution with
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medically desired properties in Section 2.5.

2.1 Decomposition Framework

To establish motivation for our approach, observe that if the objective is to minimize beam-

on-time, the optimal leaf sequencing problem is decomposable by the rows of the fluence

map. In particular, if the beam-on-time is minimized for each bixel row, the maximum of

the corresponding beam-on-time values is equal to the minimum beam-on-time for the overall

fluence map (see, e.g., Ehrgott et al. [10]). However, this approach is not directly applicable

when the objective is to minimize the total treatment time.

Even though the optimal leaf sequencing problem is not directly decomposable by rows,

the fact that leaves corresponding to different rows can be positioned independently can still

be exploited. Denote a particular positioning of left and right leaves for a row as a leaf

position; an aperture is composed of a leaf position for each row of B. Our main observation

is that given a collection of intensities, which can be used in apertures that collectively cover

the fluence map, the rows are independent of one another. That is, we can determine the

leaf positions to be used for covering each row independently, and then form apertures for

covering the entire fluence map by combining individual leaf positions for each row that are

assigned to the same intensity.

We define an allowable intensity multiset to be a collection of (potentially non-unique)

intensity values, each of which can be assigned to a single aperture in our solution. We

say that an allowable intensity multiset is compatible with a row if there exists a feasible

decomposition of the row into leaf positions using a subset of that allowable intensity multiset.

If an allowable intensity multiset is compatible with all rows, then it corresponds to a feasible

decomposition of the fluence map and we call it a feasible intensity multiset . As an example,

consider the fluence map given by the following 3× 3 matrix:

B =




1 4 8

3 8 5

4 5 3


 . (1)

Consider the allowable intensity multiset {1, 3, 5}. Assigning each of these values to at most
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one leaf position, the first row can be decomposed as

[1 4 8] = 1× [1 1 0] + 3× [0 1 1] + 5× [0 0 1] , (2)

so that the allowable intensity multiset is compatible with the first row. Similarly, the second

row can be decomposed as

[3 8 5] = 3× [1 1 0] + 5× [0 1 1] . (3)

However, the first bixel in the third row must be covered by two leaf positions assigned to

intensities 1 and 3, and the second bixel must be covered by a single leaf position assigned to

intensity 5. Therefore, all allowable intensities must be used to cover the first two bixels, and

the third bixel with required intensity 3 cannot be covered. Hence, the allowable intensity

multiset is not compatible with the third row. Alternatively, consider an allowable intensity

multiset that contains the values 1, 3, and 4 for the same fluence map. The rows can be

decomposed as

[1 4 8] = 1× [1 1 1] + 3× [0 1 1] + 4× [0 0 1] ,

[3 8 5] = 1× [0 1 1] + 3× [1 1 0] + 4× [0 1 1] , and (4)

[4 5 3] = 1× [0 1 0] + 3× [0 0 1] + 4× [1 1 0] .

Since the allowable intensity multiset is compatible with all rows, it is a feasible intensity

multiset having three leaf positions and a beam-on-time of 8. Furthermore, observe that

the intensity requirements of the bixels in the first row strictly increase from left to right,

implying that a leaf position must start at each bixel. Thus, any feasible decomposition of

the first row uses at least three leaf positions, which yields a lower bound on the number of

apertures. Also, the largest element of B is 8, which yields a lower bound on the beam-on-

time. Since the given decomposition achieves the lower bounds on both objectives, we have

an optimal solution to the optimal leaf sequencing problem.

2.2 Master Problem Formulation and Solution Approach

We represent an allowable intensity multiset by an integer vector x = (x1, . . . , xL), where

L = maxi=1,...,m; j=1,...,n bij is the maximum intensity value in the fluence map, and where x`
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is the number of times that intensity value ` occurs in the allowable intensity multiset. It is

easy to see that, assuming all allowable intensity values are used, the number of apertures

and the beam-on-time are, respectively, equal to

L∑

`=1

x` and
L∑

`=1

`x`. (5)

The master problem can therefore succinctly be written as

minimize w1

L∑

`=1

x` + w2

L∑

`=1

`x` (6)

subject to

x is compatible with row i ∀ i = 1, . . . , m (7)

x` integer ∀ ` = 1, . . . , L. (8)

Clearly, our model contains the problem of minimizing the number of apertures as a special

case by setting w1 = 1 and w2 = 0. Moreover, if we wish to minimize the number of apertures

required while limiting the beam-on-time to no more than T̃ , we simply add the following

constraint to the model:
L∑

`=1

`x` ≤ T̃ , (9)

where of course T̃ cannot be less than the minimum achievable beam-on-time z̃ (which can

be found in polynomial time using the algorithms mentioned in Section 1).

In order to formulate our master problem as an integer programming problem, we intro-

duce binary variables y`r, ∀ ` = 1, . . . , L, r = 1, . . . , R`, where y`r = 1 if and only if x` = r,

and R` is an upper bound on the number of apertures having intensity ` used in an optimal

solution. (We can compute R` by computing an initial upper bound on the optimal objective

function value via any of the heuristics mentioned in Section 1, and then setting R` to the

largest value such that w1R` + w2`R` is no more than this bound.) Using these decision

variables, we can reformulate the master problem (MP) as follows:

minimize w1

L∑

`=1

x` + w2

L∑

`=1

`x` (10)

9



subject to

R∑̀
r=1

ry`r = x` ∀ ` = 1, . . . , L (11)

R∑̀
r=1

y`r ≤ 1 ∀ ` = 1, . . . , L (12)

x is compatible with row i ∀ i = 1, . . . , m (13)

x` integer ∀ ` = 1, . . . , L (14)

y`r binary ∀ ` = 1, . . . , L, r = 1, . . . , R`. (15)

We will next formulate (13) as a set of linear inequalities by deriving valid inequalities that

cut off precisely those vectors x that violate (13). To this end, consider a particular allowable

intensity multiset represented by x̂ that is incompatible with at least one row. It is then clear

that we should only consider vectors x that are different from x̂ in at least one component.

We can achieve this by imposing the following constraint:

L∑

`=1

R∑̀
r=1
r 6=x̂`

y`r ≥ 1. (16)

Since all integer solutions except for x̂ satisfy (16), it is indeed a valid inequality. Constraint

(16) can be tightened by observing that if the solution x̂ is incompatible with row i, then

any solution x such that x` ≤ x̂`, ∀ ` = 1, . . . , L, is also incompatible with row i. Therefore,

we require that x contain at least one component that is larger than its corresponding

component in x̂, which yields the stronger valid inequality

L∑

`=1

R∑̀

r=x̂`+1

y`r ≥ 1. (17)

Constraint (17) can, in turn, be tightened further by explicitly considering the rows for which

x is incompatible. Let Li = maxj=1,...,n bij be the maximum intensity in the fluence map for

row i. By the same argument as above, if the current solution x̂ is incompatible with row i,

then any solution x such that x` ≤ x̂`, ∀ ` = 1, . . . , Li, is also incompatible with row i, since

no leaf positions with intensity greater than Li can be used in decomposing row i. Therefore,
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we require that x is larger than x̂ in at least one component 1, . . . , Li:

Li∑

`=1

R∑̀

r=x̂`+1

y`r ≥ 1 ∀ rows i incompatible with x̂. (18)

Since (18) is stronger than (16) or (17), we use the latter inequalities in our model. Note

also that (18) stated for row i1 dominates a cut generated for row i2 if Li1 < Li2 . Thus,

we consider the bixel rows in nondecreasing order of their Li-values, halt when an infeasible

row is detected, and add a single inequality of the form (18). This sequence also tends

to minimize subproblem execution time, since rows having a small maximum intensity are

easier to solve by the nature of the backtracking algorithm discussed in Section 2.3.

Since the collection (18) contains an exponential number of valid inequalities, we add

them only as needed in a cutting-plane fashion. In particular, this means that we will

relax (18), solve the relaxation of (MP) and generate an x-solution representing a candidate

allowable intensity multiset. We then solve a subproblem for each bixel row to determine

if the allowable intensity multiset is incompatible with that row. If not, we have found an

optimal solution to (MP). Otherwise, we add a constraint of the form (18) to (MP) that cuts

off that solution.

2.3 Subproblem Analysis and Solution Approach

In this section, we will consider the subproblem of checking whether a given intensity multiset

x is compatible with a particular bixel row. For convenience and wherever the interpretation

is clear from the context, we will suppress the index i of the bixel row and denote a typical

row of the fluence map B by b = (b1, . . . , bn).

We represent a feasible decomposition as a collection of n-dimensional binary vectors v`r

(` = 1, . . . , L; r = 1, . . . , x`). The values of v`r that equal 1 correspond to the (consecutive)

exposed bixels in the rth aperture having intensity `. For example, the decomposition in

equation (2) corresponds to v11 = (1, 1, 0), v31 = (0, 1, 1), v51 = (0, 0, 1), and v`r = 0 for

other `, r. (Note that this decomposition would be feasible as long as x1, x3, x5 ≥ 1.) The

subproblem can then formally be presented as follows:

C1-Partition
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INSTANCE: An n-dimensional vector of nonnegative integers b and an integer vector x =

(x1, . . . , xL).

QUESTION: Do there exist n-dimensional binary vectors v`r (` = 1, . . . , L; r = 1, . . . , x`)

that satisfy the consecutive ones property such that
∑L

`=1

∑x`

r=1 `v`r = b?

Proposition 1. C1-Partition is strongly NP-complete.

Proof. See Appendix B.

In principle, the C1-Partition problem can be formulated and solved as an integer

program. However, we will develop a computationally more effective backtracking algorithm

that focuses on partitioning intensity requirements individually for each bixel. An integer

vector pj = (pj
1, . . . , p

j
L) provides a bixel decomposition of bixel j ∈ {1, . . . , n} in row b if and

only if bj =
∑L

`=1 `pj
`. We then attempt to form a collection of leaf positions that realizes the

individual bixel partitions. We call such a collection of leaf positions a leaf decomposition of

b.

In order to more effectively conduct our subproblem searches, we describe a property

that will hold in some leaf decomposition (if one exists) that satisfies the given collection of

bixel decompositions.

Lemma 1. Consider candidate bixel decompositions for bixels j and j + 1, for some j ∈
{1, . . . , n− 1}, and suppose that these have a common decomposition intensity value `, i.e.,

pj
`, p

j+1
` > 0. Then, if a leaf decomposition exists, one exists in which a leaf position having

intensity ` exposes both bixels j and j + 1.

Proof. Assume that there exists a leaf decomposition V in which bixels j and j + 1 are

exposed by two separate leaf positions, v1 and v2, respectively, each having intensity `. Now

consider the leaf position v3 = v1 + v2 having intensity `. Then V ′ = {v3} ∪ V\{v1,v2} is

also a leaf decomposition that realizes the given bixel decomposition.

We next derive a necessary condition that any feasible bixel decomposition must satisfy

so that the corresponding set of leaf positions is compatible with a given allowable intensity

12



multiset x. Similar to the idea behind Lemma 1, if pj
` > pj+1

` , then pj
` − pj+1

` leaf positions

having intensity ` must expose bixel j but not j + 1. Lemma 2 formalizes this idea.

Lemma 2. Let x represent an allowable intensity multiset, and pjη denote candidate bixel

decompositions for bixels jη, ∀η = 1, . . . , n′ such that 1 ≤ j1 < · · · < jn′ ≤ n. The following

set of conditions must be satisfied in any feasible solution.

n′∑
η=2

max{0, pjη−1

` − p
jη

` }+ p
jn′
` ≤ x` ∀` = 1, . . . , L. (19)

Proof. If p
jη−1

` > p
jη

` , at least p
jη−1

` − p
jη

` leaf positions having intensity ` must expose bixel

jη−1 but not jη. Also, at least p
jn′
` leaf positions having intensity ` must expose bixel jn′ .

Since all leaf positions listed above are necessarily disjoint, the lemma holds.

We next describe our backtracking algorithm. In this algorithm, we first enumerate

all possible ways of decomposing the bixel intensities in b using a subset of the allowable

intensity multiset given by x. We denote the set of all candidate bixel decompositions for

bixel j by Pj, where for each p ∈ ∪n
j=1Pj, we must have p` ≤ x`, ∀ ` = 1, . . . , L.

The backtracking algorithm for solving the subproblem is stated formally in Algorithm

1. We begin by enumerating each possible element of Pj, ∀ j = 1, . . . , n. We denote the

set of processed bixels by F (for which a candidate “active” bixel decomposition has been

established), and the set of unprocessed bixels by R. In each iteration, we check to see if the

set of candidate bixel decompositions Pj for any j ∈ R is empty. If so, the current active bixel

decompositions do not yield a feasible solution, and the algorithm backtracks. Otherwise,

we consider an unprocessed bixel ̂ ∈ R, and choose an untried bixel decomposition p̂ ∈ P̂

to be active for bixel ̂. Next, we move ̂ from R to F , creating updated sets R′ and F ′, and

invoke Lemma 2 to update the set of bixel decompositions for the bixels in R′. Specifically,

for each j ∈ R′ and pj ∈ Pj, we calculate the number of leaf positions that would be required

due to selecting pj as the active bixel decomposition for bixel j, in addition to those already

selected for bixels in F ′. We eliminate pj if a condition of type (19) is violated. We then

recursively call the procedure to continue with a new bixel j′ ∈ R′.
We stop either when we find a feasible bixel decomposition for all bixels, or when we

exhaust all bixel decompositions without finding a feasible solution. In the former case, a
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leaf decomposition that realizes the bixel decompositions for bixels j ∈ {1, . . . , n} can be

found by invoking Algorithm 3, which is based on the repeated application of Lemma 1. To

see that Algorithm 3 recovers a feasible leaf decomposition, note that Algorithms 1 and 2

provide bixel decompositions that satisfy Lemma 2, and in particular, the condition

n∑
j=2

max{0, pj−1
` − pj

`}+ pn
` ≤ x` ∀` = 1, . . . , L. (20)

Algorithm 3 recovers a feasible leaf decomposition if, in the outer while-loop corresponding

to each ` = 1, . . . , L, the counter r is never incremented more than x` times. Note that r is

incremented each time the inner while-loop terminates, which occurs either when ̃ > n (a

total of pn
` times), or when p̃

` = 0 (p̃−1
` − p̃

` times) for ̃ = 2, . . . , n. The total number of

times that r is incremented in the outer while-loop for ` = 1, . . . , L is thus the left-hand-side

of (20), which is no more than x`, as required.

If we exhaust all bixel decompositions without finding a feasible solution, we conclude

that the current allowable intensity multiset is incompatible with the current row.

Algorithm 1 C1-Partition(b, x)

Input: b {n-dimensional vector representing bixel intensity requirements}
Input: x {L-dimensional vector representing an allowable intensity multiset}
{This algorithm finds whether there exists a C1-Partition of b compatible with x}
F ← ∅ {F is the set of processed bixels}
R ← {1, . . . , n} {R is the set of unprocessed bixels}
for all j ∈ {1, . . . , n} do

Pj ← Enumerate all bixel decompositions compatible with x for bixel j

P ← {P1, . . . ,Pn}
return C1-PartitionRecursive(b, x, F , R, P)

Since Algorithm 1 is a backtracking algorithm, and therefore in the worst case investigates

all possible bixel decompositions, it is of exponential time complexity (as expected, due to

Proposition 1). However, the empirical running time of the algorithm can be reduced using

the following observations:

(i) If two adjacent bixels in a row have the same required intensity value, there must exist

an optimal solution in which they are exposed by the same leaf positions. This result
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Algorithm 2 C1-PartitionRecursive(b, x, F , R, P)

if R = ∅ then

return true {all bixels have been processed, P represents a feasible solution}
else

if ∃j ∈ R : Pj = ∅ then

return false {there is no remaining way of decomposing bixel j}
else

̂← argminj∈R|Pj| {̂ is a bixel having the smallest number of bixel decompositions}
for all p̂ ∈ P̂ do

P ′ ← P , P ′̂ ← {p̂} {p̂ is now the active decomposition for bixel ̂}
F ′ ← F ∪ {̂}, R′ ←R \ {̂}
for all j ∈ R′ do

P ′j ← Pj\ {all elements eliminated by Lemma 2, given the active decompositions

p̃ for ̃ ∈ F ′}
if C1-PartitionRecursive(b, x, F ′, R′, P ′) then

return true {a feasible solution that uses p̂ to decompose bixel ̂ is found}
return false {all bixel decompositions of bixel ̂ have been exhausted}

Algorithm 3 RecoverLeafDecomposition(b, x, P)

Require: Pj = {pj} ∀j ∈ {1, . . . , n} {all bixels have been processed}
Output: v`r (` = 1, . . . , L; r = 1, . . . , x`)

{v`r is an n-dimensional binary vector that represents a leaf position}
for all ` ∈ {1, . . . , L}, r ∈ {1, . . . , x`} do

v`r ← 0

for all ` ∈ {1, . . . , L} do

r ← 1, j ← 1

while j ≤ n do

if pj
` > 0 then

̃← j {a new leaf position must start at bixel j}
while ̃ ≤ n and p̃

` > 0 do

{expand the new leaf position as much as possible}
v`r̃ ← 1

p̃
` ← p̃

` − 1, ̃← ̃ + 1

r ← r + 1

else

j ← j + 1 {all leaf positions that start at bixel j have been recovered}
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can be proven in a similar way as Lemma 1, and is therefore omitted for brevity. This

observation implies that we can preprocess the data by merging all adjacent bixels in a

bixel row having the same intensity requirement, thereby reducing the dimensionality

of the problem instance.

(ii) In choosing the next bixel to be processed, we pick a bixel j ∈ R having the smallest

number of remaining candidate bixel decompositions. In this manner, we can quickly

enumerate all possible bixel decompositions for a few key bixels, and eliminate a sig-

nificant portion of bixel decompositions for the remaining bixels without wasting effort

by unnecessary backtracking steps.

(iii) In choosing the next candidate bixel decomposition pj ∈ Pj for a chosen bixel j ∈ R,

we select an untried bixel decomposition having the fewest number of intensity values.

Since each intensity value used in decomposing a bixel needs to be assigned to a different

aperture, this rule favors a bixel decomposition using the fewest number of apertures

to decompose the chosen bixel. Therefore, it tends to retain the availability of more

elements of the allowable intensity multiset (and hence apertures) for the remaining

bixels, making it easier to find a feasible solution (if one exists).

2.4 Valid Inequalities for the Master Problem

The initial optimal solution to the relaxation of (MP) in which none of the inequalities

(18) have yet been added to the model will set all variables equal to zero, which is clearly

incompatible with all rows. In this section, we derive some characteristics of all feasible

solutions and use these to define valid inequalities for (MP). In this way, we attempt to

improve the convergence rate of the decomposition algorithm by eliminating some clearly

infeasible solutions before the initial execution of the master problem.

2.4.1 Inequalities Based on Beam-on-time and Number of Apertures

Our first observation uses and generalizes the fact that the beam-on-time, number of aper-

tures, and total treatment time required for the decomposition of any single row into leaf
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positions provide lower bounds on the minimum beam-on-time, number of apertures, and

total treatment time, respectively, needed to deliver the entire fluence map. More generally,

consider any collection of nonnegative objective weights w′
1 and w′

2 in place of w1 and w2,

and let Ti(w
′
1, w

′
2) be the minimum value of the objective with respect to these weights over

all decompositions for row i only. Then the following are valid inequalities for (MP):

w′
1

L∑

`=1

x` + w′
2

L∑

`=1

`x` ≥ Ti(w
′
1, w

′
2) ∀ i = 1, . . . , m. (21)

We formulate an integer programming model to determine Ti(w
′
1, w

′
2) for a given row i. First,

denote the set of possible leaf positions for that row by K, and define n-dimensional binary

vectors vk for k ∈ K (where |K| = O(n2)), such that vkj = 1 if and only if bixel j is exposed

by leaf position k. In addition to decision variables x` as in (MP), define binary decision

variables zk`, ∀ k ∈ K, ` = 1, . . . , Lk such that zk` = 1 if and only if leaf position k is used

with intensity ` (where Lk = minj:vkj=1 bj is an upper bound on the intensity of leaf position

k.) Then Ti(w
′
1, w

′
2) is the optimal objective function value of the following optimization

problem, (SR):

minimize w′
1

L∑

`=1

x` + w′
2

L∑

`=1

`x` (22)

subject to

∑

k∈K


vjk

Lk∑

`=1

`zk`


 = bj ∀ j = 1, . . . , n (23)

Lk∑

`=1

zk` ≤ 1 ∀ k ∈ K (24)

∑

k∈K:Lk≥`

zk` = x` ∀ ` = 1, . . . , L (25)

zk` ∈ {0, 1} ∀ k ∈ K, ` = 1, . . . , Lk (26)

x` ≥ 0 and integer ∀ ` = 1, . . . , L. (27)

Constraints (23) ensure that each bixel receives exactly its required amount of dose while

constraints (24) guarantee that each leaf position is either not used or is assigned to a single

intensity value. Finally, constraints (25) relate the x- and z-variables.
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A practical difficulty in implementing the valid inequalities of the form (21) is that

we must determine appropriate values for the weights w′
1 and w′

2. However, Baatar [3]

shows that, when decomposing a single bixel row, there exists a set of leaf positions that

simultaneously minimizes both beam-on-time and the number of apertures. If we let Ni =

Ti(1, 0) represent the minimum number of apertures for row i, and z̃i = Ti(0, 1) represent

the minimum beam-on-time for row i, this implies that Ti(w
′
1, w

′
2) = w′

1Ni + w′
2z̃i, so that

we can replace (21) by

w′
1

L∑

`=1

x` + w′
2

L∑

`=1

`x` ≥ w′
1Ni + w′

2z̃i ∀ i = 1, . . . , m. (28)

It is easy to see that we can capture all of these valid inequalities by restricting ourselves to

the coefficient pairs (w′
1, w

′
2) = (1, 0) and (0, 1) only:

L∑

`=1

x` ≥ max
i=1,...,m

{Ni} (29)

L∑

`=1

`x` ≥ max
i=1,...,m

{z̃i}. (30)

We can generalize this idea as follows. Let R(L) denote the set of rows for which the

maximum intensity requirement is bounded by L for some L ∈ {1, . . . , L}, i.e., R(L) =

{i ∈ {1, . . . , m} : Li ≤ L}. Since intensity values greater than L cannot be used in decom-

posing the rows in R(L), a similar approach to the one above can be used to derive the

following family of valid inequalities

L∑

`=1

x` ≥ max
i∈R(L)

{Ni} ∀ L = 1, . . . , L (31)

L∑

`=1

`x` ≥ max
i∈R(L)

{z̃i} ∀ L = 1, . . . , L. (32)

Finally, note that the values of Ni and z̃i can be found by solving (SR) with w′
1 = 1, w′

2 = 1

or by using the method of Kalinowski [15], since there exists a solution that minimizes both

beam-on-time and the number of apertures [3].
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2.4.2 Inequalities Based on Bixel Subsequences

Recall that (16)–(18) represent necessary conditions for feasibility of an allowable intensity

multiset with respect to a particular row. It is possible to develop stronger necessary condi-

tions if we examine subsequences of a row, i.e., a subset of the required intensity values in

a row that preserves their order in the fluence map. First, Lemma 3 shows that, if a given

allowable intensity multiset is incompatible with a subsequence s of row i, then it also must

be incompatible with row i.

Lemma 3. Consider an allowable intensity multiset x, an n-dimensional vector b that

represents the intensity requirements of the bixels in some row of B, and an n′-dimensional

vector s = (bj1 , . . . , bjn′ ), where 1 ≤ j1 < · · · < jn′ ≤ n. If x is not compatible with s, then

it is also not compatible with b.

Proof. We prove the equivalent statement that if x is compatible with b, then it is also

compatible with s. Assume that x is compatible with b. By definition, there exists a

bixel decomposition for each bixel j = 1, . . . , n so that the resulting set of leaf positions is

compatible with x. The bixel decompositions corresponding to only the bixels in s are also

compatible with x, since the order of the bixels in s is the same as that in b.

Note that we can invoke Lemma 3 to associate a subproblem with each of the O(2n)

subsequences of a bixel row b. Each of these subproblems can then be used to generate

cutting planes of the form (18), as well as valid inequalities of the form (31) and (32).

However, since the strength of (18), (31) and (32) depend on the largest intensity value

in a bixel row, we form subsequences of each bixel row by, for L = 1, . . . , L, considering

only those bixels having required intensity less than or equal to L. The valid inequalities

generated by the O(min(n, L)) subsequences generated in this fashion imply all O(2n) valid

inequalities associated with all possible subsequences.

2.5 Constructing a Feasible Matrix Decomposition

Our algorithm finds an optimal allowable intensity multiset and a bixel decomposition for

each bixel row. In order to construct a corresponding matrix decomposition, we need to
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apply Algorithm 3 to find a leaf decomposition for each row. We can then generate aperture

matrices by arbitrarily combining leaf positions using the same intensity values in differ-

ent rows. We have found empirically that this simple approach yields a feasible matrix

decomposition very quickly.

Since any pair of leaf positions assigned to the same intensity value in different rows can

be combined, there are up to
(∏L

`=1(x`!)
)m

aperture matrices that can be constructed from

a given feasible leaf decomposition for each row. Even though each such choice represents an

alternative optimal solution to the optimal leaf sequencing problem, some matrix decompo-

sitions may clinically be preferable to others based on their structural properties. Perhaps

the most challenging structural consideration pertains to the so-called “tongue-and-groove”

effect observed in MLCs. We refer the reader to the works of Deng et al. [9] and Que et al.

[31] for technical details of the tongue-and-groove effect in dynamic MLC dose delivery. For

the purposes of this study, it is sufficient to understand that leaves in adjacent rows often

interlock with a tongue on the bottom of one row sliding along a groove in the top of another

row. Tongue-and-groove underdosage occurs since a leaf’s tongue blocks dosage intended for

cells beneath it. Therefore, it is desirable to limit such underdosages.

In order to measure the amount of tongue-and-groove effect in a treatment plan, Que et

al. [31] note that it is generally not desirable to deliver one aperture in which some bixel (i, j)

is blocked by a leaf while bixel (i+1, j) is not blocked, if another aperture is being delivered

where (i, j) is not blocked by a leaf while (i + 1, j) is blocked. Based on this observation,

Que et al. [31] derive the following tongue-and-groove index (TGI). Suppose a treatment

plan consists of K apertures described by binary values vik
j , where vik

j = 0 if cell (i, j) is

blocked by a leaf in aperture k and vik
j = 1 otherwise, for each i = 1, . . . , m, j = 1, . . . , n,

k = 1, . . . , K. Let Ik be the intensity delivered in aperture k = 1, . . . , K. Then the TGI of

a matrix decomposition is defined as:

m−1∑
i=1

n∑
j=1

K−1∑

k=1

K∑

`=k+1

min{Ik, I`}
[
vik

j (1− vi+1,k
j )(1− vi`

j )vi+1,`
j

+ (1− vik
j )vi+1,k

j vi`
j (1− vi+1,`

j )
]
. (33)

We thus can calculate the TGI component induced by rows 1 and 2 (of all aperture pairs),
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then rows 2 and 3, and so on, down to rows m−1 and m. This observation allows us to focus

on pairs of rows instead of pairs of entire aperture matrices while reducing TGI, allowing

us to design an efficient algorithm for TGI reduction given a set of bixel decompositions for

each row.

Given a pair of adjacent rows, we attempt to match individual leaf positions in the two

rows to minimize the TGI induced by the adjacent row pair. In order to limit computational

overhead in this phase of our algorithm, we reduce TGI indirectly by the following scheme.

Let us denote a leaf position for row i by a binary n-vector vi, where vi
j = 1 if the leaf

position exposes bixel j in row i. We measure the overlap between two leaf positions having

the same intensity value in consecutive rows by counting the number of columns that both

leaf positions expose simultaneously. Formally, we define the overlap between leaf positions

vi and vi+1 as θ(vi,vi+1) =
∑n

j=1 vi
jv

i+1
j . Our approach is to heuristically minimize TGI by

maximizing the total overlap between all leaf position pairs, which can efficiently be solved as

an assignment problem. The efficiency of the assignment problems can be further improved

by noting that the problem decomposes over the intensity values ` ∈ {1, . . . , L}, since only

leaf positions having the same intensity value can be combined. Therefore, we can generate

a matrix decomposition by finding a leaf decomposition for each row, and then matching leaf

positions in adjacent rows having the same intensity value by solving an assignment problem

so that the total overlap is maximized.

The TGI minimization step described in the previous paragraph can be improved as

follows. Typically, multiple bixel decompositions exist for each row that are compatible with

a given feasible intensity multiset. Algorithm 2 can be modified in a straightforward manner

so that it finds all leaf decompositions of a row, instead of stopping once the first feasible

bixel decomposition for all bixels is found. Since different bixel decompositions for a bixel

row correspond to different leaf decompositions, considering alternative bixel decompositions

can lead to a matrix decomposition having a smaller TGI.

Given alternative leaf decompositions for each row, the problem of minimizing TGI can

be formulated as a shortest path problem as follows. We create a layered network in which

each layer corresponds to a bixel row i ∈ {1, . . . , m}, and node Nid represents the dth leaf

decomposition of row i. We add a directed arc from each node Nid to all nodes N(i+1)d′ , for
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all i = 1, . . . , m− 1. The cost of the arc from node Nid to N(i+1)d′ is given by the TGI value

resulting from the assignment solution corresponding to the candidate leaf decompositions

represented by d for row i, and d′ for row i + 1. Finally, we add a start node S and a finish

node F . We create zero-cost arcs from S to all nodes in the first layer, and from all nodes

in the last layer to F . A shortest S–F path in this graph represents a matrix decomposition

having a minimum TGI from among the provided options. Since the graph is acyclic, the

shortest path problem can be solved in O(|A|) time, where A is the set of all arcs.

Remark 1. The shortest path approach to minimizing TGI can be difficult to solve quickly

when bixel rows have a large number of alternative leaf decompositions, since an arc joins

each pair of nodes corresponding to adjacent bixel rows. In order to partially overcome this

difficulty, we limit the number of bixel decompositions found by Algorithm 2 by terminating

once 250 feasible bixel decompositions have been identified. Next, note that a straightforward

acyclic shortest path implementation processes layers one at a time, and does not generate

a feasible S–F path before processing the last layer. Since being able to specify a time

limit is a desired feature in a practical setting, we use a hybrid algorithm for solving the

shortest path problem. Our algorithm starts by processing layers one-by-one, updating node

labels as usual. If a shortest path is not found when a given initial time limit expires, our

algorithm switches to a depth-first-search (DFS) procedure, which we terminate after a given

final time limit. We start DFS from an unprocessed node Nid having a smallest label, select

a minimum-cost arc (Nid, N(i+1)d′) exiting that node, and update the label of N(i+1)d′ if we

have found a new shortest S–N(i+1)d′ path. Else, the algorithm backtracks and seeks another

arc from Nid. We then return the shortest S–F path found by this procedure when the final

time limit is reached.

3 Computational Results and Comparisons

3.1 Problem Instances

In our experiments we have used two classes of problem instances. Our base set of test

problem instances consists of 25 clinical problem instances that were obtained from treatment
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plans for five head-and-neck cancer patients treated using five beam angles each. Table

1 reports the problem characteristics for these problem instances in terms of the matrix

dimensions m and n. The maximum intensity value is L = 20 for all these instances. In

addition, to allow comparison of our results with published results on other approaches to

the problem, we generated 100 random problem instances of dimensions 20 × 20 having

maximum intensity value L = 10.

However, since these problem instances are generally too large to be solvable by the inte-

ger programming model from Langer et al. [24] and its modification described in Appendix

A, we also randomly generated eight instances (“test5x5a”, . . . , “test6x7b”) to demonstrate

the computational limitations of the latter approaches.

Unless otherwise specified, we used w1 = 7 and w2 = 1 as the objective weights for the

number of apertures and beam-on-time, respectively.

Name m n Name m n Name m n Name m n Name m n

c1b1 15 14 c2b1 18 20 c3b1 22 17 c4b1 19 22 c5b1 15 16

c1b2 11 15 c2b2 17 19 c3b2 15 19 c4b2 13 24 c5b2 13 17

c1b3 15 15 c2b3 18 18 c3b3 20 17 c4b3 18 23 c5b3 14 16

c1b4 15 15 c2b4 18 18 c3b4 19 17 c4b4 17 23 c5b4 14 16

c1b5 11 15 c2b5 17 18 c3b5 15 19 c4b5 12 24 c5b5 12 17

Table 1: Dimensions of Clinical Problem Instances

3.2 Implementation Issues

We have implemented our decomposition algorithm using CPLEX 11.0 running on a Win-

dows XP PC with a 3.4 GHz CPU and 2 GB RAM. We use callback functions of CPLEX to

generate a single branch-and-bound tree in which we solve the subproblems corresponding

to each integer solution found in the tree, and add cuts to tighten the master problem as

necessary. This implementation turned out to be consistently faster than one which re-solves

the master problem each time a cutting plane is added to the model. Furthermore, in our

base algorithm, we use the subsequence inequalities (31) and (32) described in Section 2.4.2.

We also use Engel’s heuristic [11], which executes in well under one CPU second for each

instance and generates a solution having minimum beam-on-time, to (i) obtain an initial
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upper bound and (ii) compute the upper bounds R` (` = 1, . . . , L).

3.3 Comparison with Langer et al.’s Model

Our first experiment compares our base algorithm that minimizes the total treatment time

to that of Langer et al. [24] and to the modification of their model as described in Appendix

A of this paper. We choose randomly generated test instances of various dimensions in order

to identify the problem sizes that can be solved by each algorithm, as well as four of the

smallest clinical instances to compare the effectiveness of the algorithms on clinical instances.

We imposed a one-hour time limit past which we halted the execution of an algorithm. For

these experiments we disabled the use of Engel’s heuristic as an initial heuristic to test the

ability of these models to efficiently find good-quality upper bounds.

Table 2 summarizes the results of these three algorithms in terms of the execution time,

the best upper and lower bounds found within the time limit, and the optimality gap (cal-

culated as the difference between the upper and lower bound as a percentage of the upper

bound). Our decomposition algorithm can solve all 15 instances in this data set within a

few seconds, whereas only six instances can be solved to optimality within an hour by either

integer programming formulation. We conclude that, even though the integer programming

formulation given in [24] can solve small instances to optimality, it cannot be used to solve

clinical problem instances to optimality within practical computation time limits.

3.4 Random Problem Instances

For our next experiment, we first solved each of the 20 × 20 random problem instances in

our data set to optimality for the problems of (i) minimizing total treatment time (“Total

Time”), (ii) minimizing the number of apertures while constraining the beam-on-time to be

minimal (“Lexicographic”), and (iii) minimizing the number of apertures (“# Apertures”).

We also implemented three heuristic algorithms proposed by Siochi [38], Engel [11], and Xia

and Verhey [41], which we executed on the same data set. (The results we present from

Siochi [38] refer to the Variable Depth Recursion (VDR) algorithm without tongue-and-

groove constraints, using the parameters recommended in the paper. We will discuss the
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Two Stage Langer Modified Langer

Name m n L CPU Optimal CPU UB LB GAP CPU UB LB GAP

test3x3 3 3 8 0.1 29 1.6 29 29.00 0.0% 0.9 29 29.00 0.0%

test3x4 3 4 8 0.1 37 5.2 37 37.00 0.0% 1.6 37 37.00 0.0%

test4x4 4 4 8 0.1 36 30.4 36 36.00 0.0% 10.7 36 36.00 0.0%

test5x5a 5 5 10 0.2 45 2069.6 45 45.00 0.0% 86.4 45 45.00 0.0%

test5x5b 5 5 15 0.2 50 198.2 50 50.00 0.0% 92.6 50 50.00 0.0%

test5x6a 5 6 10 0.2 55 3600 61 33.53 45.0% 3600 55 40.95 25.5%

test5x6b 5 6 18 0.4 71 3600 84 51.58 38.6% 3600 77 58.67 23.8%

test6x6a 6 6 13 0.3 55 3600 55 45.63 17.0% 3600 55 48.00 12.7%

test6x6b 6 6 13 0.3 52 3600 57 43.82 23.1% 3600 57 50.00 12.3%

test6x7a 7 6 10 0.2 45 690.0 45 45.00 0.0% 435.1 45 45.00 0.0%

test6x7b 6 7 15 0.4 74 3600 94 35.69 62.0% 3600 80 47.88 40.1%

c1b1 15 14 20 1.3 111 3600 336 48.58 85.5% 3600 273 42.00 84.6%

c1b2 11 15 20 0.8 104 3600 280 38.26 86.3% 3600 132 39.55 70.0%

c1b5 11 15 20 3.1 104 3600 280 46.20 83.5% 3600 140 49.29 64.8%

c5b4 14 16 20 2.5 124 3600 360 34.00 90.6% 3600 360 39.11 89.1%

Table 2: Comparison of Our Base Algorithm with Langer et al.’s Model

effect of including tongue-and-groove considerations in the algorithm below.)

Figure 2 summarizes the total treatment times associated with the solutions generated by

the six algorithms we tested. Each algorithm is represented by a curve that depicts quality of

the solutions obtained by the corresponding algorithm. For each value T of total treatment

time on the horizontal axis, each curve plots the number of problem instances for which the

corresponding algorithm was able to find a solution having total treatment time no more

than T . For instance, Figure 2 shows that Siochi’s heuristic found a solution with a total

treatment time of at most 175 time units in 5% of the problem instances, while an optimal

solution (represented by “Total Time”) has the same quality level in 97% of the problem

instances. We observe that all three exact algorithms find solutions having similar treatment

times. Solution qualities generated by the Engel and Siochi heuristics are similar, with the

Siochi heuristic being slightly better. A comparison of the heuristic solutions with optimal

solutions reveals that average optimality gaps for Siochi, Engel, and Xia-Verhey heuristics

are 10.1%, 12.0%, and 51.5%, respectively.

Figure 3 compares the algorithms with respect to the number of apertures used in their

respective solutions. We note that our algorithm that minimizes total treatment time (“Total
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Figure 2: Comparison of Total Treatment Times on Random Data
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Time”) finds a solution that also minimizes the number of apertures for most problem

instances. As expected, lexicographic minimization of the two objective functions results

in an increased number of apertures. For this objective the “# Apertures” algorithm finds

optimal solutions. Average optimality gaps for the heuristics of Siochi, Engel, and Xia-

Verhey are 15.6%, 18.9%, and 62.3%, respectively.
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Figure 4: Comparison of Beam-on-Time Values on Random Data

We analyze the beam-on-time values of the solutions generated by each algorithm in

Figure 4. Since both Engel’s heuristic and our “Lexicographic” algorithm find optimal

solutions having minimum beam-on-time, their curves overlap. We observe that the Siochi

heuristic and our “Total Time” algorithm tend to generate solutions having small beam-

on-time values, but the solutions generated by our “# Apertures” algorithm, and by the
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Xia-Verhey heuristic have higher beam-on-time values. We calculated the average optimality

gaps for the latter two algorithms as 12.6% and 32.1%, respectively.
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Figure 5: Comparison of TGI Values on Random Data

The final measure of solution quality that we consider is TGI, which is a measure of

the tongue-and-groove effect given by (33). Figure 5 reveals that the solutions obtained

by all three variants of our decomposition algorithm have significantly lower TGI values

than the heuristic procedures. This result implies that, even though our TGI-reduction

algorithm described in Section 2.5 does not guarantee a minimum TGI, it is highly effective

in finding solutions with TGI values superior to the other heuristic approaches. In order to

estimate optimality gaps for the heuristics we compare heuristic solutions with the solutions

generated by our “Lexicographic” algorithm, which provides the best TGI among all methods
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mentioned above. We note that average gaps for Siochi, Engel and Xia-Verhey heuristics

are 162.1%, 164.4%, and 205.4%, respectively. We also note that these heuristics do not

attempt to minimize TGI, and it might be possible to modify them to obtain solutions with

lower TGI values. It is interesting to note that a variant of Siochi’s algorithm [38] is capable

of completely eliminating TGI at the expense of creating additional apertures. This variant

is reported to increase the number of apertures by 10% to 30% relative to the variant that

does not remove TGI [38].

Finally, the Engel and Xia-Verhey heuristics took less than one second of CPU time in all

instances we tested. The average CPU time for Siochi’s heuristic, “Total Time” algorithm,

“# Apertures” algorithm, and “Lexicographic” algorithm were 31.5, 963.1, 414.8, and 421.4

seconds, respectively. We note that all variants of our two-stage algorithm showed a “heavy-

tail” behavior, where about 80% of the problem instances were solved to optimality in less

than the average solution time. For instance, using the “# Apertures” algorithm, we were

able to solve 40 instances within one minute, 58 within two minutes, 81 within 414.8 seconds

(the average solution time for this algorithm), 90 within 15 minutes, and all but three

instances were solved within an hour. The remaining three instances were solved within

three hours.

3.5 Clinical Problem Instances

Recall from Section 1 that in clinical practice, we can deliver each fluence map using a

decomposition into either row-convex or column-convex apertures, where the latter requires

rotation of the MLC head. Our final set of experiments compares the algorithms on clinical

problem instances in our data set, allowing for MLC head rotation.

We first show the results of applying our decomposition algorithm to decompose each

of the 25 clinical fluence maps into row-convex apertures, and column-convex apertures,

where the latter is achieved by applying our algorithm to the transpose of each fluence

map. Table 3 reports the performance of our algorithm when the objective function is set to

minimize total treatment time, and displays the number of apertures (“nAper”), beam-on-

time (“BOT”), total treatment time (“Time”), tongue-and-groove index (“TGI”), and CPU
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time used (“CPU”) for the algorithm.

Our algorithm finds an optimal solution to several instances within a few seconds while

four instances take more than 10 minutes of CPU time to be solved to optimality. Comparing

the solutions obtained for row-convex and column-convex decompositions, we observe that

rotating the MLC head is most beneficial (in terms of treatment time) for instances in which

the number of rows is much smaller than the number of columns. These benefits are most

apparent on instances c4b2 and c4b5, where rotating the MLC head can result in more than

50% reduction in total treatment time. We also note that several problem instances require

much less computational time to solve for a column-convex decomposition compared to a

row-convex decomposition.

Row-Convex Column-Convex

Name nAper BOT Time TGI CPU nAper BOT Time TGI CPU

c1b1 10 41 111 102 1.1 11 38 115 50 5.5

c1b2 10 34 104 80 0.8 8 23 79 14 0.7

c1b3 11 31 108 97 11.4 9 28 91 59 1.0

c1b4 11 33 110 74 37.0 11 37 114 146 7.0

c1b5 10 34 104 133 4.3 8 32 88 49 1.2

c2b1 14 34 132 134 26.5 12 30 114 187 11.5

c2b2 13 41 132 159 20.1 11 33 110 192 8.0

c2b3 13 49 140 245 14.7 11 28 105 151 3.1

c2b4 14 51 149 316 87.3 12 34 118 148 8.3

c2b5 13 41 132 217 395.6 10 27 97 120 2.0

c3b1 13 41 132 323 310.0 14 40 138 254 23.0

c3b2 14 46 144 320 4759.8 8 23 79 86 1.1

c3b3 13 49 140 533 10373.9 12 40 124 360 18.6

c3b4 12 44 128 481 524.9 12 40 124 327 428.2

c3b5 13 34 125 133 3.3 9 27 90 75 2.6

c4b1 16 40 152 216 34.9 12 46 130 244 10.6

c4b2 16 69 181 450 20901.0 9 27 90 149 15.8

c4b3 14 41 139 130 44.7 10 32 102 129 3.3

c4b4 14 44 142 246 164.3 10 27 97 163 8.0

c4b5 17 76 195 470 14511.4 9 24 87 48 4.0

c5b1 10 26 96 68 0.5 10 35 105 41 0.5

c5b2 12 41 125 59 14.3 8 25 81 27 0.6

c5b3 10 34 104 155 3.1 9 23 86 42 1.0

c5b4 12 40 124 105 2.2 10 32 102 87 4.3

c5b5 12 46 130 151 51.9 8 31 87 17 0.8

Table 3: Effect of Rotating the MLC Head
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Motivated by this observation, we modify our algorithm to directly solve for the best

orientation by using obtained upper and lower bounds to quickly prove whether rotating the

MLC head is beneficial. Assume that we have lower and upper bounds for the row-convex

and column-convex problems, and suppose that the lower bound of the row-convex problem

is greater than the upper bound of the column-convex problem. In this case, we can conclude

that an optimal solution minimizing total treatment time for the given fluence map must be

a column-convex decomposition. We use this argument to solve one of the problems, and

then use the bound information to avoid having to solve the other one to optimality. We

pick the first problem to solve by selecting one having the least initial lower bound, breaking

ties if applicable by choosing the problem for which n < m, since the subproblems tend to

solve faster for smaller values of n. Table 4 shows the nAper, BOT, TGI, and CPU metrics

obtained from our algorithm enhanced with the above bounding scheme, corresponding to

the “Total Time,” “# Apertures,” and “Lexicographic” objectives. Observe that all 25

instances, under any metric, terminate in under 15 minutes of CPU time with a solution

that is optimal with respect to the corresponding objective, and all instances are solved to

optimality within a minute using the “Lexicographic” algorithm.

Recall that the “BOT” column in “Lexicographic” reports the minimum achievable beam-

on-time, and the “nAper” column under the objective “# Apertures” reports the minimum

number of apertures needed to decompose each instance. Perhaps surprisingly, in comparing

these values with the results of “Total Time,” we observe that there exists a solution that

minimizes both the number of shapes and the beam-on-time simultaneously in 19 of the 25

instances.

Finally, we analyze performance of the three heuristics on clinical data, where we execute

each heuristic on each problem instance and its transpose (corresponding to row-convex and

column-convex decompositions), and pick the solution yielding the smallest treatment time.

Table 5 shows the number of apertures, beam-on-time, TGI metrics for each solution as well

as the CPU time spent by each heuristic. Comparison with the “Total Time” columns in

Table 4 reveals that even though the heuristics consistently generated high-quality solutions,

the Siochi and Engel heuristics were able to find an optimal solution in only five problem

instances, and Xia-Verhey heuristic could not find an optimal solution to any instance.
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Total Time # Apertures Lexicographic

Name nAper BOT TGI CPU nAper BOT TGI CPU nAper BOT TGI CPU

c1b1 10 41 102 4.7 10 41 102 2.3 11 38 50 4.8

c1b2 8 23 14 1.1 8 23 14 1.1 8 23 14 1.1

c1b3 9 28 59 3.0 9 28 59 4.5 9 28 59 4.5

c1b4 11 33 74 41.2 11 37 128 27.1 11 33 74 12.2

c1b5 8 32 49 2.1 8 34 56 1.3 9 26 9 1.9

c2b1 12 30 187 15.6 12 30 187 14.9 12 30 187 14.4

c2b2 11 33 192 10.8 11 38 161 6.9 11 33 146 7.8

c2b3 11 28 149 8.9 11 28 113 9.9 11 28 197 10.8

c2b4 12 34 148 16.8 12 34 148 16.8 12 34 148 17.1

c2b5 10 27 120 6.1 10 31 155 6.2 10 27 120 6.2

c3b1 13 41 323 315.0 12 51 521 62.1 13 41 325 31.4

c3b2 8 23 86 4.4 8 26 87 4.5 8 23 62 5.6

c3b3 12 40 360 27.4 12 40 360 894.7 12 40 365 20.1

c3b4 12 40 327 442.2 12 46 284 548.8 13 38 928 55.1

c3b5 9 27 75 5.6 9 27 75 5.4 9 27 75 5.7

c4b1 12 46 244 16.8 12 46 227 10.6 12 46 227 11.3

c4b2 9 27 149 45.5 9 32 150 56.2 9 27 135 35.0

c4b3 10 32 129 15.7 10 34 108 14.9 10 32 129 15.6

c4b4 10 27 163 32.0 10 28 112 32.6 11 26 72 29.9

c4b5 9 24 48 27.8 9 24 48 27.7 9 24 48 27.0

c5b1 10 26 68 1.2 10 26 68 1.2 10 26 68 1.2

c5b2 8 25 27 1.1 8 25 27 1.0 9 23 8 1.1

c5b3 9 23 42 3.6 9 24 45 3.2 9 23 83 3.1

c5b4 10 32 87 5.8 10 41 101 2.7 10 32 87 2.8

c5b5 8 31 17 1.4 8 33 16 1.2 8 31 71 1.1

Table 4: Computational Results for Our Base Algorithm
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Siochi Engel Xia-Verhey

Name nAper BOT TGI CPU nAper BOT TGI CPU nAper BOT TGI CPU

c1b1 11 38 245 14.0 12 38 261 < 1 13 40 219 < 1

c1b2 8 23 109 3.0 8 23 127 < 1 10 32 133 < 1

c1b3 9 28 213 4.0 10 28 192 < 1 12 34 198 < 1

c1b4 12 34 306 9.5 11 37 398 < 1 14 42 355 < 1

c1b5 9 26 103 3.6 9 26 175 < 1 12 35 124 < 1

c2b1 12 30 652 11.2 12 30 738 < 1 15 45 635 < 1

c2b2 12 33 395 17.8 12 33 464 < 1 15 45 460 < 1

c2b3 12 28 625 34.8 12 28 429 < 1 15 43 459 < 1

c2b4 12 34 628 43.2 12 34 723 < 1 18 56 417 < 1

c2b5 11 27 463 15.3 11 27 465 < 1 14 41 375 < 1

c3b1 14 43 828 36.3 15 40 1054 < 1 17 55 765 < 1

c3b2 9 23 143 11.1 9 23 127 < 1 12 36 289 < 1

c3b3 14 40 1316 40.8 14 40 869 < 1 19 60 1038 < 1

c3b4 13 48 678 33.3 14 38 765 < 1 17 55 553 < 1

c3b5 9 28 263 7.0 9 27 325 < 1 13 45 261 < 1

c4b1 13 46 617 29.4 14 46 625 < 1 18 62 531 < 1

c4b2 10 29 295 73.8 10 27 466 < 1 14 44 350 < 1

c4b3 11 32 339 19.4 11 32 365 < 1 14 48 428 < 1

c4b4 11 26 489 13.5 11 26 540 < 1 15 46 424 < 1

c4b5 9 24 236 89.8 9 24 328 < 1 15 44 328 < 1

c5b1 11 26 188 4.6 12 26 176 < 1 12 38 185 < 1

c5b2 9 23 129 6.9 9 23 100 < 1 10 33 145 < 1

c5b3 9 26 201 5.1 10 23 293 < 1 12 32 189 < 1

c5b4 11 32 218 11.2 11 32 322 < 1 13 46 243 < 1

c5b5 8 32 217 7.2 9 31 211 < 1 11 35 138 < 1

Table 5: Comparison of Heuristic Algorithms on Clinical Data
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4 Conclusions and Future Research

In this paper we have described an exact decomposition algorithm for solving a leaf sequenc-

ing problem arising in IMRT treatment planning. Our algorithm is based on an integer

programming model for finding a multiset of intensity values to be assigned to apertures,

and a backtracking algorithm that forms apertures by finding compatible leaf positions for

each row. Computational results show that the vast majority of randomly generated and

clinical problem instances in our data set can be solved to optimality within a few minutes.

Our algorithm is flexible enough to handle a class of related problems with minor modifi-

cations, and is capable of quantifying the effect of rotating the MLC head. Furthermore,

our computational results show that it is capable of obtaining significant reductions in the

tongue-and-groove effect compared to several heuristics in clinical use. As such, not only

can this algorithm reasonably be used in real clinical settings, but also the bounds obtained

from our algorithm can serve as benchmark criteria to compare the performance of heuris-

tic methods. Our benchmarks on the heuristic methods of Siochi [38], Engel [11], and Xia

and Verhey [41] reveal that while these methods are capable of consistently identifying good

solutions, they rarely find an optimal solution. On average they generate solutions that use

at least 11.8% more apertures than an optimal solution when tested on clinical data, and

15.6% when tested on randomly generated problem instances.

The algorithm we have described assumes that leaves corresponding to different rows

can be positioned independently, and exploits this assumption to decompose the problem

by rows. Therefore, it is not directly applicable for problems in which there are other

restrictions on aperture shapes that can be delivered by the available machinery, such as

interdigitation or connectedness constraints. We are planning to conduct further research in

order to generalize our algorithm to account for such additional technological constraints on

the aperture shapes.
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Appendix A

In this appendix we discuss an integer programming approach to decomposing a fluence map

into a number of apertures and corresponding intensities that is based on a model proposed

by Langer et al. [24]. Given a maximum number of unit-intensity apertures, say T , this

formulation determines the positions of the left and right leaves in each row of each of these

apertures. We develop the model by separately studying four components:

• Fluence map requirements. Define, for each aperture t = 1, . . . , T and each bixel

(i, j) ∈ {1, . . . , m}× {1, . . . , n}, a binary variable dt
ij that is equal to one if and only if

bixel (i, j) is exposed, i.e., not covered by a left leaf or a right leaf. Since each aperture

has unit intensity, the following constraints then ensure that the desired fluence map

is delivered:
T∑

t=1

dt
ij = bij ∀ i = 1, . . . , m, j = 1, . . . , n. (34)

• Aperture deliverability constraints. Define, for each aperture t = 1, . . . , T and each

bixel (i, j) ∈ {1, . . . , m} × {1, . . . , n}, binary variables pt
ij and ltij that are equal to one

if and only if bixel (i, j) is covered by the right leaf or the left leaf in row i of aperture t,

respectively. The following set of constraints then ensure that each of the T apertures
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is deliverable:

pt
ij + ltij + dt

ij = 1 ∀ i = 1, . . . , m, j = 1, . . . , n, t = 1, . . . , T (35)

pt
ij ≤ pt

i,j+1 ∀ i = 1, . . . , m, j = 1, . . . , n− 1, t = 1, . . . , T (36)

ltij ≤ lti,j−1 ∀ i = 1, . . . , m, j = 2, . . . , n, t = 1, . . . , T. (37)

In particular, constraints (35) state that each bixel is either covered by a right-hand

leaf, covered by a left-hand leaf, or uncovered (where the d-variables are included only

for convenience and can be substituted out of the formulation). Constraints (36) and

(37) state that if any bixel (i, j) is covered by a right-hand leaf (resp. left-hand leaf),

then bixel (i, j + 1) (resp. (i, j − 1)) should be covered by a right-hand leaf (resp.

left-hand leaf) as well.

• Beam-on-time. We associate a binary variable zt with each aperture t = 1, . . . , T that

is equal to one if there are uncovered bixels in aperture t and zero otherwise, so that

the beam-on-time is simply given by

T∑
t=1

zt. (38)

While Langer et al. [24] impose the following constraints to ensure that these variables

have (at least) their desired value:

m∑
i=1

n∑
j=1

dt
ij ≤ (mn)zt ∀ t = 1, . . . , T, (39)

we note that the following stronger formulation, which would actually not require

enforcing the z-variables to be binary, can be obtained by disaggregating (39).

dt
ij ≤ zt ∀ i = 1, . . . , m, j = 1, . . . , n, t = 1, . . . , T. (39′)

Note that this model allows zt to be equal to one even if in aperture t no bixels are

exposed, so that formally speaking (38) is an upper bound on the beam-on-time. The

objective function will ensure that the z-variables take on their minimum possible

value.
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• Number of apertures. We associate a binary variable gt with each aperture t =

1, . . . , T − 1 that is equal to one if aperture t is different from aperture t + 1 and

zero otherwise. The number of setups is then given by

T∑
t=1

gt. (40)

(If any aperture is used more than once but separated by another one, we consider the

second occurrence of the aperture to be a new setup. However, when minimizing total

treatment time there will always exist an optimal solution in which identical apertures

are delivered sequentially.) Now let ct
ij and ut

ij be auxiliary binary variables such that

the former is equal to one if bixel (i, j) is exposed in aperture t but not in aperture t+1

and zero otherwise, and the latter is equal to one if bixel (i, j) is covered in aperture t

but not in aperture t + 1. This relationship is stated by

−ct
ij ≤ dt+1

ij − dt
ij ≤ ut

ij ∀ i = 1, . . . , m, j = 1, . . . , n, t = 1, . . . , T − 1. (41)

Langer et al. [24] then use the following constraints to ensure that the variables gt have

(at least) their desired value:

m∑
i=1

n∑
j=1

(
ct
ij + ut

ij

) ≤ (mn)gt ∀ t = 1, . . . , T − 1. (42)

However, note that again a stronger set of inequalities (that permit g to be equivalently

relaxed as continuous variables) is obtained using disaggregation:

ct
ij + ut

ij ≤ gt ∀ i = 1, . . . , m, j = 1, . . . , n, t = 1, . . . , T − 1. (42′)

Similar to the case of the beam-on-time, this model allows gt to be equal to one even

if apertures t and t + 1 are identical, although our objective function will ensure that

the g-variables are chosen sufficiently small.

Langer et al. [24] then study the problem of minimizing the number of setups (40) subject

to the constraints (35)–(37), (39), (42), the constraint that the beam-on-time is minimal:

T∑
t=1

zt ≤ z̃ (43)
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and binary constraints on the variables, where we recommend determining z̃ via one of the

polynomial-time procedures mentioned in Section 1. We note that an equivalent model is

obtained by simply setting T = z̃, which reduces the problem dimension, and hence should

be more efficient than adding a beam-on-time constraint.

We wish to minimize the total treatment time as measured by

w1

T∑
t=1

gt + w2

T∑
t=1

zt (44)

subject to constraints (35)–(37), (39′), (42′), and binary constraints on the appropriate

variables (and hence we do not impose (43)).

Appendix B

Proposition 1. C1-Partition is strongly NP-complete.

Proof. Let ξ be the subset of {1, . . . , L} such that ` ∈ ξ if and only if x` > 0. Formally

speaking, the problem size is given by log2(L), n, and |ξ| (since the zero entries of x need

not be encoded).

Let K denote the set of all O(n2) n-dimensional binary vectors whose ones appear consec-

utively, where vk is the binary vector corresponding to k ∈ K. Consider a guessed solution

that consists of |ξ|-dimensional nonnegative integer vectors dk, ∀k ∈ K, where dk` denotes

the number of times leaf position vk, k ∈ K, is assigned to intensity ` ∈ ξ. Since all dk` ≤ L

in some feasible solution, we restrict the guessed d-vectors as such. The size of the guessed

vectors is thus O(n2|ξ| log2(L)). We can verify whether or not
∑

k∈K
∑

`∈ξ dk`vk = b in

O(n2|ξ|) additions. Therefore, C1-Partition is in NP.

In order to show that C1-Partition is NP-complete, we reduce 3-Partition to it. 3-

Partition is a strongly NP-complete problem and seeks whether a given multiset of integers

can be partitioned into triplets having the same sum. Formally, it can be defined as follows

(see Garey and Johnson [13]):

3-Partition

INSTANCE: A multiset A of 3ν positive integers a1, . . . , a3ν and a positive integer B such

43



that B/4 < ai < B/2 for i = 1, . . . , 3ν and such that
∑3ν

i=1 ai = νB.

QUESTION: Can A be partitioned into ν disjoint multisets A1, . . . , Aν such that
∑

j∈Ai
aj =

B for i = 1, . . . , ν?

Given an arbitrary instance of 3-Partition, we construct an instance for C1-Partition

as follows. First, we define x̂ to be an integer vector whose `th component, x̂`, is equal to the

number of indices i for which ai = `. Furthermore, we let b be a (2ν−1)-dimensional vector

of the form [B 0 B 0 · · · 0 B]. We construct a feasible solution to C1-Partition that

employs only the odd-indexed unit vectors of K. Denote these vectors as e1, e3, . . . , e2ν−1,

and index their associated d-vectors as d1,d3, . . . ,d2ν−1.

Assume that the 3-Partition instance is a yes-instance, and hence there exist multisets

A1, . . . , Aν such that
∑

j∈Ai
aj = B. In this case, a feasible solution of the C1-Partition

instance lets d2j−1,` be the number of elements of intensity ` in Aj, for each j = 1, . . . , ν,

and assigns dk` = 0 for all other k. Similarly, suppose that the C1-Partition instance is

a yes-instance. Since all positive values in b are adjacent to 0, in any feasible solution to

the instance of C1-Partition, we may only use leaf positions that expose a single odd-

index bixel. Also, since B/4 < ai < B/2, ∀ i = 1, . . . , 3ν, vector dk must be used to

deliver exactly three intensity values, for k = 1, 3, . . . , 2ν − 1. Then a feasible solution of

the 3-Partition instance is given as multisets A1, . . . , Aν recovered from d1,d3, . . . ,d2ν−1

as described above. Therefore, an arbitrary 3-Partition instance is a yes-instance if and

only if the corresponding transformed C1-Partition instance is a yes-instance. Since 3-

Partition is strongly NP-complete, and since the transformation provided is polynomial

in terms of the size of the problem and the instance data, it follows that C1-Partition is

also strongly NP-complete.
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