
Mixed-Integer Programming Techniques for

Decomposing IMRT Fluence Maps

Using Rectangular Apertures

Z. Caner Taşkın∗ J. Cole Smith† H. Edwin Romeijn‡

March 31, 2008

Abstract

We consider a matrix decomposition problem arising in Intensity Modulated Radiation

Therapy (IMRT). The problem input is a matrix of intensity values that are to be deliv-

ered to a patient via IMRT from some given angle, under the condition that the IMRT

device can only deliver radiation in rectangular shapes. This paper studies the problem

of minimizing the number of rectangles (and their associated intensities) necessary to

decompose such a matrix. We propose an integer programming-based methodology

for providing lower and upper bounds on the optimal solution, and demonstrate the

efficacy of our approach on actual clinical data.

∗Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall, P.O. Box

116595, Gainesville, Florida 32611-6595; e-mail: taskin@ufl.edu.
†Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall, P.O. Box

116595, Gainesville, Florida 32611-6595; e-mail: cole@ise.ufl.edu.
‡Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall, P.O. Box

116595, Gainesville, Florida 32611-6595; e-mail: romeijn@ise.ufl.edu. The work of this author was sup-

ported by the National Science Foundation under grant no. DMI-0457394.

1



1 Introduction and Literature Survey

Over the past decade, Intensity Modulated Radiation Therapy (IMRT) has developed into

the most successful external-beam radiation therapy delivery technique for many forms of

cancer. This is due to its ability to deliver highly complex dose distributions to cancer

patients that enable the eradication of cancerous cells while limiting damage to nearby

healthy organs and tissues. Patients treated with IMRT therefore often experience a higher

chance of cure, suffer from fewer side effects of the treatment, or both. In this paper, we

will study an optimization problem that is related to the efficient clinical implementation of

IMRT using a simpler technology than currently used, which, if successful, will reduce the

cost as well as the complexity of delivering IMRT, and thereby make such superior treatments

accessible to significantly more patients worldwide.

External-beam radiation therapy is delivered from multiple angles by a device that can

rotate around a patient. The use of multiple (typically 3–9) angles is one of the tools that

allow for the treatment of deep-seated tumors while limiting the radiation dose to surround-

ing functioning organs. Conventional conformal radiation therapy then further uses blocks

and wedges to shape the beams (see, e.g., Lim [14] and Lim et al. [15, 16]). IMRT is a

more powerful therapy that instead modulates beam intensity. The most common technique

for achieving this modulation is to dynamically shape beams with the help of a multileaf

collimator (MLC) system. Such systems can dynamically form many complex apertures by

independently moving leaf pairs that block part of the radiation beam. Unfortunately, MLC

systems are very costly and technologically advanced, and are therefore difficult and expen-

sive to operate and maintain. Moreover, MLC systems are currently only available for use

with a so-called linear accelerator that generates high-energy photon beams for treatment.

However, the use of radioactive 60Co (Cobalt) sources for radiation therapy is still ubiqui-

tous in many parts of the world, and is poised to experience a revival in the United States

and Europe through the RenaissanceTM device that is under development by ViewRay, Inc.

based in Cleveland, Ohio. Without a MLC, IMRT delivery may be achieved through the use

of compensators: high-density blocks that control the intensity profile of a radiation beam.

2



Such blocks are custom-made for each individual patient, which makes compensator-based

IMRT not only labor and storage space intensive, but it also makes the actual treatment

very time-consuming due to the fact that therapists must enter the treatment room to place

each individual compensator. In addition, compensators have several undesirable properties

that make it difficult to perform accurate dose calculations, thereby reducing the advantages

of IMRT (see, e.g., Earl et al. [5]). Recently, researchers have begun to explore the clini-

cal feasibility of delivering IMRT using conventional jaws that are already integrated into

radiation delivery devices and can create apertures that are rectangular in shape (see, e.g.,

Earl et al. [5], Kim et al. [10], and Men et al. [17]). Successful application of this much

simpler delivery technique depends critically on the ability to efficiently deliver high-quality

treatment plans. In this paper, we therefore develop and test new optimization approaches

to minimize the treatment time required for a particular treatment plan using rectangular

apertures only.

Solving a so-called fluence map optimization problem yields an optimal IMRT treatment

plan that resolves different, and conflicting, clinical measures of treatment plan quality re-

lated to tumor control and side effects (see, e.g., Shepard et al. [22] for a review; Lee et al.

[12, 13] for mixed-integer programming approaches; Romeijn et al. [21] for convex program-

ming models; and Hamacher and Küfer [7] and Küfer et al. [11] for a multicriteria approach).

A treatment plan then consists of a collection of nonnegative intensity matrices, often re-

ferred to as fluence maps, one corresponding to each beam angle. In order to limit treatment

time, each of these matrices is then expressed as a multiple of an integral fluence map in

which the maximum element is on the order of 10–20. To allow delivery of the treatment

plan, each of these fluence maps should be decomposed into a number of apertures and cor-

responding intensities, where the collection of apertures that may be used depends on the

delivery equipment. For MLC delivery this problem is called the leaf sequencing problem

and is very widely studied; for examples, we refer to Ahuja and Hamacher [1], Boland et al.

[3], Kamath et al. [9], Engel [6], Kalinowski [8], and Taşkın et al. [23]. (Note that integrated

approaches to fluence map optimization, also referred to as aperture modulation, have been

3



proposed as well; we refer to, e.g., Preciado-Walters et al. [19], Romeijn et al. [20], and Men

et al. [17].)

The problem that we study in this paper is the decomposition of an integral fluence map

into rectangular apertures and corresponding intensities. While Dai and Hu [4] proposed a

straightforward heuristic for a variant of this decomposition problem, we develop the first

computationally viable optimization approach to this problem. In Section 2 we consider

the core problem of decomposing an (integral) fluence map while minimizing the number

of rectangular apertures. In Section 3 we then extend our models to the problems of (i)

minimizing total treatment time (as measured by the sum of the required aperture setup

times and the beam-on-time, i.e., the actual time that radiation is being delivered); and

(ii) minimizing the number of apertures subject to beam-on-time being minimal. Section 4

discusses our computational results on a collection of clinical fluence maps, and we conclude

the paper in Section 5.

2 A Mixed-Integer Programming Approach

We begin in Section 2.1 by formally describing the optimization model under investigation,

and modeling it with a mixed-integer programming formulation. We next describe several

classes of valid inequalities in Section 2.2. Finally, we discuss methods for partitioning the

input matrix in Section 2.3, which leads to effective lower and upper bounding techniques.

2.1 Model Development

In this section, we discuss an integer programming approach to decomposing a fluence map

into a minimum number of rectangular apertures and corresponding intensities. Throughout

this paper, we will denote the fluence map to be delivered by a matrix B ∈ Nm×n, where the

element at row i and column j, (i, j), corresponds to a bixel with required intensity bij. We

call a bixel having an intensity requirement of zero a zero-bixel. We also define a nonzero-

bixel analogously. Figure 1 shows an example fluence map, which we will use throughout

4



this paper.

Figure 1: Example fluence map

Let R be the set of all O(n2m2) possible rectangular apertures (i.e., submatrices of B

having contiguous rows and columns) that can be used to decompose B, excluding those

that contain a zero-bixel. For each rectangle r ∈ R we define a continuous variable xr that

represents the intensity assigned to rectangle r, and a binary variable yr that equals 1 if

rectangle r is used in decomposing B (i.e., if xr > 0), and equals 0 otherwise. Let Cr be

the set of bixels that is exposed by rectangle r. We define Mr = min(i,j)∈Cr{bij} to be the

minimum intensity requirement among the bixels covered by rectangle r. Furthermore, we

denote the set of rectangles that cover bixel (i, j) by R(i, j). Given these definitions, we can

formulate the problem as follows:

IPR: Minimize
∑
r∈R

yr (1)

subject to:
∑

r∈R(i,j)

xr = bij ∀i = 1, . . . ,m, j = 1, . . . , n (2)

xr ≤ Mryr ∀r ∈ R (3)

xr ≥ 0, yr binary ∀r ∈ R. (4)

The objective function (1) minimizes the number of rectangles used in the decomposition.

Constraints (2) guarantee that each bixel receives exactly the required dose. Constraints (3)

enforce the condition that xr cannot be positive unless yr = 1. Finally, (4) states bounds

and logical restrictions on the variables. Note that the objective (1) guarantees that yr = 0

when xr = 0 in any optimal solution of IPR.

5



Formulation IPR contains two variables and a constraint for each rectangle, resulting in a

large-scale mixed-integer program for problem instances of clinically relevant sizes. Further-

more, the Mr-terms in constraints (3) lead to a weak linear programming relaxation; with

no valid inequalities or branching yet performed on the problem, we have that yr = xr/Mr

at optimality to the linear programming relaxation of IPR. An alternative formulation that

does not require Mr-terms employs a decomposition method. Taşkın et al. [23] investigate

the problem of decomposing an integer matrix into “row-convex” matrices, where in each

decomposed matrix, all nonzero values take the same value, and appear consecutively on

each row. Their computational results show that solvability of the problem is significantly

improved by applying a bilevel optimization algorithm. A similar approach for the problem

considered in this paper would formulate a master problem as:

MP: Minimize
∑
r∈R

yr (5)

subject to: y corresponds to a feasible decomposition (6)

yr binary ∀r ∈ R, (7)

where we address the form of (6) in the sequel. Given a vector ŷ, we can check whether

constraint (6) is satisfied by solving the following linear program:

SP(ŷ): Minimize 0 (8)

subject to:
∑

r∈R(i,j)

xr = bij ∀i = 1, . . . ,m, j = 1, . . . , n (9)

xr ≤ Mrŷr ∀r ∈ R (10)

xr ≥ 0 ∀r ∈ R. (11)

Associating variables αij with (9), and βr with (10), we obtain the dual formulation:

DSP(ŷ): Maximize
m∑

i=1

n∑
j=1

bijαij +
∑
r∈R

Mrŷrβr (12)

subject to:
∑

(i,j)∈Cr

αij + βr ≥ 0 ∀r ∈ R (13)

6



αij unrestricted ∀i = 1, . . . ,m, j = 1, . . . , n (14)

βr ≤ 0 ∀r ∈ R. (15)

Our Benders decomposition strategy first solves MP, which yields ŷ. If SP(ŷ) is feasible,

then ŷ corresponds to a feasible decomposition, and is optimal. Else, DSP(ŷ) is unbounded

(since the trivial all-zero solution guarantees its feasibility). Let (α̂, β̂) be an extreme dual

ray of DSP(ŷ) such that
∑m

i=1

∑n
j=1 bijα̂ij +

∑
r∈R Mrŷrβ̂r > 0. Then, all y-vectors that are

feasible with respect to (6) must satisfy

m∑
i=1

n∑
j=1

bijα̂ij +
∑
r∈R

(Mrβ̂r)yr ≤ 0. (16)

We add (16) in a cutting-plane fashion as necessary.

Remark 1. Even though the number of rectangles that can be used in partitioning the input

matrix B is O(n2m2), we observe that optimal solutions typically use only a small percentage

of the total number of rectangles. This observation suggests that another way to overcome

the dimensional complexity associated with solving IPR is to apply a column generation

approach. In this approach, we start with a feasible set of columns and rows corresponding

to a subset of rectangles, and generate additional columns and rows as necessary within a

branch-and-price-and-cut (BCP) algorithm. Even though this approach requires the solu-

tion of much smaller linear programming relaxations, several features of the branch-and-cut

algorithm such as preprocessing and automatic cutting-plane generation are not applicable.

As a result, our implementation of the BCP approach was not computationally competitive

with the other algorithms presented in this paper, and further details are therefore omitted.

2.2 Valid Inequalities

In this section we discuss several valid inequalities and optimality conditions for our prob-

lem. All inequalities that we describe in this section are applicable to both the integer

programming formulation and the master problem of the Benders decomposition approach

we described in Section 2.1.

7



2.2.1 Adjacent Rectangles

We call two non-overlapping rectangles r1 and r2 adjacent if either of the following conditions

is satisfied:

(a) r1 and r2 cover an identical range of columns, with r1 having bottom row i and r2

having top row i + 1, or

(b) r1 and r2 cover an identical range of rows, with r1 having right-most column j and r2

having left-most column j + 1.

We observe that there exists an optimal solution in which no two adjacent rectangles are

used in the decomposition. In order to see this, assume that adjacent rectangles r1 and r2

have intensities xr1 and xr2 , respectively, where xr1 ≤ xr2 without loss of generality. In this

case, an alternative optimal solution can be constructed by extending r1 into r2. Specifically,

let r′ be the rectangle for which Cr′ = Cr1 ∪ Cr2 . An alternative optimal solution that does

not contain any adjacent rectangles uses r2 having intensity xr2−xr1 , and r′ having intensity

xr1 . This dominance criterion can be written as:

yr1 + yr2 ≤ 1 ∀ adjacent rectangles r1, r2. (17)

2.2.2 Bounding Box Inequalities

We first observe that intensity requirements of adjacent bixels can be used to derive certain

necessary conditions that any feasible decomposition of a matrix needs to satisfy. We say

that a rectangle starts at bixel (i, j) if the upper-left corner of the rectangle is located at

(i, j). Consider the bixel (5, 3) marked with dark gray in Figure 2. Since b43 = 2, the total

intensity delivered to (5, 3) by all rectangles that start in rows i = 1, . . . , 4 cannot exceed 2.

However, b53 = 14 > 2, and hence at least one rectangle that starts in row 5 is required to

cover bixel (5, 3). Similarly, b53 > b52 implies that at least one rectangle that starts in column

3 is required to cover the same bixel. These results can be strengthened by considering both

8



(4, 3) and (5, 2) simultaneously. Since b53 > b43 + b52, we conclude that at least one rectangle

that starts at bixel (5, 3) is required in any feasible decomposition of the fluence map. In

general, a rectangle must start at (i, j) if bij > b(i−1)j + bi(j−1) is satisfied. Figure 3 illustrates

Figure 2: Example start index

a similar idea, where we compare the intensity requirement of bixel (6, 4) with the bixel

below it, and the one on its right. Using arguments similar to the ones regarding starting

indices, we conclude that a rectangle must end (i.e., have a lower-right corner) at (6, 4) since

b64 > b74 + b65.

Figure 3: Example end index

Starting and ending index conditions can be generalized further as follows. Assume that

there exist integers u ∈ [0, i − 1], d ∈ [i + 1, m + 1], l ∈ [0, j − 1] and r ∈ [j + 1, n + 1]

so that bij > bil + buj + bir + bdj, where we define bi0 = b0j = bm+1,j = bi,n+1 = 0 for

i ∈ {0, . . . ,m + 1}, j ∈ {0, . . . , n + 1}. In this case, we say that (l, u, r, d) is a bounding box

for bixel (i, j). Figure 4 illustrates a bounding box for bixel (6, 3) (marked in dark gray),

which corresponds to (l, u, r, d) = (2, 4, 5, 7). The four bixels that represent the borders of a

bounding box are marked in light gray. We note that any rectangle that contains bixel (6, 3),

9



Figure 4: Example bounding box

and does not start inside the bounding box (at (5,3) or (6,3)) or end inside the bounding box

(at (6,3) or (6,4)), has to contain at least one of the four bixels on the border. Therefore,

the sum of intensities of those rectangles is bounded by the total required intensity of the

bixels in light gray. Since the intensity of the dark gray bixel cannot be satisfied by those

rectangles alone, it follows that at least one rectangle contained within the bounding box

must be used to cover bixel (6, 3). Let BBij represent the interior of a bounding box for

bixel (i, j), i.e., given (l, u, r, d) all bixels at the intersection of rows u + 1, . . . , d − 1 and

columns l +1, . . . , r− 1. We denote the set of rectangles in R(i, j) that are contained within

BBij by R(BBij). In this case, the following inequality is valid:∑
r∈R(BBij)

yr ≥ 1. (18)

Note that (0, 0, n + 1, m + 1), which corresponds to the input matrix, is a bounding box

for any bixel. Therefore there can be multiple bounding boxes associated with each bixel.

Let BBij and BB′
ij be two bounding boxes for bixel (i, j). We say that BBij dominates

BB′
ij if R(BBij) ⊂ R(BB′

ij). Since the inequality (18) that corresponds to a dominated

bounding box is implied by the inequality that is associated with the corresponding domi-

nating bounding box, we are only interested in generating nondominated bounding boxes.

Figure 5 displays another nondominated bounding box for the bixel considered in Figure 4.

In order to generate nondominated bounding boxes, we first make the following observa-

tion. A nondominated bounding box for bixel (i, j) is minimal in the sense that none of its

edges can be shifted closer to (i, j) without violating the bounding box intensity property.

We use this observation to design an algorithm that finds several nondominated bounding

10



Figure 5: Another nondominated bounding box seeded at (6,3)

boxes associated with a given bixel. In our algorithm, we start at a bixel (i, j), and first

move in a vertical or horizontal direction until we encounter a bixel (i′, j′) having bi′j′ < bij.

We mark (i′, j′) as an edge of the bounding box, reduce bij by bi′j′ , and return to (i, j).

We then move in the remaining directions one-by-one, updating bij after each step, in order

to find the remaining edges of the bounding box. We repeat the same procedure for all 4!

permutations of the directions, and obtain a nondominated bounding box in each iteration.

Finally, we eliminate duplicates in order to obtain a set of nondominated bounding boxes,

and we generate a constraint of type (18) for each bounding box.

2.2.3 Aggregate Intensity Inequalities

We derive a simple class of valid inequalities by observing that the total intensity that can be

delivered to each bixel needs to be greater than or equal to its required intensity. Formally,∑
r∈R(i,j)

Mryr ≥ bij ∀i = 1, . . . ,m, j = 1, . . . , n. (19)

We note that inequalities (19) are implied by (2) and (3) in IPR. However, (19) can be used

to tighten the master problem of the Benders decomposition approach discussed in Section

2.1. Furthermore, various tightening procedures can be applied to (19) for use in either the

direct solution of IPR or in the Benders master problem. In our implementation, we apply

a Chvátal-Gomory rounding procedure (see, e.g., [18]) in which we divide both sides of the

inequality by the smallest Mr coefficient on the left-hand-side (unless bij is divisible by that

number), and round up coefficients on both sides of the inequality. If bij is divisible by the

11



smallest Mr-coefficient on the left-hand-side of (19), then the rounding procedure yields an

inequality implied by (19), and hence we do not generate it.

2.2.4 Special Submatrices

An alternative strategy to the one described in Section 2.2.3 divides both sides of (19) by

bij − 1, provided that bij ≥ 2, and then rounds up all coefficients and the right-hand-side.

Noting that all coefficients on the left-hand-side are bounded from above by bij, this process

yields: ∑
r∈R(i,j):
Mr<bij

yr + 2
∑

r∈R(i,j):
Mr=bij

yr ≥ 2 ∀i = 1, . . . ,m, j = 1, . . . , n. (20)

Equations (20) imply that bixel (i, j) can either be covered by a single rectangle having a

maximum intensity of bij, or otherwise needs to be covered by at least two rectangles. The

idea behind (20) can be extended to other special cases. For instance, consider the following

lemma.

Lemma 1. Consider any 1 × 2 or 2 × 1 submatrix of B in which both elements equal a

common nonzero value, q. Define A=
1 as the set of rectangles that cover exactly one of the

two bixels, and have a maximum intensity of q. Let A<
1 be the set of all rectangles that cover

exactly one of the two elements, and have a maximum intensity less than q. Define A=
2 and

A<
2 analogously for rectangles that cover both elements. The following inequality is valid:

4
∑
r∈A=

2

yr + 2
∑
r∈A<

2

yr + 2
∑
r∈A=

1

yr +
∑
r∈A<

1

yr ≥ 4. (21)

Proof. Consider any feasible solution, and let vector v denote how many rectangles exist

in the solution belonging to A=
2 , A<

2 , A=
1 , and A<

1 , respectively. We claim (without proof, for

brevity) that the following vectors v1, . . . ,v6 are minimal, in the sense that v ≥ vi for at least

one i = 1, . . . , 6, for every feasible v: v1 = (1, 0, 0, 0),v2 = (0, 1, 0, 2),v3 = (0, 2, 0, 0),v4 =

(0, 0, 1, 2),v5 = (0, 0, 2, 0),v6 = (0, 0, 0, 4). Note that each solution represented by vi satisfies

(21), and thus all v corresponding to a feasible solution must also satisfy (21). �

12



Similarly, consider submatrices of the form[
qL qR

]
,

or its transpose, where we assume 0 < qL < qR without loss of generality. We define A=
L and

A<
L to be the sets of rectangles that cover qL, but not qR, with maximum intensity qL, and

less than qL, respectively. Let A=
R and A<

R be defined for rectangles that cover qR but not

qL, with a maximum intensity greater than or equal to (qR − qL) and less than (qR − qL),

respectively. We define A=
2 and A<

2 as before, with a maximum intensity of qL, and less

than qL, respectively. A similar analysis as in proof of Lemma 1 reveals that the following

inequality is valid:

2
∑
r∈A=

L

yr + 2
∑
r∈A=

R

yr + 2
∑
r∈A=

2

yr +
∑
r∈A<

L

yr +
∑
r∈A<

R

yr +
∑
r∈A<

2

yr ≥ 4. (22)

The last special case that we consider is a nonzero submatrix of the form: q q

q q

 .

We define A=
i to be the sets of rectangles having maximum intensity equal to q, and covering

exactly i elements of the 2× 2 submatrix, for i = 1, 2, and 4. Similarly, define A<
i to be the

sets of rectangles having maximum intensity less than q, and covering exactly i elements of

the submatrix. Given these definitions, we obtain:

8
∑
r∈A=

4

yr + 4
∑
r∈A<

4

yr + 4
∑
r∈A=

2

yr + 2
∑
r∈A<

2

yr + 2
∑
r∈A=

1

yr +
∑
r∈A<

1

yr ≥ 8. (23)

2.2.5 Submatrix Inequalities

It is possible to generate valid inequalities using arguments similar to the ones discussed in

Section 2.2.4 for other submatrices as well. However, this process is very tedious, and there

is a large number of possible submatrix combinations. In this section we describe a similar

set of inequalities, which are weaker than those described in the previous section, but are

13



easier to generate. We first observe that the formulation IPR can be solved quickly for small

input matrices. Let S denote a submatrix of the input matrix, and R(S) represent the set

of rectangles that cover at least one bixel in S. Let LB(S) be a lower bound on the number

of rectangles required to decompose S. Since LB(S) constitutes a lower bound on the total

number of rectangles required, the following inequality is valid for any submatrix S:∑
r∈R(S)

yr ≥ dLB(S)e. (24)

We can obtain LB(S) by formulating an auxiliary integer programming problem of type IPR

for S, and setting a limit on the maximum solution time.

2.3 Partitioning Approach

In this section, we propose a partitioning approach for our problem. We first propose an

algorithm for detecting completely separable regions of the input matrix, which can be solved

independently. Next, we explore methods for partitioning the large components, in order to

obtain simultaneous upper and lower bounds, which we use to improve the solvability of our

formulation.

2.3.1 Separable Components

Our observations on clinical data sets suggest that input matrices can usually be decomposed

into several small components, and one or two large components. The small components can

usually be solved to optimality by formulation IPR enhanced with the valid inequalities

discussed in Section 2.2.

We observe on clinical data that several regions of the input matrix are completely

surrounded by zero-bixels. Since no rectangle can cover a zero-bixel, each of these regions

can be solved independently. A connected subset of the input matrix obeys the property

that a rectilinear path exists between any two nonzero-bixels of the subset, such that each

bixel in the path is also a nonzero-bixel that belongs to the subset. We call a connected set

14



of nonzero-bixels a component of the input matrix if it is adjacent to zero-bixels across all

of its boundaries (i.e., if the subset is not contained within a larger connected subset).

In order to identify the components of the input matrix, we generate a graph G in

which each nonzero-bixel has a corresponding node. We add an arc between a pair of

nodes if and only if the corresponding bixels are adjacent in the input matrix. We then

identify connected components on G by running a standard depth-first-search algorithm.

Each connected component on G corresponds to a component of the input matrix, which

can be solved independently of other components. Figure 6 depicts the components of the

fluence map given in Figure 1.

Figure 6: Two components of a fluence map

2.3.2 Independent Regions

After finding separable components of the input matrix, we attempt to further partition each

component into smaller regions. We say that distinct regions of a component are independent

if no rectangle intersects two bixels belonging to different regions without also intersecting

a zero-bixel. In Figure 7, the regions with light and dark gray background are independent.

If we solve IPR separately over all independent regions, the sum of rectangles required to

decompose each independent region yields a lower bound on the objective function for the

corresponding component.

In general, there are multiple ways of partitioning a component into independent regions,

with each yielding possibly different lower bounds. The problem of finding a partition that

yields the best lower bound can be thought of as a “dual” of finding the minimum number

15



Figure 7: Regions of a connected component

of rectangles to decompose a component. In order to solve this dual problem, we need to

balance two conflicting criteria:

• The number of bixels assigned to each independent region needs to be small enough

so that each region can be solved quickly.

• The number of bixels not assigned to any independent regions needs to be as small as

possible in order to obtain a good lower bound.

We use a heuristic procedure to partition a component into independent regions, which

employs an auxiliary objective of maximizing the number of component bixels covered by

an independent region. Each bixel (i, j) is called “committed” if it either belongs to an

independent region, or if (i, j) is contained within some rectangle in R that also covers bixels

in an independent region (and hence, (i, j) cannot belong to another independent region).

All other bixels are called “uncommitted.” We select our independent regions one at a time,

until no more uncommitted bixels remain. The procedure’s details are described as follows.

Initialization. Labels all nonzero-bixels as “uncommitted.”

Step 1. Each candidate independent region (or just “candidate”) is seeded from a rectangle

r ∈ R such that rectangle r contains only uncommitted bixels, and such that the number of

bixels in the rectangle is no more than some limit L. For each such rectangle r, define `r to

be the (initial) candidate region.

Step 2. For each candidate `r, if `r covers exactly L bixels, then go to Step 4. Else, continue

to Step 3.

16



Step 3. For each candidate `r, determine if there exists an uncommitted bixel (i, j) adjacent

to `r (i.e., a bixel (i, j) /∈ `r such that either (i−1, j), (i+1, j), (i, j−1), or (i, j +1) belongs

to `r), such that for every r′ ∈ R(i, j), all bixels in r′ either belong to `r, or would already

become committed due to the selection of `r as an independent region. That is, adding (i, j)

to `r would not increase the number of bixels committed by selecting `r as a new independent

region. If such a bixel exists, then add (i, j) to `r, and return to Step 2. Else, continue to

Step 4.

Step 4. For each candidate `r, compute κC
r = the number of bixels in `r, and κD

r = the

number of uncommitted bixels (i, j) such that some rectangle in R includes both (i, j) and

a bixel in `r. If any candidates exist such that κD
r = 0, then choose `?

r to be any such

candidate. Else, choose `?
r to be any candidate that maximizes κC

r /κD
r . Go to Step 5.

Step 5. Create an independent region corresponding to `?
r. For each bixel (i, j) that can be

covered by a rectangle in R intersecting at least one bixel in `?
r, change the status of (i, j)

to “committed.” (This includes all bixels in `?
r itself.) If all bixels are committed, terminate

the procedure; else, return to Step 1.

In our algorithm for solving a component, we execute the foregoing heuristic to find a

set of independent regions. We formulate IPR for each region, with a limit on the maximum

solution time. We then use the lower bound obtained for each region to generate an inequality

of type (24). (It is often prudent to skip this step if only one region is computed for a

component.)

2.3.3 Dependent Regions

In this section, we attempt to improve the lower bound obtained using independent regions

by focusing on those bixels not included in the union of independent regions. We define

a dependent region to be a connected set of bixels in a component that does not overlap

with any of the independent regions in that component. In our example, the region with

black background in Figure 7 is a dependent region. Let D represent the set of bixels in a

dependent region, and let R(D) represent the set of rectangles that cover only a subset of

17



the bixels in D.

In order to improve our lower bound, we wish to compute the minimum number of

rectangles required to cover D; however, we wish to avoid double-counting those rectangles

used to cover bixels in independent regions. Accordingly, we seek the minimum number of

rectangles in R(D), perhaps in concert with rectangles outside R(D), required to cover the

bixels in D. Using the x- and y-variables as before, we formulate the following variation of

IPR in order to find the minimum number of rectangles in R(D) required to partition D.

DPR: Minimize
∑

r∈R(D)

yr (25)

subject to:
∑

r∈R(i,j)

xr = bij ∀(i, j) ∈ D (26)

∑
r∈R(i,j)

xr ≤ bij ∀i = 1, . . . ,m, j = 1, . . . , n, (i, j) /∈ D (27)

xr ≤ Mryr ∀r ∈ R(D) (28)

xr ≥ 0 ∀r ∈ R, yr binary ∀r ∈ R(D) (29)

Objective (25) minimizes the number of rectangles in R(D) used in the solution. Constraints

(26) ensure that the bixels in D get partitioned exactly, where (27) limit the intensity

delivered to the remaining bixels. Constraints (28) relate the x- and y- variables as done in

IPR, and finally (29) define variable types. As before, we set a time limit for the solution of

DPR, and obtain a lower bound on the objective function value, which we denote by LB(D).

Given this value, the following inequality is valid:∑
r∈R(D)

yr ≥ dLB(D)e. (30)

In our example, the optimal value of DPR for the black (dependent) region is 1 since the

intensity requirement of bixel (1, 4) cannot be satisfied completely by rectangles that cover

bixels in the gray (independent) regions (in fact, this result can also be seen due to the

bounding box constraint implying that one rectangle representing the singleton bixel (1,4)

must appear in any feasible solution). We note that the rectangles in R(D), by definition,

18



do not intersect any other (dependent or independent) regions. Therefore, the lower bounds

obtained for all regions can be summed to obtain a lower bound on the minimum number of

rectangles required to decompose a component.

2.3.4 Upper Bound Calculation

In this section, we discuss how a related approach leads to a heuristic algorithm to obtain

a feasible decomposition of a component. We first note that a feasible decomposition of a

component can be obtained by combining feasible solutions obtained for individual regions

within a component. Feasible solutions for independent regions are readily available from

the integer programming problems solved for obtaining lower bounds on those regions, as

discussed in Section 2.3.2. Feasible solutions for dependent regions can be extracted from

solutions of the formulation given by DPR. However, since DPR minimizes the number of

rectangles that are contained within a dependent region, and not necessarily the total number

of rectangles required to decompose a dependent region, the solutions obtained from DPR

potentially use an unnecessarily large number of rectangles not contained in R(D).

A better way of obtaining feasible solutions for dependent regions is to formulate the

problem IPR for each dependent region. Since IPR explicitly minimizes the total number of

rectangles required, we expect this approach to result in feasible solutions of higher quality.

However, this approach does not consider the fact that some of the rectangles that are

already used for decomposing independent regions can be extended into dependent regions

without increasing the total number of rectangles. In order to permit the use of rectangles

that intersect independent and dependent regions, we require a revised integer programming

formulation.

In our approach, we solve the integer programming formulations for decomposing the

independent regions first, and store the best feasible solutions found within the allowed time

limit. Let x̄r represent the intensity assigned to rectangle r for decomposing independent

regions. Next, we generate a feasible solution for each dependent region, one at a time, as

follows. We first find the set of rectangles that can be extended into the current dependent

19



region, and determine how those rectangles can be extended. Let E(D, r) represent the set

of rectangles in R that extend rectangle r into dependent region D. We also define the

parameter I(r)e
ij equal to one if bixel (i, j) ∈ D is covered by extension e of rectangle r,

and zero otherwise. Let zre be a binary variable that equals 1 if and only if extension e of

rectangle r is used in the solution. We define the x- and y- variables as before, and formulate

the following problem:

EPR: Minimize
∑

r∈R(D)

yr (31)

subject to:
∑

r∈R(i,j)

xr = bij −
∑
r∈R

∑
e∈E(D,r)

(
x̄rI(r)e

ij

)
zre ∀(i, j) ∈ D (32)

∑
e∈E(D,r)

zre ≤ 1 ∀r ∈ R (33)

xr ≤ Mryr ∀r ∈ R(D) (34)

xr ≥ 0, yr binary ∀r ∈ R(D) (35)

zre binary ∀r ∈ R, e ∈ E(D, r). (36)

We generate a feasible solution by combining three types of rectangles: (i) rectangles used

to decompose independent regions that are not extended by EPR; (ii) rectangles obtained

by extending rectangles from independent regions into dependent regions by EPR; and (iii)

rectangles in R(D) used by EPR.

Note that the optimal value of EPR for the dependent region given in Figure 7 is 1. This

can be seen by observing that the rectangle(s) that cover bixel (3, 4) can be extended up to

fully satisfy the intensity requirement of bixel (2, 4) without any penalty on the objective

function of EPR formulated for the dependent region. Therefore, a single rectangle contained

in the dependent region solves EPR optimally. Since the optimal value of DPR for the

dependent region is also 1, our partition solves the problem of finding the minimum number

of rectangles to optimality.

20



3 Extensions

In this section, we briefly discuss how our model can be adjusted to tackle the problems

of minimizing total treatment time, and lexicographically minimizing beam-on-time and

number of apertures.

3.1 Minimize Total Treatment Time

The total time spent delivering a given fluence map is composed of (i) time required to move

the jaws to form the next rectangular aperture (setup time), and (ii) time during which

radiation is delivered (beam-on-time). Even though the setup time required for switching

from one rectangular aperture to the next one depends on the jaw settings corresponding

to these apertures, and hence is sequence-dependent, in this paper we make the common

assumption that total setup time is proportional to the total number of apertures used. With

this assumption, our model can easily be adjusted to explicitly minimize the total treatment

time by changing the objective function of IPR to

Minimize w
∑
r∈R

yr +
∑
r∈R

xr, (37)

where w is a parameter that represents the average setup time per aperture relative to the

time required to deliver a unit of intensity.

The Benders decomposition procedure discussed in Section 2.1 also needs to be adjusted

accordingly. We first add a continuous variable t to MP, which “predicts” the minimum

beam-on-time that can be obtained by the set of rectangles chosen by MP. The updated

master problem can be written as follows.

MPTT: Minimize w
∑
r∈R

yr + t (38)

subject to: y corresponds to a feasible decomposition (39)

t ≥ minimum beam-on-time corresponding to y (40)

yr binary ∀r ∈ R. (41)

21



Given a vector ŷ, we can find the minimum beam-on-time for the corresponding decompo-

sition, if one exists, by solving:

SPTT(ŷ): Minimize
∑
r∈R

xr (42)

subject to:
∑

r∈R(i,j)

xr = bij ∀i = 1, . . . ,m, j = 1, . . . , n (43)

xr ≤ Mrŷr ∀r ∈ R (44)

xr ≥ 0 ∀r ∈ R. (45)

Note that SPTT is obtained by simply changing the objective function of SP. If SPTT(ŷ) is

infeasible, then we add a Benders feasibility cut of type (16) as before, and re-solve MPTT.

Otherwise, let the value of t in MPTT be t̂, and the optimal objective function value of

SPTT be t?. If t̂ = t?, then (ŷ, t̂) is an optimal solution of MPTT that minimizes the total

treatment time. However, if t̂ > t?, then we add the following Benders optimality cut

t ≥
m∑

i=1

n∑
j=1

bijα̂ij +
∑
r∈R

(Mrβ̂r)yr, (46)

where α̂ij and β̂r are optimal dual multipliers associated with constraints (43) and (44),

respectively.

3.2 Optimization with Beam-on-Time Restrictions

Another related problem that we consider is finding the minimum number of rectangles

that yields the minimum beam-on-time. Note that the minimum beam-on-time required to

decompose a fluence map can be found (in polynomial time) by solving SPTT, which is a

linear program, for the vector ŷr = 1, ∀r ∈ R. Let T ? denote the optimal objective function

value of SPTT(~1), where ~1 is the vector of all 1’s. Given this value, it is sufficient to add∑
r∈R

xr ≤ T ? (47)

to minimize the number of rectangles while limiting beam-on-time to T ?.

22



The modifications required for the Benders decomposition algorithm are also straightfor-

ward. In order to enforce the minimum beam-on-time restriction, we add (47) to SP, which

checks whether a given set of rectangles can decompose the fluence map. The updated

feasibility cut is given by

m∑
i=1

n∑
j=1

bijα̂ij +
∑
r∈R

(Mrβ̂r)yr + T ?θ̂ ≤ 0, (48)

where θ is the dual variable associated with (47) in SP. Finally, we need to check whether

the solution generated by our heuristic discussed in Section 2.3.4 satisfies constraint (47); if

so, then it can be used as an initial upper bound.

4 Computational Results

We have implemented our algorithms using CPLEX 11 running on a Windows XP PC with a

3.4 GHz CPU and 2 GB RAM. Our base set of test problem instances consists of 25 clinical

problem instances (“case1beam1”, . . . , “case5beam5”). These instances were obtained from

treatment plans for five patients treated using five beam angles each. We report problem

characteristics in terms of the number of rows m, the number of columns n, and the maximum

intensity value L. We imposed a time limit of 1800 seconds (30 minutes) in all of our tests.

For problem instances that were not solved to optimality within the imposed time limit, we

report the best upper and lower bounds obtained, where we round lower bounds up for the

cases in which the objective function is guaranteed to have an integral value.

Our preliminary computational tests showed that the naive implementation of our Ben-

ders decomposition approach, in which we add a cut and re-solve the master problem in

each iteration, was not computationally competitive with solving the explicit integer pro-

gramming formulation. This is due to the fact that repetitively solving the master problem,

which is an integer programming problem, is computationally very expensive. We instead

used callback functions of CPLEX to generate a single branch-and-bound tree in which we

solve SP(ŷ) (or (SPTT(ŷ)) corresponding to each integer solution found in the branch-and-

bound tree, and add cuts to tighten the master problem as necessary. While this approach

23



produced better results than the naive implementation, it still yielded inferior bounds than

those obtained from the explicit formulation. Therefore, we omit further Benders-based

computational results in this paper.

Our first experiment quantifies the effects of the valid inequalities discussed in Section

2.2, and the partitioning approach discussed in Section 2.3 on solution quality and execu-

tion time. In Table 1, the set of columns labeled “Default CPLEX” shows the results we

obtained by solving the formulation IPR on each problem instance using default CPLEX

options. The “+ Valid Inequalities” columns represent the IPR formulation enhanced with

the adjacent rectangle inequalities (17), bounding box inequalities (18), strengthened aggre-

gate intensity inequalities (19) and (20), and 1 × 2 submatrix inequalities (21) and (22).

(Additional computational results showed that the 2× 2 submatrix inequalities (23) and the

arbitrary submatrix inequalities (24) did not improve the solvability of the model.) The set

of columns labeled “+ Partitions” shows the results we obtained by partitioning the problem

into separable components (Section 2.3.1), further partitioning each component into inde-

pendent and dependent regions (Sections 2.3.2 and 2.3.3), and using our upper bounding

heuristic (Section 2.3.4) in addition to the valid inequalities used for the tests in the previ-

ous set of columns. We refer to the latter settings as our base algorithm in the remaining

computational tests.

Each set of columns in Table 1 displays the time spent for each problem instance (“CPU”),

and upper bound (“UB”), lower bound (“LB”), and optimality gap (“GAP”) obtained. We

also report the average and maximum gaps over all problem instances. We observe that none

of the problem instances were solved to optimality using the default CPLEX options, whereas

case1beam2 and case5beam2 were solved to optimality after adding the valid inequalities of

Section 2.2. An additional instance (case5beam5) was solved using the partitioning strategy

described in Section 2.3. We note that even though our approach was not able to provide

provably optimal solutions for most instances, it significantly improved both lower and upper

bounds for several instances.

Our next experiment tests our base algorithm under the extensions discussed in Section

24



Instance Default CPLEX + Valid Inequalities + Partitions

Name m n L CPU UB LB GAP CPU UB LB GAP CPU UB LB GAP

case1beam1 15 14 20 1800 66 60 0.09 1800 63 62 0.02 1800 64 62 0.03

case1beam2 11 15 20 1800 48 47 0.02 138.23 48 48 0 1009.92 48 48 0

case1beam3 15 15 20 1800 57 54 0.05 1800 57 54 0.05 1800 58 54 0.07

case1beam4 15 15 20 1800 61 52 0.15 1800 61 53 0.13 1800 59 55 0.07

case1beam5 11 15 20 1800 47 45 0.04 1800 46 45 0.02 1800 47 45 0.04

case2beam1 18 20 20 1800 114 79 0.31 1800 119 85 0.29 1800 103 87 0.16

case2beam2 17 19 20 1800 95 69 0.27 1800 96 81 0.16 1800 94 82 0.13

case2beam3 18 18 20 1800 98 73 0.26 1800 103 77 0.25 1800 94 77 0.18

case2beam4 18 18 20 1800 114 80 0.3 1800 115 84 0.27 1800 105 88 0.16

case2beam5 17 18 20 1800 94 64 0.32 1800 98 72 0.27 1800 91 72 0.21

case3beam1 22 17 20 1800 121 69 0.43 1800 134 79 0.41 1800 119 79 0.34

case3beam2 15 19 20 1800 73 46 0.37 1800 71 52 0.27 1800 70 52 0.26

case3beam3 20 17 20 1800 119 69 0.42 1800 119 75 0.37 1800 107 77 0.28

case3beam4 19 17 20 1800 103 69 0.33 1800 106 73 0.31 1800 99 78 0.21

case3beam5 15 19 20 1800 73 55 0.25 1800 71 58 0.18 1800 73 58 0.21

case4beam1 19 22 20 1800 106 79 0.25 1800 107 89 0.17 1800 109 89 0.18

case4beam2 13 24 20 1800 88 54 0.39 1800 99 58 0.41 1800 91 58 0.36

case4beam3 18 23 20 1800 95 71 0.25 1800 99 75 0.24 1800 93 77 0.17

case4beam4 17 23 20 1800 103 78 0.24 1800 102 81 0.21 1800 98 83 0.15

case4beam5 18 24 20 1800 93 62 0.33 1800 93 66 0.29 1800 87 67 0.23

case5beam1 15 16 20 1800 66 64 0.03 1800 66 65 0.02 1800 66 65 0.02

case5beam2 13 17 20 1800 58 57 0.02 102.09 58 58 0 213.6 58 58 0

case5beam3 14 16 20 1800 63 54 0.14 1800 68 56 0.18 1800 65 57 0.12

case5beam4 14 16 20 1800 63 57 0.1 1800 64 59 0.08 1800 62 59 0.05

case5beam5 12 17 20 1800 53 47 0.11 1800 51 48 0.06 36.25 49 49 0

Max 0.43 Max 0.41 Max 0.36

Avg 0.22 Avg 0.19 Avg 0.14

Table 1: Effect of valid inequalities and the partitioning strategy, with best gap figures

reported in bold

25



3. The set of columns labeled as “Total Time” in Table 2 presents the extension in which the

objective function is defined as a linear combination of the beam-on-time and the number of

rectangles. The actual value of w depends on the particular treatment delivery equipment

used in the clinic, where values of w in the range 1–10 are typical (see, e.g., Dai and Hu [4],

and Taşkın et al. [23]). In our experiments, we therefore used w = 7 as a representative value.

The next set of columns (“Lexicographic”) is dedicated to the extension in which we first

minimize beam-on-time, T ?, and then find the minimum number of rectangles that yields the

minimum beam-on-time. The column “BOT” represents the value of T ?, and “Total Time”

represents the total treatment time associated with the solution found, where we again use

w = 7 as the average setup time per rectangle. We observe that our algorithm could solve

more problem instances to optimality for both extensions compared to the problem of finding

the minimum number of rectangles. In order to understand why this is the case, we first

note that the difficulty of the matrix decomposition problem varies greatly based on the

objective function used. On one hand, minimizing the number of rectangles is strongly NP-

Hard, even for fluence maps having a single row (see Baatar et al. [2]). On the other hand,

minimizing the beam-on-time is a polynomially solvable problem (see Section 3). Therefore,

we expect that the problem should become easier as the weight of the beam-on-time term in

the objective function increases. The reason the lexicographic minimization problem is easier

to solve than the other two variations is because the additional beam-on-time constraint

considerably shrinks the feasible solution space.

Another way of looking at the problem of balancing the number of apertures and the

beam-on-time is to view the problem as a multicriteria optimization problem. In this setting,

we are interested in constructing the Pareto efficient frontier of solutions with the property

that neither of the two criteria can be improved without deteriorating the other. Note that

the lexicographic approach that we considered above determines a particular Pareto optimal

solution to the multicriteria problem. In order to generate other non-dominated solutions

for the multicriteria version of the problem, we sequentially impose different upper bounds

on the number of apertures allowed, say γ, and find the corresponding minimum beam-on-

26



Instance Total Time Lexicographic

Name m n L CPU UB LB GAP CPU UB LB GAP BOT Total Time

case1beam1 15 14 20 255.95 621 621 0 36.48 66 66 0 176 638

case1beam2 11 15 20 330.31 459 459 0 132.58 50 50 0 121 471

case1beam3 15 15 20 1800 548 542.72 0.01 130.39 62 62 0 147 581

case1beam4 15 15 20 1800 557 542.49 0.03 186.88 62 62 0 136 570

case1beam5 11 15 20 1800 451 443.63 0.02 30.95 53 53 0 115 486

case2beam1 18 20 20 1800 962 814.24 0.15 1800 107 104 0.03 194 943

case2beam2 17 19 20 1800 883 797.74 0.1 1800 96 92 0.04 207 879

case2beam3 18 18 20 1800 918 797.6 0.13 1800 96 88 0.08 237 909

case2beam4 18 18 20 1800 1028 889.36 0.13 1800 111 106 0.05 258 1035

case2beam5 17 18 20 1800 890 721.13 0.19 1800 92 83 0.1 207 851

case3beam1 22 17 20 1800 1161 858.9 0.26 1800 116 103 0.11 266 1078

case3beam2 15 19 20 1800 668 533.24 0.2 1800 70 64 0.09 151 641

case3beam3 20 17 20 1800 1066 847.09 0.21 1800 111 95 0.14 278 1055

case3beam4 19 17 20 1800 1023 857.91 0.16 1800 103 95 0.08 287 1008

case3beam5 15 19 20 1800 722 610.01 0.16 204.44 76 76 0 182 714

case4beam1 19 22 20 1800 1044 918.57 0.12 1800 108 105 0.03 275 1031

case4beam2 13 24 20 1800 895 656.15 0.27 1800 95 76 0.2 232 897

case4beam3 18 23 20 1800 858 743.62 0.13 1800 92 89 0.03 189 833

case4beam4 17 23 20 1800 943 834.32 0.12 1800 101 96 0.05 235 942

case4beam5 18 24 20 1800 913 740.19 0.19 1800 86 77 0.1 260 862

case5beam1 15 16 20 271.48 626 626 0 5.5 71 71 0 158 655

case5beam2 13 17 20 33.39 597 597 0 19.97 63 63 0 156 597

case5beam3 14 16 20 1800 623 597.96 0.04 869.22 68 68 0 180 656

case5beam4 14 16 20 1800 584 571.15 0.02 192.36 66 66 0 145 607

case5beam5 12 17 20 90.41 503 503 0 37.2 57 57 0 147 546

Max 0.27 Max 0.2

Avg 0.11 Avg 0.05

Table 2: Computational results on model extensions

27



time for these values of γ. As an example, we considered the problem instance case5beam5.

For this instance, we note that the minimum number of apertures is 49 (see Table 1) with

a corresponding beam-on-time of 160, while the minimum beam-on-time for this problem

instance is 147 (see Table 2) which requires 57 apertures. Figure 8 then depicts (i) the

non-dominated solutions; (ii) the Pareto efficient frontier for values of γ ∈ [49, 57], and (iii)

the (boundary of the) convex hull of the Pareto set. The solutions on the latter are the

optimal solutions to the problem of minimizing total treatment time that can be obtained

with different values of w.

146

148

150

152

154

156

158

160

162

48 49 50 51 52 53 54 55 56 57 58

Number of apertures

B
e
a
m

-o
n

-t
im

e

Figure 8: Efficient frontier for number of apertures and beam-on-time

Our final experiment analyzes the effect of the maximum intensity value L. Usually

fluence maps are obtained by solving a nonlinear optimization problem for each beam angle

in order to determine an intensity profile for each beam angle, which is represented by a

matrix of real numbers. Later, these matrices are rounded to integer matrices in order

to limit the delivery time. In order to analyze the trade-off between round-off errors and

28



treatment time, we started from clinical treatment plans, and applied rounding with different

levels of granularity. Specifically, we generated problem instances from the same fluence maps

with L ∈ {5, 10, 15, 20}, and used our algorithm to find the minimum total treatment time

required as a measure of delivery efficiency. Table 3 shows the results of our experiments.

We observe that our algorithm produces smaller optimality gaps as L decreases, which is

not surprising since IPR becomes tighter as the Mr-coefficients (which are bounded by L)

decrease. Furthermore, delivery efficiency is also higher for small values of L. The average

treatment time (calculated over the lower bounds) for all problem instances increases from

366.05 for L = 5 to 513.79 for L = 10, 609.79 for L = 15, and 684.96 for L = 20, which is

calculated using the set of columns labeled “Total Time” in Table 2. Our results show that

the choice of granularity chosen for rounding has a significant effect on the treatment time.

For each individual patient, the risks associated with the deterioration in treatment plan

quality due to the rounding of intensities needs to be weighed against the disadvantages of

a longer treatment time by the physician or clinician.

5 Conclusions

In this paper, we have investigated a problem encountered regarding efficient delivery of a

fluence map using rectangular apertures in IMRT treatment. Rectangular apertures can be

formed by using conventional jaws already integrated into IMRT treatment devices, and do

not need an advanced MLC system, which is costly to manufacture and operate. In this

paper, we designed an exact optimization algorithm that can be used to analyze whether a

jaws-only treatment system can deliver fluence maps efficiently. Our algorithm is based on an

integer programming formulation, which we enhance using several valid inequalities and by

partitioning the problem into simpler problems. We next showed how our approach can be

extended in order to optimize other efficiency criteria such as beam-on-time, total treatment

time, and beam-on-time-constrained number of rectangular apertures. Our tests on clinical

data showed that a few problem instances were solved to optimality within a half-hour, and

we were able to obtain good optimality bounds for most other instances that could not be

29



Instance L = 5 L = 10 L = 15

Name m n CPU UB LB GAP CPU UB LB GAP CPU UB LB GAP

case1beam1 15 14 4.42 305 305 0 22.95 441 441 0 1800 539 536.99 0

case1beam2 11 15 1.44 238 238 0 4.39 320 320 0 498.47 394 394 0

case1beam3 15 15 9.64 287 287 0 228.61 377 377 0 1800 495 487.67 0.01

case1beam4 15 15 5.8 269 269 0 1800 393 377.42 0.04 1800 513 493.13 0.04

case1beam5 11 15 2.41 216 216 0 28.97 326 326 0 316.7 411 411 0

case2beam1 18 20 31.31 440 440 0 1800 648 635.1 0.02 1800 826 732.68 0.11

case2beam2 17 19 51.48 448 448 0 1800 625 599.84 0.04 1800 759 690.67 0.09

case2beam3 18 18 144.45 428 428 0 1800 645 615.64 0.05 1800 800 704.61 0.12

case2beam4 18 18 1593.03 487 487 0 1800 755 678.49 0.1 1800 919 796.13 0.13

case2beam5 17 18 197.89 429 429 0 1800 606 538.62 0.11 1800 728 621.9 0.15

case3beam1 22 17 1359.36 480 480 0 1800 747 662.47 0.11 1800 1080 779.16 0.28

case3beam2 15 19 1800 280 274.97 0.02 1800 414 376.01 0.09 1800 532 461.6 0.13

case3beam3 20 17 1800 461 446.77 0.03 1800 731 641.2 0.12 1800 908 755.25 0.17

case3beam4 19 17 1800 463 456.42 0.01 1800 713 634.26 0.11 1800 900 762.02 0.15

case3beam5 15 19 1800 332 325.87 0.02 1800 481 466.6 0.03 1800 582 532.2 0.09

case4beam1 19 22 39.89 529 529 0 1800 758 719.53 0.05 1800 899 827.73 0.08

case4beam2 13 24 1800 422 408.14 0.03 1800 595 503.92 0.15 1800 764 582.69 0.24

case4beam3 18 23 126.28 409 409 0 1800 579 564.5 0.03 1800 695 666.23 0.04

case4beam4 17 23 321.42 444 444 0 1800 662 649.1 0.02 1800 815 742.81 0.09

case4beam5 18 24 1194.69 414 414 0 1800 636 573.02 0.1 1800 794 662.74 0.17

case5beam1 15 16 5.89 342 342 0 5.58 442 442 0 28.91 584 584 0

case5beam2 13 17 4.28 289 289 0 5.5 439 439 0 49.3 516 516 0

case5beam3 14 16 1574.41 294 294 0 1800 453 441.44 0.03 1800 566 538.22 0.05

case5beam4 14 16 3.64 239 239 0 1800 473 468.49 0.01 1800 534 524.31 0.02

case5beam5 12 17 2.14 252 252 0 9.31 354 354 0 63.91 441 441 0

Max 0.03 Max 0.15 Max 0.28

Avg 0 Avg 0.05 Avg 0.09

Table 3: Effect of maximum intensity value on solvability

30



solved within the imposed time limits. We also examined the trade-off between minimizing

the beam-on-time and the number of apertures computationally, and illustrated the efficient

frontier in a multicriteria setting. Finally, we analyzed the relationship between delivery

efficiency and the desired level of granularity in delivering a given fluence map. Our results

indicate that our model is flexible enough to analyze several aspects of delivery efficiency in

a jaws-only treatment device.

References

[1] R. K. Ahuja and H. W. Hamacher. A network flow algorithm to minimize beam-on-time

for unconstrained multileaf collimator problems in cancer radiation therapy. Networks,

45(1):36–41, 2005.

[2] D. Baatar, H. W. Hamacher, M. Ehrgott, and G. J. Woeginger. Decomposition of

integer matrices and multileaf collimator sequencing. Discrete Applied Mathematics,

152(1):6–34, 2005.

[3] N. Boland, H. W. Hamacher, and F. Lenzen. Minimizing beam-on time in cancer

radiation treatment using multileaf collimators. Networks, 43(4):226–240, 2004.

[4] J. Dai and Y. Hu. Intensity-modulation radiotherapy using independent collimators:

an algorithm study. Medical Physics, 26(12):2562–2570, 1999.

[5] M. A. Earl, M. K. N. Afghan, C. X. Yu, Z. Jiang, and D. M. Shepard. Jaws-only IMRT

using direct aperture optimization. Medical Physics, 34(1):307–314, 2007.

[6] K. Engel. A new algorithm for optimal multileaf collimator field segmentation. Discrete

Applied Mathematics, 152(1):35–51, 2005.

[7] H. W. Hamacher and K.-H. Küfer. Inverse radiation therapy planning – a multiple

objective optimization approach. Discrete Applied Mathematics, 118(1):145–161, 2002.

31



[8] T. Kalinowski. A duality based algorithm for multileaf collimator field segmentation

with interleaf collision constraint. Discrete Applied Mathematics, 152(1):52–88, 2005.

[9] S. Kamath, S. Sahni, J. Li, J. Palta, and S. Ranka. Leaf sequencing algorithms for

segmented multileaf collimation. Physics in Medicine and Biology, 48(3):307–324, 2003.

[10] Y. Kim, L. J. Verhey, and P. Xia. A feasibility study of using conventional jaws to deliver

IMRT plans in the treatment of prostate cancer. Physics in Medicine and Biology,

52(8):2147–2156, 2007.

[11] K.-H. Küfer, M. Monz, A. Scherrer, H. L. Trinkaus, T. Bortfeld, and C. Thieke. Inten-

sity Modulated Radiotherapy – a large scale multi-criteria programming problem. OR

Spektrum, 25:223–249, 2003.

[12] E. K. Lee, T. Fox, and I. Crocker. Optimization of radiosurgery treatment planning via

mixed integer programming. Medical Physics, 27(5):995–1004, 2000.

[13] E. K. Lee, T. Fox, and I. Crocker. Integer programming applied to intensity-modulated

radiation treatment planning. Annals of Operations Research, 119:165–181, 2003.

[14] G. J. Lim. Optimization in Radiation Treatment Planning. PhD thesis, University of

Wisconsin, Madison, Wisconsin, 2002.

[15] G. J. Lim, M. C. Ferris, and D. M. Shepard. Optimization tools for radiation treatment

planning in Matlab. In M. L. Brandeau, F. Sainfort, and W. P. Pierskalla, editors,

Operations Research and Health Care: A Handbook of Methods and Applications, pages

775–806. Kluwer Academic Publishers, Boston, MA, 2004.

[16] G. J. Lim, M. C. Ferris, S. J. Wright, D. M. Shepard, and M. A. Earl. An optimization

framework for conformal radiation treatment planning. INFORMS Journal on Com-

puting, 19(3):366–380, 2007.

32



[17] C. Men, H. E. Romeijn, Z. C. Taşkın, and J. F. Dempsey. An exact approach to direct

aperture optimization in IMRT treatment planning. Physics in Medicine and Biology,

52(24):7333–7352, 2007.

[18] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John

Wiley & Sons, New York, NY, 1999.

[19] F. Preciado-Walters, R. Rardin, M. Langer, and V. Thai. A coupled column generation,

mixed integer approach to optimal planning of intensity modulated radiation therapy

for cancer. Mathematical Programming, 101(2):319–338, 2004.

[20] H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, and A. Kumar. A column generation

approach to radiation therapy treatment planning using aperture modulation. SIAM

Journal on Optimization, 15(3):838–862, 2005.

[21] H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, and A. Kumar. A new linear program-

ming approach to radiation therapy treatment planning problems. Operations Research,

54(2):201–216, 2006.

[22] D. M. Shepard, M. C. Ferris, G. H. Olivera, and T. R. Mackie. Optimizing the delivery

of radiation therapy to cancer patients. SIAM Review, 41(4):721–744, 1999.

[23] Z. C. Taşkın, J. C. Smith, H. E. Romeijn, and J. F. Dempsey. Optimal multileaf

collimator leaf sequencing in IMRT treatment planning. Technical report, Department

of Industrial and Systems Engineering, University of Florida, Gainesville, Florida, 2007.

33


