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ABSTRACT
We consider a hybrid flowshop scheduling problem that includes parallel unrelated
discrete machines or batch processing machines in different stages of a production
system. The problem is motivated by a bottleneck process within the production
system of a transformer producer located in the Netherlands. We develop an integer
programming model that minimises the total tardiness of jobs over a finite planning
horizon. Our model is applicable to a wide range of production systems organised as
hybrid flowshops. We strengthen our integer program by exploiting special properties
of some constraints in our formulation. We develop a decision support system (DSS)
based on our proposed optimisation model. We compare the results of our initial
optimisation model with an improved formulation as well as with a heuristic that
was in use at the company before the implementation of our DSS. Our results show
that the improved optimisation model significantly outperforms the heuristic and
the initial optimisation model in terms of both the solution time and the strength
of its linear programming relaxation.

KEYWORDS
Hybrid flowshop scheduling; Decision support system; Integer programming;
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1. Introduction

We consider a hybrid flowshop scheduling (HFS) problem motivated by our experience
in designing and implementing a decision support system for a company located in the
Netherlands. This company is a leading manufacturer of industrial transformers, which
are used in a wide range of applications such as residential communities, hospitals and
industrial sites. Building a transformer is a complex process that requires coordina-
tion of several types of workforce, materials and resources over several months. The
work centre that represents the bottleneck of the building process is called Winding.
Manufacturing process in Winding is organised as a hybrid flowshop of two stages.
The first stage consists of discrete processing machines whereas the second stage con-
sists of batch processing machines. Since Winding constitutes the overall bottleneck
of the manufacturing environment, optimal capacity utilisation of the work centre is
crucial for efficiency of the company’s operations. In this paper we propose an integer
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programming (IP) approach for multi-stage HFS problem that is applicable in a wide
range of industries.

The hybrid flowshop, defined as a multistage flow line with parallel machines at
some or all stages, exists in many different industries. The assembly lines in the elec-
tronics (Li et al. 2013) and automotive industries (Bellanger and Oulamara 2009);
operations in chemical industry (Xuan and Li 2013) and iron&steel manufacturing
(Gong, Tang, and Duin 2010) are examples of systems that are designed as hybrid
flowshops. In a hybrid flowshop, a job that requires several operations enters the sys-
tem at the first stage; and, after following a sequence of fixed stages, leaves the system
at the last stage. Depending on the requirements of the system intermediate buffers
with limited or unlimited capacities may be installed in between stages to hold the
work-in-process inventory. Alternatively, the system may have no interstage storage.
It is usually assumed that preemption is not allowed. In a hybrid flowshop, a stage
may consist of a number of parallel identical or unrelated (nonidentical) machines.
If the machines are identical, the particular machine processing a job is not signifi-
cant; however, for unrelated machines, assignment of jobs to specific machines must
be modelled explicitly.

While technological properties of machines (identical or unrelated) are important,
processing types of machines also have significant importance in these systems. Based
on the processing types we can categorise machines into two groups: discrete or Batch
Processing Machines (BPM) (Ahmadi et al. 1992). Discrete machines, such as lathes
process one job at a time. BPMs, such as ovens, can process a number of jobs simulta-
neously. We consider the batch process in the sense that once processing of a batch is
started, it cannot be interrupted and other jobs cannot be introduced into the batch.
Jobs need to be compatible with each other in order to be processed simultaneously
at a BPM. In some cases, all jobs at a BPM require the same amount of processing
time. However, if this is not the case, then the processing time of the job in the batch
that requires the longest operation time determines the processing time of the whole
batch (Cheng, Liu, and Yu 2001). Discrete machines or BPMs may exist at any stage
of the system. All these properties affect the scheduling process in these systems.

In this study, we consider an HFS with the following properties: (i) there are multiple
stages; (ii) each stage contains parallel unrelated machines, which are either discrete or
batch processing; (iii) jobs must be compatible to be processed on a BPM at the same
time; (iv) infinite intermediate storage capacity exists in between successive stages; (v)
lag time exists between stages for each job, which depends on the stage and job; (vi)
preemption is not allowed; and (vii) jobs have dynamic arrival times and due dates.

Li et al. (2015)’s study includes the most closely related problem to the one that is
studied in this paper. They consider a HFS problem with unrelated parallel machines
at each stage where only one stage includes BPMs. They represent the problem as
a nonlinear optimisation model, and then propose a heuristic that aims to minimise
maximum completion time and weighted tardiness. Although there exist some stud-
ies that consider BPMs that are unrelated (Arroyo and Leung 2017a; Shahvari and
Logendran 2017a) and have compatibility restrictions (Bellanger and Oulamara 2009;
Kim, Joo, and Shin 2009), they either do not have discrete machines or consider only
two stage HFS problems. To the best of our knowledge, there exists no study that
considers HFS with unrelated discrete machines or BPMs at any stage of the system
and provides a strong MIP.
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2. Literature Review

HFS problems are extensively studied in the literature. For a comprehensive review
of models and solution algorithms in general HFS problems the reader is referred
to Ruiz and Vazquez-Rodriguez (2010); Rossit, Tohmé, and Frutos (2017). Most of
the research in HFS focuses on parallel discrete processing machine cases (Ruiz and
Vazquez-Rodriguez 2010), and common objectives in these research papers are min-
imisation of makespan or total completion time (Liu and Karimi 2008). Only in a
limited number of papers, surveyed by Ruiz and Vazquez-Rodriguez (2010), minimi-
sation of tardiness is used as an objective function, which is very important in real-life
problems.

Heuristics, such as dispatching rules, local search (Lee 2009), and metaheuristics
including simulated annealing (Allahverdi and Al-Anzi 2006), tabu search (Shahvari
and Logendran 2016) and population-based algorithms (Shahvari and Logendran 2018)
are common solution algorithms that are applied to many different problems in HFS.
Among exact solution algorithms, branch and bound is the most commonly used one
(Ruiz and Vazquez-Rodriguez 2010). Since the problem we consider includes BPM,
we focus on the HFS literature that includes BPMs in at least one of the stages. We
divide the literature with BPMs into two separate sections and provide the details in
these sections.

2.1. Flow Shop Scheduling with only BPMs

Scheduling of BPMs mostly focus on single machine cases (Buscher and Shen 2010).
Cheng, Liu, and Yu (2001) consider the scheduling of jobs that have release dates and
deadlines on a single BPM. They provide polynomial time algorithms for some special
cases of this problem. Koh et al. (2005) study a scheduling problem on a single BPM
with jobs belonging to different families and having different volumes. Jobs within
the same family can be processed simultaneously, and the processing time depends on
the family type. They provide an IP formulation and develop some heuristics to solve
large problem instances. Buscher and Shen (2010) consider the scheduling problem
for parallel BPMs. They develop a mixed-integer programming (MIP) model with the
objective of minimising makespan. They propose MIP-based heuristics to solve large
instances.

Shahvari and Logendran (2016) study batching and scheduling problem at a HFS
where unrelated BPMs exist at bottleneck stages, and the objective is to simultane-
ously minimise the total weighted completion time and tardiness. Then, they extend
this study by considering dynamic machine availability and job release times (Shah-
vari and Logendran 2017b). Later, in Shahvari and Logendran (2018), they include
sequence and machine-dependent family setup times and learning effect. They de-
velop meta-heuristics based on local search and population-based structures as solution
methods.

Arroyo and Leung (2017b) study a flowshop scheduling problem of arbitrary sized
jobs with nonzero ready times on unrelated parallel BPMs. They develop a MIP, and
propose heuristics based on first-fit and best-fit earliest job ready time rules. Then,
they extend their work in Arroyo and Leung (2017a) by considering BPMs with dif-
ferent capacities. Li (2017) study a similar problem in which jobs with release times
and arbitrary sizes are scheduled on BPMs with non-identical capacities. They pro-
pose different approximation algorithms for several special cases of the problem. Tan,
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Mönch, and Fowler (2018) consider a two stage flexible flowshop where BPMs exist
at each stage and jobs have unequal ready times. They develop a MIP with minimi-
sation of the total weighted tardiness as the objective function, and then propose an
iterative stage-based decomposition approach, which includes neighbourhood search
techniques.

2.2. Flow Shop Scheduling with Both Discrete Machines and BPMs

Flow shop scheduling problems that include both discrete machines and BPMs have
also attracted researchers. Among those research papers, two machine problems are
studied most extensively. Ahmadi et al. (1992) is the first paper to deal with a HFS
problem that includes both discrete and BPMs. They consider scheduling problems
in two-machine flowshop systems where there exists at least one BPM. Lin and Liao
(2012) study a scheduling problem at a two-stage assembly shop, where in the first
stage jobs are assembled simultaneously on a BPM and then moved to the second stage
that includes a discrete machine on which all jobs have different processing times.
They develop a MIP with the aim of minimising the weighted sum of makespan, total
completion time and total tardiness. For solving large instances, they propose three
heuristics. Shi, Huang, and Shi (2017) study a similar setting with limited waiting
time constraint. They develop a MIP with the objective of minimising makespan.
Then, they propose tight lower bounds and a heuristic algorithm, which is followed
by a hybrid differential evolution algorithm. For a similar setting, Li and Dai (2019)
propose tight lower bounds and three heuristics. Moreover, in order to increase the
efficiency, they employ a neighbourhood search algorithm. Chung, Sun, and Liao (2017)
consider dynamic job arrival times where jobs are grouped into several batches. They
propose two metaheuristics to solve the problem with the objective of minimising
makespan.

Several studies consider a HFS with more than two machines. Bellanger and Oula-
mara (2009) consider a two stage HFS with parallel identical discrete machines at the
first stage and parallel identical BPMs in the second one. They develop several heuris-
tics and provide worst case analysis. Kim, Joo, and Shin (2009) study a two stage
HFS subject to a product-mix ratio constraint, which requires certain job types to be
kept in the same batch. The first stage includes parallel identical discrete machines
and the second stage includes a single BPM. Amin-Naseri and Beheshti-Nia (2009)
consider a HFS where at some stages it is possible to process jobs at the same time
as a batch on some machines. The processing time of a batch is equal to the longest
processing time requirement of a job in the batch, and job ready times, set up times,
and transportation times between stages are zero. They develop several heuristics and
give a lower bound for evaluating the performances of the heuristics. Zheng (2010)
study a HFS that includes parallel BPMs in a stage and discrete machines in other
stages where jobs to be processed have arbitrary sizes. They formulate the problem as
a MIP; however, since it takes a very long time to solve even small sized problems to
optimality, they develop heuristics inspired by the shifting bottleneck heuristic.

Our contribution to the literature can be summarised as follows: (i) we consider a
multi-stage HFS with parallel unrelated discrete machines and BPMs that may exist at
any stage of the system; (ii) jobs have machine eligibility restrictions; (iii) we develop
a strong IP that can solve practical instances in a reasonable amount of time; and (iv)
lag times exist between stages and depend on the job and the stage.
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3. Problem Definition and Mathematical Model

The manufacturing system that we consider consists of a set of machines (resources)
R, which process a set of jobs J , over a predetermined planning horizon consisting
of a set of discrete time periods, T . Jobs follow a set of stages S, where each stage
s ∈ S includes a set of parallel unrelated machines, R(s) ⊆ R. Jobs have machine
eligibility restrictions; job j ∈ J at stage s ∈ S may be processed on a set of machines,
R(j, s) ⊆ R(s). Each stage may include either a set of discrete machines or a set of
BPMs. We denote the set of stages that include BPMs by Sb ⊆ S. For each BPM there
is a set of configuration options, C(s, r), on which that machine may operate. These
configurations define operating modes of the machine (such as processing time, tem-
perature or pressure), and restrict jobs that can be processed on these configurations.
Similarly, each job requires a configuration option, cjr, with a processing time of bcr,
to be processed on a BPM.

Each job has a release date, rj , and a due date, dj . Since the machines at each stage
are unrelated, the processing time of a job on a machine, pjr, depends on the machine
to which the job is assigned. After any stage there might be a lag time defined for a
job, lsj , that denotes the amount of time the job needs to wait before being processed at
the following stage. A discrete machine may process one job at a time; however, BPMs
may process multiple jobs having the same configuration requirement simultaneously.
Let ujr indicate the ratio of the capacity that job j allocates if it is processed on
machine r. Note that ujr is equal to one for discrete machines, and 0 < ujr ≤ 1 for
BPMs.

Our aim is to find an optimal schedule for this HFS problem such that the total
tardiness is minimised. Let us define a binary variable xjrt for each job j ∈ J , stage
s ∈ S, machine r ∈ R(j, s) and time t ∈ T, t ≥ rj , whose value is equal to one if job j
is assigned to machine r in stage s starting at time t; and zero otherwise. We provide
all parameters and decision variables, with their definitions, in Table 1.

Table 1. Symbols used in our mathematical model.
Set Description
J set of jobs
R set of machines
S set of stages
S̄ set of all stages except the final stage
Sb subset of stages where the production process is batch-based, Sb ⊆ S

R(s) subset of machines on stage s ∈ S, R(s) ⊆ R
R(j, s) subset of machines to which job j ∈ J can be assigned on stage s ∈ S, R(j, s) ⊆ R(s)

T set of discrete time periods in the planning horizon
C(r) set of configuration options that BPM r ∈ R(s), s ∈ Sb can operate

Parameter Description
rj release date of job j ∈ J
dj due date of job j ∈ J
pjr processing time of job j ∈ J if it is processed on stage s ∈ S by machine r ∈ R(j, s)
ujr capacity usage ratio of job j ∈ J if it is processed on stage s ∈ S on machine r ∈ R(j, s)
lsj minimum lag time after processing job j ∈ J on stage s ∈ S
bcr processing time of configuration option c ∈ C(r) associated with BPM r ∈ R(s)

at stage s ∈ Sb

cjr configuration option that job j ∈ J requires on stage s ∈ Sb if it is processed by BPM
r ∈ R(j, s) (note that cjr = ĉ implies that pjr = bĉr)

Variable Description
xjrt binary variable that represents if job j ∈ J is assigned to machine r ∈ R(j, s) on stage

s ∈ S such that its processing starts at time t ∈ T, t ≥ rj
ycrt binary variable that represents if configuration c ∈ C(r) is operated on BPM r ∈ R(s) at stage

s ∈ Sb such that its processing starts at time t ∈ T

A job must be processed by a single machine at any stage of the process. Constraint
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set (1) ensures that each job is assigned to exactly one machine at each stage∑
t∈T
t≥rj

∑
r∈R(j,s)

xjrt = 1 ∀j ∈ J, s ∈ S. (1)

Each machine has a limited capacity. Constraint set (2) ensures that the capacity
of resources are not exceeded∑

j∈J

∑
t−pjr<t′≤t

ujrxjrt′ ≤ 1 ∀t ∈ T, r ∈ R. (2)

Recall that if a machine is discrete, then u-parameters take the value of 1, which
provides the assignment of at most one job to that machine during the processing
time of that job. For BPMs u-parameters take value between 0 and 1 representing the
percentage of the capacity used by that job.

Since we consider a multi-stage production environment, there is a precedence rela-
tionship between stages. We assume that a job is processed on each stage at a machine,
and processing at a stage can only start if the process in the previous stage has finished
and a lag time has passed (if a lag time exists). Therefore, we need to write for every
(r̄, r̂) pair a constraint that ensures that a job is not scheduled to a machine at a stage
if it is not scheduled to any machine in the predecessor stage and that processing plus
lag time in that stage is finished. These constraints are given as

xjr̂t̂ + xjr̄t̄ ≤ 1 ∀s ∈ S̄, t̂ ∈ T, t̄ ∈ T, t̄ ≤ t̂+ pjr̂ + lsj , r̂ ∈ R(j, s), r̄ ∈ R(j, s+ 1), (3)

where S̄ includes all stages except the final one. The number of such constraints is
O(|J ||T |2|R|2), which grows at a quadratic rate with the number of time periods
|T | and the number of machines |R|, and can reach hundreds of thousands for a
medium-sized problem instance. However, it is possible to write tighter constraints
that can handle the precedence relationship by using conflict graphs, which represent
logical relationships between binary variables, to improve solvability of IP problems
(Atamturk, Nemhauser, and Savelsbergh 2000). Let us create an undirected graph
G(j, s) corresponding to stages s and s + 1 of job j. We represent each assignment
variable xjr̂t̂ at stage s ∈ S and xjr̄t̄ at stage s + 1 ∈ S by a vertex in G(j, s). We

add an edge (xjr̄t̄, xjr̂t̂) if and only if assigning stage s of job j to machine r̄ to start

at time t̄ and its stage s + 1 to machine r̂ to start at time t̂ violates constraints (3).
Moreover, since a job must be assigned to a single machine at each stage (Constraints
(1)), we add an edge between every pair of xjr̂t vertices (and also add an edge between
every pair of xjr̄t vertices).

As an example consider a job at stages s and s + 1, and two resources r̂ ∈ R(s)
and r̄ ∈ R(s + 1). The possible starting and finishing times of the job considered at
each stage and resource pair is given in Figure 1, assuming that the processing times
at resources in both stages take single time period and there is no lag time between
stages. If the job is not finished processing in stage s by the end of time period t2 for
the example, then it cannot be assigned to be processed on resource r̄ in stage s+1 at
time periods t1 and t2. For this example we give the conflict graph representation in
Figure 2. Solid edges between vertices correspond to constraints (3). Moreover, since
a job must be assigned to a single resource at each stage (constraints (1)), we add
an edge between every pair of xjr̂t vertices (and also add an edge between every pair
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t1 t2 t3 t4 time

xsjr̂t1 xsjr̂t2 xsjr̂t3

xs+1jrt1 xs+1jrt2 xs+1jrt3(!̅, $ + 1)
(!̂, $)

Figure 1. Example showing possible assignments of a job in two successive stages.

of xjr̄t vertices). Dashed edges between vertices in Figure 2 correspond to constraints
(1).

xsjr̂t1 xsjr̂t2 xsjr̂t3

xs+1jr̂t1 xs+1jr̂t2 xs+1jr̂t3

Figure 2. Conflict graph representation of the example given in Figure 1.

Given an undirected graph, G(j, s) corresponding to stages s and s + 1 of job j,
an independent set is defined as a set of vertices that are pairwise non-adjacent. We
observe that any feasible assignment of j to machines in stages s and s + 1 given by
constraints (1) and (3) corresponds to an independent set (also called node packing
or stable set) on G(j, s). The problem of finding an independent set having maximum
cardinality is NP-Hard in general (Garey and Johnson 1979). However, we observe
that G(j, s) is a special kind of graph called co-bipartite chain (Boyacı, Ekim, and
Shalom 2015), and its maximum independent set size is 2. The maximum independent
set problem has been studied extensively from graph theoretical and MIP points of
view (e.g., Beigel 1999; Johnson, Yannakakis, and Papadimitriou 1988; Padberg 1973).
Constraints (3) correspond to edge-based formulation of the independent set polytope
given in Padberg (1973). Then, constraint set (3) can be replaced by∑

t̂≥t−pjr̂−lsj

∑
r̂∈R(j,s)

xjr̂t̂ +
∑
t̄≤t

∑
r̄∈R(j,s+1)

xjr̄t̄ ≤ 1 ∀j ∈ J, t ∈ T, s ∈ S̄, (4)

which dominates the corresponding constraint in (3). This reformulation decreases the
number of constraints from O(|J ||T |2|R|2) to O(|S||J ||T |). Note that for the example
given in Figures 1 and 2, clique-based constraints (4) can be expressed for the example
given in Figures 1 and 2 as:

xjr̂t1 + xjr̂t2 + xjr̂t3 + xjr̄t1 ≤ 1

xjr̂t2 + xjr̂t3 + xjr̄t1 + xjr̄t2 ≤ 1

xjr̂t3 + xjr̄t1 + xjr̄t2 + xjr̄t3 ≤ 1.
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Recall that each BPM r has a number of configuration options that it can operate,
C(r). We require a binary variable, ycrt, for each BPM r ∈ R(s), s ∈ Sb, configuration
option, c ∈ C(r) and time period, t ∈ T , that takes value one if at stage s BPM r is
set to start operation on configuration option c at time period t; and zero otherwise.
Constraint set (5) ensures that at any time a BPM can be set to operate at a single
configuration option

yĉrt̂ + yc̄rt̄ ≤ 1 ∀s ∈ Sb, r ∈ R(s), t̂ ∈ T, t̄ ∈ {t̂, . . . , t̂+ bĉr − 1}, ĉ ∈ C(r), c̄ ∈ C(r).
(5)

Constraints (5) are written for every BPM, configuration pair and time period,
resulting in O(|T ||C|2) number of constraints. By using a similar logic that we used
above, it is possible to have tighter constraints. For every BPM r ∈ R(s), where s ∈ Sb,
let us represent each configuration option assignment variable ycrt c ∈ C(r), t ∈ T by
a vertex (c, t) in an undirected graph G(r). We add an edge (c̄t, ĉt′) if and only if
assigning both (c̄, t) and (ĉ, t′) to machine r violates constraints (5) (i.e., the two
configuration option assignments overlap).

As an example consider a job j ∈ J at a batch processing stage s ∈ Sb. Let there be
two different configuration options: c1 and c2 with durations of 2 and 3 time periods,
respectively. Assume that the planning horizon we consider includes 5 periods. Figure

				0												1											2												3											4													5																									t	

(c1,	0)	 (c1,	2)	 (c1,	4)	
(c1,	1)	 (c1,	3)	

(c2,	0)	
(c2,	1)	

(c2,	3)	
(c2,	4)	

(c2,	2)	

Figure 3. Example showing possible assignments of configuration options on a batch processing resource.

3 shows all possible assignment of these configuration options to a resource, r. For this
example G(r) can be given in Figure 4.

c1,1	 c1,2	c1,0	 c1,3	 c1,4	

c2,1	
c2,2	c2,0	

c2,3	
c2,4	

Figure 4. Conflict graph representation of the example given in Figure 3.

Similar to our discussion above, we observe that any feasible assignment of config-
uration options on machine r corresponds to an independent set on G(r). As before,
constraints (5) correspond to edge-based formulation of the independent set problem,
and the formulation can be improved by considering maximal cliques of G(r). Note
that G(r) is a special type of graph called interval graph since each vertex represents
a time interval and two vertices are adjacent if and only if their time intervals overlap
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(Golumbic 1980). Maximal cliques of interval graphs can be enumerated in polynomial
time (Golumbic 1980). However, an explicit search for maximal cliques is not needed
in our case since a maximal clique on G(r) corresponds to a time period t, and the
set of configuration option - time pairs (c, t) overlapping with t in our problem. Thus,
constraints (5) can be replaced by∑

c∈C(r)

∑
t−bcr+1≤t̂≤t

ycrt̂ ≤ 1 ∀s ∈ Sb, r ∈ R(s), t ∈ T. (6)

This reformulation decreases the number of constraints from O(|T ||C|2) to O(|T ||R|)
while also tightening the formulation. Note that clique-based constraints (6) can be
written for the example represented in Figures 3 and 4 as:

yc1r0 + yc1r1 + yc2r0 + yc2r1 ≤ 1

yc1r1 + yc1r2 + yc2r0 + yc1r1 + yc2r2 ≤ 1

yc1r2 + yc1r3 + yc2r1 + yc2r2 + yc2r3 ≤ 1

yc1r3 + yc1r4 + yc2r2 + yc2r3 + yc2r4 ≤ 1.

Constraint set (7) ensures that a job can be assigned to a BPM only if the configu-
ration option of that BPM at the time of assignment is the same as the configuration
requirement of that job

xjrt ≤ yĉrt ∀j ∈ J, s ∈ Sb, r ∈ R(j, s), ĉ ∈ C(r), ĉ = cjr, t ∈ T. (7)

Our objective is to minimize the total tardiness of the jobs, which is calculated by
the finishing time of a job less its due date if the finishing time is greater than the due
date of the job. If the job is finished before its due date, then the tardiness of that job
is zero. Our integer linear program can be written as follows.

Minimize
∑
j∈J

∑
r∈R(j,|S|)

∑
t∈T

t>dj−pjr

(t+ pjr − dj)xjrt (8)

subject to
∑
t∈T
t≥rj

∑
r∈R(j,s)

xjrt = 1 ∀j ∈ J, s ∈ S, (9)

∑
j∈J

∑
t−pjr<t′≤t

ujrxjrt′ ≤ 1 ∀t ∈ T, r ∈ R, (10)

∑
t̂≥t−pjr̂−lsj

∑
r̂∈R(j,s)

xjr̂t̂ +
∑
t̄≤t

∑
r̄∈R(j,s+1)

xjr̄t̄ ≤ 1 ∀j ∈ J, t ∈ T, s ∈ S̄, (11)

∑
c∈C(r)

∑
t−bcr+1≤t̂≤t

ycrt̂ ≤ 1 ∀s ∈ Sb, r ∈ R(s), t ∈ T, (12)

xjrt ≤ yĉrt ∀j ∈ J, s ∈ Sb, r ∈ R(j, s), ĉ ∈ C(r), ĉ = cjr, t ∈ T, (13)

xjrt ∈ {0, 1} ∀j ∈ J, s ∈ S, r ∈ R(j, s), t ∈ T, (14)

ycrt ∈ {0, 1} ∀s ∈ Sb, r ∈ R(s), c ∈ C(r), t ∈ T. (15)
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4. Application and Computational Analysis

In this section, we first provide some information about the process that motivates the
problem studied in this paper, and explain the planning heuristic used in the company
before our study. We then discuss the results of our computational study to compare
our formulations and the company heuristic.

4.1. Setting and Company’s Approach

As discussed in Introduction, the work center that represents the bottleneck for the
building process is called Winding. Manufacturing process in Winding has a hybrid
flowshop structure consisting of two stages. The first stage consists of 14 winding
benches, which are discrete processing machines. These benches have been acquired
over a number of years, and have different technical capabilities and processing speeds.
After the first stage, some transformers need to wait in the buffer for up to 24 hours
before they can be processed in the second stage, which consists of the drying and
pressing operations. The second stage consists of two furnaces, which are batch pro-
cessing machines. Transformers requiring the same configuration option can be placed
together in a furnace, as long as the area required by the batch of jobs does not exceed
the total processing area of the furnace.

Before our study, the planners in the company were manually planning the Winding
work center using a heuristic approach as shown in Algorithm 1. We call this heuristic
as Company’s Approach. This approach is a constructive greedy approach based on the
idea of first planning winding benches (first stage) and then furnaces (second stage).

Algorithm 1 Company Approach
x← 0
tr: a lower bound on earliest time that a job can be assigned to machine r
tr ← 1 ∀j ∈ R
for all s ∈ S do

while ∃ an unscheduled job j do
r∗ ← argminr∈R(s)tr
if ∃ job j that can be scheduled on r∗ at tr∗ then

schedule job j on r∗ to start at tr∗
xjr∗tr∗ ← 1
update available capacity of r∗

eliminate conflicting job and configuration option assignments (x- and y-
variables)

else
tr ← tr + 1

end if
end while

end for

We observe that the company approach ensures that i) no machine stays idle while
there are jobs that it can possibly process (i.e. the generated schedule is non-delay),
and ii) no job can start processing earlier in a different machine. These characteristics
make it easier to execute the plan, and the heuristic produces reasonable schedules
in practice. However, as we demonstrate in the next section, the heuristic approach
may produce suboptimal solutions in terms of conformance to due dates and capacity
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utilization.
We developed a DSS based on our optimization model for the Winding work cen-

ter to replace the manual planning process. In our implementation each transformer
corresponds to a job j ∈ J . There are two processing stages, where the first stage is
discrete and the second stage is batch. Each job has a release date rj and due date
dj . We model the eligibility constraints, which indicate that certain transformers are
not compatible with certain winding machines by defining sets R(j, s) appropriately.
Furthermore, we model differences between processing speeds of machines by using pjr
parameters. We set capacity usage ratio parameters ujr to 1 for the first stage, and
ratio of each job’s area requirement to the furnace’s area for the second stage. We use
lsj parameters to model waiting time between the two stages, and define configuration
options C(r).

Our DSS for Winding was implemented using ICRON Advanced Planning and
Scheduling system (www.icrontech.com). ICRON provides a visual algorithm model-
ing environment that is based on the object-oriented design paradigm. It has support
for database, ERP systems integration and has interfaces to various MIP solvers in-
cluding GLPK, Cbc, CPLEX and Gurobi (see Taşkın et al. 2015; Ağralı, Taşkın, and
Unal 2017).

4.2. Computational Analysis

We test the performance of the initial mathematical model and the improved one given
in the previous section on problems of various sizes and parameter configurations.

4.2.1. Data Generation

As discussed in Section 4.1 the Winding production process of the company includes
two stages: first stage includes nonidentical discrete machines, and the second stage
includes batch processing machines. The company currently has 14 discrete and 2
batch processing machines. Therefore, we use these numbers in our computational
study.

We analyzed the data provided by the company and conclude that the processing
time of jobs on discrete and batch machines are between 3 and 5 time periods. The
lag time of jobs after stage one are between 0 and 2 time periods. The capacity usage
values of jobs in batch processing machines are between 20% and 30%. Based on these
values, in all problem sets, we randomly generate average processing times of jobs
in discrete and batch processing stages using uniform distributions over the integers
3 and 5. Let this average processing time for job j in stage s be prjs. Based on this
average processing time, we generate the processing time of the job on each machine at
a given stage by using a uniform distribution over the integers prjs−1 and prjs+1. We
generate lag times of jobs using a uniform distribution over the integers 0 and 2, and
the capacity usage ratios on batch processing machines using a uniform distribution
between 0.2 and 0.3.

We follow the data generation process of (Schaller 2007) for generating the release
date and due date of jobs. Let R and r be the parameters called due date range
and tardiness factors. We generate the due dates for the jobs by using a uniform
distribution over the integers T (1− r−R/2) and T (1− r+R/2), where T is the total
number of time periods that we consider. We create three different sets: set 1 includes
R = 0.5 and r = 0.5, set 2 includes R = 1 and r = 0.5, and set 3 includes R = 1 and
r = 0.25. Let DDj be the due date of job j, and MTPj be the maximum possible
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Table 2. Problem Sets.
set # R r α
set1 0.5 0.5 1.5
set2 0.5 0.5 2.5
set3 0.5 0.5 3.5
set4 1.0 0.5 1.5
set5 1.0 0.5 2.5
set6 1.0 0.5 3.5
set7 1.0 0.25 1.5
set7 1.0 0.25 2.5
set9 1.0 0.25 3.5

total processing time of job j. Then for release date calculation we use the formulation
DDj − αMTPj . In this formulation we use three different α values: 1.5, 2.5 and 3.5.
We provide R, r, and α values of data sets created in Table 2.

The planning horizon at the company is usually 30 time periods and, on the aver-
age, total number of jobs to be scheduled within the planning horizon is around 30.
Therefore, we take |T | = 30 and |J | = 30 for medium size instances. Then, we generate
larger instances by taking |T | = 30 and |J | = 40, |T | = 40 and |J | = 40, and |T | = 40
and |J | = 50, resulting in four different size of test problems each having nine different
configuration for release and due dates. We randomly generate a total of 36 problem
sets in total, each set consisting of five problems.

4.2.2. Comparison of IP Formulations

In this section, we compare the Initial IP obtained by a model that includes constraints
(3) and (5) (instead of (4) and (6)) with the Improved IP that we give at the end of
Section 3. We implemented both IP formulations in Java, and performed all tests on
a machine with Intel Xeon 2.27 GHz CPU, 24 GB RAM and Windows 2008 Server
R2 operating system. We used CPLEX 12.6.3 as the solver and enforced a time limit
of 1200 seconds. For many instances CPLEX reaches optimality within the given time
limit. For those instances that CPLEX does not prove optimality, we use the best
feasible solution provided by CPLEX while calculating performance measures in this
section.

We provide the results of our first experiment in Table 3. In Table 3, ‘unsolved/Gap’
column gives the number of instances that are not solved to optimality within the given
time limit and the average value of the gap for the corresponding instances that are not
solved to optimality; ‘IP Time’ represents the average of the time that CPLEX spent
to solve instances; ‘Tot. Time’ represents the total time spent, which is the average
of total time spent to build and solve the model; ‘LP Gap’ column gives the average
of the difference between the objective function values provided by IP and its linear
programming relaxation.

Table 4 shows the percentage difference between the results obtained by Initial IP
and Improved IP formulations in terms of the same metrics given in Table 3. As seen
from Table 4, Improved IP significantly outperforms the Initial IP formulation for all
problem sizes. The improvement in LP Gap values reveal the tightness of the Improved
IP in terms of its LP relaxation. The highest difference is achieved for average IP
time since the improved formulation has a tighter formulation and significantly fewer
number of constraints.
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Table 3. Computational Results of IP Formulations.
Initial IP Improved IP

unsolved/ IP unsolved/ IP
Gap Time Tot. Time LP Gap Gap Time Tot. Time LP Gap

|T | |J | set # (%) (sec) (sec) (%) (%) (sec) (sec) (%)
30 30 set1 -/- 505.41 531.59 80.00 -/- 27.30 42.42 38.64
30 30 set2 3/43.1 893.29 920.05 60.00 -/- 165.03 180.13 44.75
30 30 set3 4/48.9 1028.71 1055.67 100.00 -/- 88.28 104.25 71.71
30 30 set4 -/- 24.70 49.32 0.00 -/- 0.89 14.89 0.00
30 30 set5 -/- 48.37 72.50 60.00 -/- 0.90 15.27 16.67
30 30 set6 -/- 52.33 78.54 40.00 -/- 0.98 16.08 0.00
30 30 set7 -/- 103.63 128.68 72.77 -/- 4.54 19.03 4.54
30 30 set8 -/- 198.90 225.23 70.57 -/- 10.65 25.37 8.63
30 30 set9 1/4.9 416.19 444.76 74.83 -/- 14.00 28.69 11.73
30 40 set1 5/84.4 1200 1245.10 100.00 4/26.5 1075.54 1109.17 84.11
30 40 set2 5/90.2 1200 1248.72 100.00 5/58.7 1200 1234.78 84.93
30 40 set3 5/92.7 12006 1245.85 100.00 5/74.31 1200 1240.02 93.01
30 40 set4 -/- 413.03 456.10 40.00 -/- 18.02 50.01 25.27
30 40 set5 -/- 333.29 375.69 40.00 -/- 10.33 45.79 0.00
30 40 set6 1/20.0 582.80 626.25 40.00 -/- 19.93 59.27 20.00
30 40 set7 5/30.9 1200 1247.38 84.42 -/- 182.76 216.10 23.05
30 40 set8 1/5.5 861.11 906.20 78.59 -/- 84.61 120.40 13.88
30 40 set9 4/32.1 1078.49 1122.32 82.01 -/- 379.13 417.72 19.60
40 40 set1 5/100.0 1200 1277.91 100.00 3/59.7 849.88 906.53 100.00
40 40 set2 2/37.10 745.62 818.22 40.00 -/- 109.19 170.17 16.49
40 40 set3 3/60.00 1013.66 1086.55 80.00 1/20.0 270.23 332.24 37.89
40 40 set4 -/- 139.84 210.04 80.00 -/- 8.01 64.34 55.00
40 40 set5 -/- 70.70 140.89 0.00 -/- 1.29 59.63 0.00
40 40 set6 -/- 76.25 145.84 0.00 -/- 1.77 59.05 0.00
40 40 set7 -/- 225.96 300.16 76.67 -/- 9.15 67.40 5.68
40 40 set8 2/5.67 735.20 806.34 71.13 -/- 21.69 76.39 5.80
40 40 set9 -/- 271.29 342.08 65.56 -/- 7.79 66.41 2.45
40 50 set1 5/97.66 1200 299.13 100.00 5/73.6 1200 1289.40 94.95
40 50 set2 5/100.00 1200 1305.88 100.00 1/20.0 333.20 416.85 20.00
40 50 set3 5/100.00 1200 1299.83 100.00 4/80.0 983.14 1068.42 80.00
40 50 set4 -/- 368.85 462.11 95.00 -/- 152.41 235.74 43.77
40 50 set5 -/- 226.92 321.59 0.00 -/- 3.68 88.59 0.00
40 50 set6 -/- 172.70 269.11 0.00 -/- 4.53 89.30 0.00
40 50 set7 3/15.00 818.88 918.23 81.40 -/- 90.46 163.83 12.49
40 50 set8 4/19.05 1138.17 1238.91 80.42 -/- 253.40 339.76 13.84
40 50 set9 5/29.58 1200 1307.02 81.32 -/- 382.37 464.36 15.14

Table 4. Percent Difference Between Results of Initial IP and Im-

proved IP Formulations.
unsolved Gap IP Time Tot. Time LP Gap

|T | |J | (%) (%) (%) (%) (%)
30 30 100 100 94.12 84.26 67.93
30 40 60 74.77 59.92 56.89 50.66
40 40 76.67 76.74 85.38 68.10 60.48
40 50 66.67 70.77 64.39 54.90 58.26
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4.2.3. Comparison of IP with Company’s Approach

We compare the results obtained by applying the heuristic that was in use by the
company (Algorithm 1) and the IP formulation provided in the previous section. For
this experiment we also implemented the heuristic in Java and executed it on the same
set of problem instances.

We give the results of the heuristic and the Improved IP in Table 5. The ‘Time’
column of Table 5 shows the average of time required to solve five instances; ‘Tardiness’
column gives the average tardiness obtained, which is calculated by the total tardiness
divided by the number of jobs; ‘Earliness’ column represents the average earliness,
which is calculated as the average of the times that the jobs start being processed
divided by the total number of jobs considered to be scheduled; and finally ‘Flow’
column gives the average flowtime, which is calculated as the time between start time
of the job’s operation on first stage and finish time of the job’s operation on the second
stage.

In order to compare our IP formulation with the heuristic, we calculate the per-
centage differences for the average tardiness, average earliness and average flowtime
for different sizes of data sets. We present these percentages in Table 6. As seen from
Table 6, Improved IP significantly outperforms the heuristic in terms of tardiness for
all problem sizes. Heuristic schedules some instances earlier compared to Improved
IP and the average flowtime is less for heuristic in most of the cases. Although IP’s
average flowtime is less than the heuristic’s for problem size for |T | = 30 and |J | = 40,
this is the result of large difference for some of the instances of this set, as seen in
Table 5 for set1 and set2.

5. Conclusions

In this paper we investigated a hybrid flowshop scheduling problem motivated by a
real-world planning problem at a manufacturer located in the Netherlands. There exist
multiple stages with discrete and BPMs through which jobs are processed within a
finite time horizon. There are predecessor-successor relationship between stages, which
requires the predecessor process of a job to be finished and a lag time, if any, to pass
before the process of the job in the next stage starts. BPMs operate at different
configuration options that may be defined by the temperature, pressure, duration or
any property of the process. Each job requires a configuration option to be processed
at a BPM at a given time, and allocates some percentage of the capacity of the BPM.
Therefore, multiple jobs that require the same configuration option may be processed
on the same machine simultaneously as long as capacity of the machine is not exceeded.
We assume that preemption is not allowed for any machine in discrete or batch stages.
Our objective is to minimize the total tardiness of jobs. We developed an integer
programming model for this problem, and then proposed an improved formulation
based on graph representations of certain constraints. Our computational experiments
show that our improved formulation reduces the number of constraints while also
significantly improving its linear programming relaxation and solvability.
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Table 5. Comparison of Heuristic’s and Improved IP’s Results.
Heuristic Improved IP

|T | |J | set # Time Tardiness Earliness Flow Time Tardiness Earliness Flow
30 30 set1 0.01 1.31 10.54 4.31 27.30 0.15 8.71 5.74
30 30 set2 0.02 1.09 2.18 13.57 165.03 0.09 3.79 11.47
30 30 set3 0.03 0.93 2.49 13.19 88.28 0.26 2.33 11.80
30 30 set4 0.01 0.11 13.91 8.17 0.89 0.00 11.99 9.13
30 30 set5 0.01 0.07 12.02 9.18 0.90 0.03 7.99 13.43
30 30 set6 0.01 0.08 11.44 11.07 0.98 0.02 5.10 15.81
30 30 set7 0.01 2.20 6.33 9.21 4.54 1.13 7.85 8.90
30 30 set8 0.02 2.63 3.17 12.45 10.65 1.34 3.01 12.46
30 30 set9 0.02 2.39 3.87 12.68 14.00 1.47 1.67 14.02
30 40 set1 0.02 2.69 3.07 12.80 1075.54 0.61 5.64 9.47
30 40 set2 0.04 2.78 2.13 15.72 1200 0.66 3.07 12.21
30 40 set3 0.04 2.11 2.18 15.44 1200 0.62 2.92 12.98
30 40 set4 0.01 0.19 14.18 9.01 18.02 0.05 13.89 8.58
30 40 set5 0.02 0.13 10.52 11.27 10.33 0.02 9.10 13.39
30 40 set6 0.03 0.21 8.53 13.91 19.93 0.02 6.03 15.66
30 40 set7 0.02 2.17 8.04 10.40 182.76 1.47 6.45 9.39
30 40 set8 0.04 3.25 4.40 13.84 84.61 1.33 3.61 12.51
30 40 set9 0.04 2.74 3.08 14.45 379.13 1.35 2.15 14.21
40 40 set1 0.01 0.36 10.59 9.18 849.88 0.25 10.79 9.48
40 40 set2 0.03 0.28 6.61 12.79 109.19 0.05 6.77 13.01
40 40 set3 0.05 0.66 4.53 15.13 270.23 0.02 4.67 14.95
40 40 set4 0.01 0.00 20.50 8.27 8.01 0.08 21.32 7.59
40 40 set5 0.01 0.00 21.66 8.69 1.29 0.00 15.85 13.18
40 40 set6 0.02 0.01 18.01 10.93 1.77 0.00 11.87 16.91
40 40 set7 0.01 1.80 10.70 9.24 9.15 0.65 12.92 8.99
40 40 set8 0.03 1.94 9.33 11.20 21.69 1.01 7.21 13.14
40 40 set9 0.04 1.25 8.25 12.88 7.79 0.76 5.21 16.21
40 50 set1 0.01 1.55 8.36 11.27 1200 0.59 10.00 10.14
40 50 set2 0.04 1.40 5.44 15.21 333.20 0.04 7.72 12.84
40 50 set3 0.05 1.50 3.27 17.69 983.14 0.10 4.36 15.37
40 50 set4 0.01 0.13 20.32 8.50 152.41 0.06 22.51 7.67
40 50 set5 0.02 0.00 20.63 9.27 3.68 0.00 17.58 12.71
40 50 set6 0.04 0.18 15.60 12.34 4.53 0.00 12.32 17.07
40 50 set7 0.02 2.66 9.90 10.33 90.46 1.02 11.60 9.06
40 50 set8 0.04 2.22 8.63 13.21 253.40 1.25 7.59 13.64
40 50 set9 0.05 2.42 6.30 16.22 382.37 1.15 4.00 15.95
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Table 6. Comparison of Improved IP Formula-

tion with the Heuristic (% Differences).
Tardiness Earliness Flowtime

|T | |J | (%) (%) (%)
30 30 68.33 4.44 -7.20
30 40 68.41 -5.50 6.52
40 40 65.94 9.78 -15.85
40 50 70.76 -4.28 -1.78
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discussions.

References

Ahmadi, J.H., R.H. Ahmadi, S. Dasu, and C.S. Tang. 1992. “Batching and scheduling jobs on
batch and discrete processors.” Operations Research 39 (4): 750–763.

Allahverdi, A., and F.S. Al-Anzi. 2006. “Scheduling multi-stage parallel-processor services to
minimize average response time.” Journal of the Operational Research Society 57 (1): 101–
110.

Amin-Naseri, Mohammad Reza, and Mohammad Ali Beheshti-Nia. 2009. “Hybrid flow shop
scheduling with parallel batching.” International Journal of Production Economics 117 (1):
185–196.
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