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ABSTRACT9

We investigate tactical level production planning problem in process industries, with10

float glass manufacturing being the specific application domain. In the presence of11

high sequence dependent family setup costs, the need for planning production in12

batches, or campaigns as named in the float glass industry, arises. Moreover, the float13

glass manufacturing has some unique properties such as partially controllable co-14

production and uninterruptible production. The motivation of our work is a real life15

problem encountered at a major float glass manufacturing company in Turkey. We16

develop two mixed integer programming formulations and investigate some variants17

to solve the problem. Our formulations are capable of handling different resolutions18

in input data such as demand forecast expressed in discrete time and setup dura-19

tions expressed in continuous time. We compare formulations both theoretically and20

by running computational experiments. Furthermore, we conduct additional exper-21

iments to gain insights about characteristics of the generated campaign plans from22

a business perspective.23
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1. Introduction and Literature Review27

In this paper, we study a production planning problem in process industries in the28

presence of sequence dependent family setups and co-production on a single machine.29

Since process industries are usually capital intensive, cost effectiveness is critical within30

the manufacturing process and its planning.31

Manufacturing, transportation, inventory holding and demand satisfaction related32

costs are often directly considered in supply chain planning. Nevertheless, loss of ef-33

ficiency in production line capacity usage can have significant impact on the overall34

effectiveness especially in process industries. For instance, furnaces used in float glass35

manufacturing need to be up and running 24/7 due to the continuous production na-36

ture of the process even if the produced glass is not conforming with respect to product37

specifications, or there is insufficient demand. Thus, lost capacity is highly undesirable.38

Setup times and, if the nature of the process imposes, co-production need to be dealt39

with to improve effectiveness. Co-production is the phenomenon of producing several40
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different products simultaneously usually due to physical or chemical properties of the41

system Ağralı (2012). Setup can be defined as time, cost and possibly material needed42

to start manufacturing of a production unit.43

Setups can be categorized in different aspects. Sequence dependency is a phe-44

nomenon with a significant effect in terms of solution performance of the problem we45

study and has been investigated by numerous works such as Almada-Lobo, Oliveira,46

and Carravilla (2008); Haase and Kimms (2000); Toledo, da Silva Arantes, Hossomi,47

and Almada-Lobo (2016). Regardless of whether the setup type is sequence dependent48

or independent, we can further categorize setups as either being product or family49

setups. In family setups, products are grouped into families with respect to certain at-50

tributes affecting the setup time and setups arise between production units belonging51

to different families. There are several studies where authors investigate family setups52

in both multiple and single machine environments as in Almada-Lobo et al. (2008);53

Günther (2014) respectively. In discrete time formulations, depending on the timing of54

setup operations with respect to period boundaries, setup approach is also categorized55

further as carryover or crossover Fiorotto, Jans, and de Araujo (2017). Moreover, Wit-56

trock (1990) define minor setup such as time incurred on machines of moderate length57

due to switch from one part to another and major setup of long length due to a switch58

between parts belonging to different families. However, in float glass manufacturing59

major and minor setups are both related to family setups, former being related to a60

change in color whereas latter related to a change in coating or thickness. Stefansdot-61

tir, Grunow, and Akkerman (2017) develop a classification scheme for setups, however62

including cleanings, which can be a key cost driver in process industries such as food63

and pharmaceuticals. Cleanings can be viewed as another setup type, required due64

to quality and safety considerations and can further be categorized. A generic math-65

ematical model, which can accurately represent cleanings is presented. In float glass66

manufacturing, on the other hand, cleanings translate into setups since switching from67

one color to another requires the furnace and the molten solution to be stabilized in68

terms of quality of the destination color. Finally, startup is another category of setup,69

which corresponds to resources spent to start producing any product. However, we do70

not further elaborate on details of startup setups, since in float glass manufacturing71

lines operate on a 24/7 basis and startup setups practically only exist when a new72

production line starts operating for the first time.73

Lot sizing and scheduling problem with sequence dependent setup consideration74

is studied by Guimarães, Klabjan, and Almada-Lobo (2014) with two different ap-75

proaches. One formulation is based on decisions for setup between products whereas76

in the other uses a collection of pre-defined sequences. The latter selects a sequence to77

be executed in the production. However, authors do not explicitly model family setups78

but only products and longer setups between products corresponding to family aggre-79

gation is not analyzed in detail but only present in a single instance of computational80

experiments. Moreover, the models proposed do not allow for setup crossover, which81

can be necessary in environments where some of input data is not an integer multiple82

of micro-period lengths such as setup durations. Miegeville (2005) studies extensively83

the float glass manufacturing process and develops a MIP for production planning.84

The model in this study determines whether a product is produced in a time period85

and that at most one product is allocated to periods. The author do not explicitly86

address sequence dependent family setup phenomenon. Lime, Grossmann, and Jiao87

(2011) model the transition between adjacent periods permitting the changeovers be-88

tween products occur before, across and after the period boundaries. However, fixed89

number of slots, similar to micro-periods in Guimarães et al. (2014), can result in90
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sub-optimal solutions in cases where input data is sensitive to discretization. Clark,91

Morabito, and Toso (2010) study production planning for animal nutrition products92

under sequence-dependent family setups, and formulate a mathematical model based93

on asymmetric traveling salesman problem. The study shows the model can be efficient94

for some certain cases but needs further algorithmic development for variants of the95

problem.96

Regarding the capacity efficiency concern in process industries, an elaborated setup97

decision within the plan cycle is necessary. In the presence of high associated costs,98

the duration of a production run for a given setup needs to be long enough so that the99

balance between setup and inventory holding costs for products involved is ensured.100

Therefore, products belonging to a certain family are usually produced in campaigns.101

In glass manufacturing for instance, products that have the same color, which is the102

main driver of setup, are produced in campaigns. For a specific color, the plan usually103

contains one or two campaigns in a year, in order to minimize the changeovers Taşkın104

and Ünal (2009). Hence, we can define campaign planning as the process of determining105

the timing and the length of such production run decisions.106

We refer to Ağralı (2012) to embody the formal definition of co-production, which107

is producing several different products in a single production run by necessity. Co-108

production processes exist in various industries including petroleum, semiconductor,109

glass etc. Main difference of co-production from by-production is that co-products are110

primary products themselves and that a certain combination of products needs to be111

produced conforming to the necessities of the process along with intended products.112

On the other hand, a by-product is not primarily produced itself but rather produced113

as a result of producing another product. Co-production needs to be dealt with in114

process industries since it can result in undesired production, which means production115

and inventory holding costs incurred unintentionally.116

There are numerous studies in the literature related to production planning with117

setup considerations. Copil, Worbelauer, Meyr, and Tempelmeier (2017) gives defi-118

nitions for General Lot Sizing and Scheduling (GLSP), Capacitated Lot Sizing with119

Sequence-Dependent-Setup (CLSD), Proportional Lot Sizing and Scheduling (PLSP),120

Continuous Lot Sizing and Scheduling (CLSP) and Discrete Lot Sizing and Scheduling121

(DLSP). Authors categorize referenced works with respect to being extension to one122

of these fundamental models. Another review study is provided by Allahverdi, Ng,123

Cheng, and Kovalyov (2008), in which they categorize the literature based on shop124

environment type including single machine, parallel machines and flow shops, batch125

and non-batch setup indications and sequence dependency. Allahverdi (2015) proposes126

an updated version of Allahverdi et al. (2008) with a review of around 500 papers.127

The classification of the reviewed papers is exactly the same and this newer version128

covers problems involving static, dynamic, deterministic and stochastic environments129

for different shop types.130

Capacitated Lot Sizing Problem (CLP) is the basic production planning problem131

and is known to be NP-hard Florian, K. Lenstra, and H. G. Rinnooy Kan (1980). In132

this study, we focus on single machine case, which is essentially a single-level General133

Lot Sizing Problem (GLSP) with sequence dependent family setup and co-production134

extensions. Finding a feasible solution for this problem, which is single-level special135

case of General Lot Sizing Problem for Multiple Production Stages (GLSPMS), is136

NP-complete Fleischmann and Meyr (1997).137

In the existence of pre-defined jobs, heuristic algorithms are frequently used. Herr138

and Goel (2016) apply Variable Neighbourhood Search (VNS) with six different moves.139

Jin, Song, and Wu (2009) apply a batch-based Simulated Annealing (SA) algorithm140
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with a neighbourhood definition aimed to increase efficiency in neighbour detection by141

eliminating non-promising neighbours. Non sequence dependent but family dependent142

job scheduling without pre-emption is solved with six different heuristics by Uzsoy143

and Veĺ¡asquez (2008) while Guo and Tang (2015) apply Scatter Search to solve the144

problem having sequence dependency existing in the same problem. Bektur and Saraç145

(2019) aim to minimize total weighted tardiness for scheduling unrelated parallel ma-146

chine scheduling problem with sequence dependent setup times and machine eligibility147

restrictions. They propose a simulated annealing (SA) and a tabu search (TS) algo-148

rithm. Numerical experiments show TS with long-term memory yields better solutions.149

Mathematical formulation based solution modeling is also widely applied. Gören and150

Tunalı (2015) formulate capacitated lot sizing problem under sequence independent151

setup as a Mixed Integer Linear Program (MILP) with setup carryover. Fiorotto et al.152

(2017) state the main contribution of their work as enabling setup crossover between153

periods without adding binary variables. Toso, Morabito, and Clark (2009) study an-154

imal feed compound production, where some products might serve for cleansing as155

long as they are produced a certain amount, which results in violation of triangu-156

lar inequality of sequence-dependent setups. They apply a Relax and Fix heuristic,157

which is shown to be computationally and economically effective compared to current158

practice in the industry. Araujo and Clark (2013) argue that it is not possible to solve159

MILP based formulation to optimality in reasonable time and hence they propose a so-160

lution procedure encapsulating a combination of Descent Heuristic (DH), Diminishing161

Neighbourhood Search (DNS) and SA. Setup formulation approach is based on setup162

carryover in Haase and Kimms (2000), and an efficient and fast sequence enumeration163

proposed along with a lower bound generation scheme. Ghirardi and Ameiro (2019)164

study generalization of lot scheduling problem including backordering and setup car-165

ryover on unrelated parallel machines. They formulate three different matheuristics166

inspired by local search, local branching and feasibility pump (FP). Their tests show167

that their approach outperforms other approaches and two MIP solvers on base for-168

mulation. Günther (2014) proposes a change of paradigm in lot sizing and scheduling169

named block planning concept, which is based on continuous representation of time.170

The author further argues that since setup and inventory holding costs are hard to171

determine in most practical cases, timespan minimization is a reasonable objective.172

Ağralı (2012) proves that the uncapacitated dynamic lot-sizing problem with co-173

production can reduce to single item lot sizing problem and consequently Dynamic174

Programming (DP) is applicable. Öner and Bilgiç (2008) study the effect of uncon-175

trolled co-production on the production schedules and apply common cycle schedule176

method.177

Figueira, Santos, and Almada-Lobo (2013) focus on short-term production planning178

and scheduling in pulp and paper industry with two stage. Their solution methodol-179

ogy consists of combination of hybrid VNS and Speeds Constraint Heuristic (SCH).180

Figueira et al. (2015) study the same problem again in pulp and paper industry to181

the extent of development of a decision support system containing some simplifying182

assumptions. The proposed system provides satisfactory results in reasonable run-183

ning times, around 10 to 15 minutes. Furlan, Almada-Lobo, Santos, and Morabito184

(2015) formulate a MIP model for lot scheduling in pulp and paper industry in inte-185

grated mills. They propose a genetic algorithm (GA) to efficiently solve large instances.186

Toledo, da Silva Arantes, de Oliveira, and Almada-Lobo (2013) study a similar problem187

in glass container industry. Glass color, which causes a major setup in glass manu-188

facturing environments, is assumed to remain constant in short-term and sequence189

dependent setups are associated with product changeover. The authors propose multi-190
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population GA and SA as solution approaches.191

Lot sizing and scheduling problem has drawn much attention from researchers.192

Moreover, process industries such as glass manufacturing, steel, pulp and paper,193

petroleum etc. are also popular due to their specific planning complexities. However,194

sequence dependent family setups are not thoroughly studied as stated by Allahverdi195

(2015) with an emphasis on the need for research on single machine environments.196

Moreover, the effect of the dimension of the attributes that form a setup family for a197

campaign is not studied to the best of our knowledge. Furthermore, co-production is a198

phenomenon that has very limited past research. In this paper, we will develop efficient199

formulation for campaign planning under co-production in single machine case.200

The rest of the paper is organized as follows. We first provide a definition of the201

problem with float glass manufacturing being the specific application domain and dis-202

cuss planning issues in Section 2. Two mixed integer linear programming formulations203

are described in Section 3. We propose two mathematical models similar to models204

proposed by Guimarães et al. (2014) and Lime et al. (2011) in terms of setups between205

adjacent periods allowed to occur before, after or during period transition. The main206

difference of our formulations is setups being sequence dependent between families but207

not the products. Moreover, our formulations model co-production which stems from208

a natural characteristic of glass production. We present the results of the computa-209

tional experiments providing insights about both mathematical and business aspects210

in Section 4. Finally, Section 5 concludes the paper.211

2. Problem Definition212

Float glass manufacturing is an example of a process industry, where the main driver213

in planning process is the cost and the effectiveness in capacity usage. Furthermore,214

float glass manufacturing has some special characteristics making it difficult to obtain215

high quality plans.216

The term float refers to the physical nature of the glass production. Molten solution,217

consisting of raw materials such as sand, limestone and soda ash, is fed into a tin bath218

and transforms into its flat form by floating over liquid tin. The primary characteristics219

of the finished product is determined by raw materials fed into the mixture Taşkın220

and Ünal (2009). The most important and primary attribute of float glass is its color.221

Switching from one color to another requires several days, significant amount of time222

and energy consumption and hence is very costly. In order to compensate the setup223

cost incurred for the changeover and also for efficiency purposes, each family has224

a corresponding minimum production duration. Moreover, setups depend on other225

attributes of glass such as coating. The problem hence contains the phenomenon of226

sequence-dependent family setups.227

Due to the chemical nature of the process, random errors on the glass surface appear228

during production. Depending on the cutting decisions regarding the size, different229

size and quality combinations can be produced. Using the historical data reflecting230

the characteristics of a specific production line, we can determine the percentages up231

to which a specific combination of size and quality can be manufactured at most. For232

example, producing high quality glass in big sizes on a specific production line might233

eventually result in an increase in production of moderate and/or low quality glass234

in lower sizes. We can define this as partially controllable co-production. For a more235

detailed explanation on float glass manufacturing fundamentals, we refer to Taşkın236

and Ünal (2009).237
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Float glass manufacturing is a process having setup and co-production attributes238

as discussed above. Furthermore, it is a continuous process and the furnace needs to239

operate 24/7 until it reaches the end of its lifetime, which can take more than ten240

years. Moreover, production capacity depends highly on the mix of products allocated241

to lines since product attributes affect the production rate.242

Figure ?? illustrates the main components of the campaign planning problem. Tac-243

tical planning in float glass manufacturing is typically executed by the planning spe-244

cialists implementing a manually pre-determined campaign plan. The tactical plans245

are generated at a monthly level since the demand forecasts are available on discrete246

time with monthly availability. However, critical information that drives planning ac-247

tivities such as setup durations and production speed is available in continuous time.248

Hence, the campaign planning problem needs to incorporate continuous timeline while249

ensuring the demand responsiveness on discrete time. The main output of the plan-250

ning is the campaign plan, which we can define as a sequence of families, start and251

end times of setups and productions. The planning process yields production quantity252

per product and period based on campaign decisions, which in turn provides demand253

satisfaction and backlog plan as well as inventory projection.254

Figure ?? illustrates an example of a campaign plan for four periods. With the help255

of this illustration, we can observe synchronization of input and output data, which256

are available on different time resolutions. For each period, a production amount and257

demand for a single product from family FM is available. On the other hand, the258

campaign plan is available on continuous time. For example, a campaign of family FM259

starts in Period 1 and ends in Period 2. Production quantity within this campaign is260

associated with Period 1 and Period 2 with respect to time overlapping with each one261

of them. As a result, the production quantity is disaggregated to discrete time. With262

the help of the dotted lines, we can also observe the illustration of demand satisfaction263

schema. For example, the demand of Period 2 is satisfied from productions in Period264

1 and Period 2. whereas the demand of Period 3 is partially satisfied from Period 2265

and Period 4, which results in backlogging. Moreover, for each period, considering the266

production quantity and demand satisfaction plan, one can obtain ending inventory267

projections.268

Let us note the main characteristics of the problem as follows:269

• Demand forecast per product is available on a discrete time (monthly).270

• Input master data, which consists of the parameters of the decision process such271

as inventory holding or demand backlog cost, production speed per item and272

setup duration between families, is available on a continuous time.273

• Main cost items are inventory holding, demand backlog/unsatisfaction and setup.274

Production costs are ignored since the problem is on a single machine.275

• Setups are costly such that the furnace consumes as much as energy as in pro-276

duction without yielding any glass in order of days in duration. Hence, setups277

are important in terms of ensuring cost effectiveness of the plan.278

• Due to significant setup duration and costs, campaigns are encouraged to have279

relatively long durations. However, since this will also effect the demand satis-280

faction plan and backlog is another major expense item, obtaining an optimal281

campaign plan is crucial.282

• Due to the fact that sequence-dependent setup times are expressed in continuous283

time, the campaign plan needs to be on continuous time.284

To elaborate on the last item, we note that our problem differs from aggregate285
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planning. Lot sizing decisions need to be discrete to match the availability of demand286

forecast. On the other hand, as stated sequencing decisions considering sequence-287

dependent setup times and production speed is in continuous time. Hence, the syn-288

chronization between discrete and continuous information is challenging in terms of289

formulation. To the best of our knowledge a model that can efficiently incorporate290

continuous time input data with discrete time data without harming the optimality291

due to discretization is not present in the literature.292

Despite focusing on float glass manufacturing as the specific application domain,293

we note that our approach for dealing with sequence dependent family setups leading294

to campaign planning can be generalized to other process industries.295

3. Mathematical Models296

In this section, we develop two mathematical models for the campaign planning prob-297

lem described in the previous section. Both models are mainly based on the state298

decisions of the machine in each time bucket and they mainly differ from each other299

with respect to the formulation of the state transition over period boundaries. We300

name the models Pattern Transition Based Model (PTBM) and Family Transition301

Based model (FTBM) respectively.302

In order to clarify the formulations, we first define the concept of pattern in Section303

3.1 and then introduce the formulations in Sections 3.2 and 3.3 in the remainder of304

this Section. In addition, Table 1 illustrates symbols used in both PTBM and FTBM.305

3.1. Pattern306

3.1.1. Definition307

We can define a pattern as an ordered list of families that will be produced308

consecutively within a period. The concept of pattern is similar to sequence in309

Guimarães et al. (2014) with the difference that they define sequence by product order310

but we define patterns by family order.311

An important issue to address in pattern definition is that setup times are respected.312

Each adjacent pair within the pattern needs to be feasible in terms of setup changeover.313

Let FM, MV and BR be three families available. We can define Pattern 1, a pattern314

with single family as FM, Pattern 2, a pattern with two families FM-MV, Pattern 3,315

a pattern with three families BR-MV-FM and Pattern 4, another pattern with three316

families MV-BR-MV. Figure ?? illustrates these four example patterns. Notice that317

these represent sequence of the families that the furnace will produce in a period. In318

addition, the setup from family FM to MV (for Pattern 2), BR to MV, MV to FM319

(for Pattern 3), MV to BR and BR to MV (for Pattern 4) should be feasible.320

Moreover, we distinguish the amount produced at the beginning, in the middle and321

at the end of a period. As an example, in Pattern 3, family BR corresponds to the322

beginning, MV to the middle and FM to the end. Note that as in Pattern 4, a family323

can appear in multiple sequences also. We assume that for patterns having at most324

two families, the set of families produced in the middle is empty.325

In our formulations we will assign a pattern to each period. Consequently it’s also326

important that the setup between the last family of a predecessor pattern and the327

first family of its successor pattern is also feasible. Setup data is known and hence is328

given as an input. We can efficiently represent this data as a matrix having families329
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Table 1. Symbols used in both formulations.

Set Description

J Set of products
Q Set of quality groups
S Set of size groups
T Set of time periods
P Set of campaign patterns
F Set of product families
O Set of orders for timing of production in a period (b: beginning,

m: middle, e: end)
P (f) Set of patterns containing family f at least once
F o(p) Set of families appearing in order o in pattern p
P o(f) Set of patterns containing family f in order o
J(f) Set of products belonging to family f
Γ(f, g) Set of product family couples that are infeasible, f, g ∈ F

Parameter Description

Djt Demand of product j in period t
Ij(−1) Beginning inventory of product j
vj Production speed of product j, machine-days required for unit production
At Available capacity of the machine in period t in days
S(j) Index of the size group of product j
Q(j) Index of the quality group of product j
Rfqs Maximum production ratio/percentage for quality group q and

size group s for family f
MDf Minimum production duration for family f in days
NTfp Number of times family f appears in the middle order of pattern p
MDfp Minimum production duration for family f in middle order of pattern p,

can similarly be expressed as MDfNTfp
STp Setup time needed for family order within pattern p in days
STfg Setup time needed for switching from product family f to family g in days
hj Inventory holding cost for product j
bj Cost of backlogging a demand of product j for a single period
cfg Setup cost of switching from family f to family g
cp Total setup cost of family order within pattern p

Variable Description

Ijt Inventory of product j at the end of period t
Sjtk Satisfied quantity of demand from period t of product j in period k
Ujt Unsatisfied quantity of demand from period t of product j
Xjt Production quantity of product j in period t
δpt Binary indicator variable for selection of pattern p in period t
doft Number of days spent for production of family f in order o in period t
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in columns and rows. Each cell in the matrix corresponds to the setup duration/cost330

between the corresponding couple. Notice that, for infeasible family couples, which331

can be due to some technical properties, cells can be filled up with a sufficiently large332

value being larger than maximum number of days in a month.333

Let us explain our approach regarding the representation of the setup over period334

boundaries in more detail with the help of illustrations as in Figure ??. Case (a) is335

an example where the setup time spent between families MV and BR crosses over336

period boundary. The Case (b) represents an example where the setup time is spent337

at the beginning of successor period. Note that depending on the production quantity338

and consequently duration decisions, it might well be also spent at the end of the339

predecessor period as in case (c). Finally, case (d) is an example for no-setup instance340

as the production within the same family continues. Note that with this approach the341

model can decide on allocating patterns such that setup is executed during period342

boundaries, which is not possible with sequence decisions in Guimarães et al. (2014).343

3.1.2. Pattern Generation344

As explained in Section 3.1.1, a pattern is simply an ordered list of families that345

we can assign to a period on the production line. We can generate patterns with346

Algorithm 1 which is not explained in Guimarães et al. (2014) how to obtain the347

pre-defined sequences.348

The algorithm works with the set of families F and the corresponding setup matrix349

M , which we use as input to a recursive procedure called Extend. At each call to350

Extend, the procedure evaluates each family f with respect to three criteria: i) f351

should be different than the last family of the current sequence, ii) by inserting f352

to the end of the sequence, minimum possible duration of this new sequence should353

not exceed the duration of a period, iii) if by adding f to the end of the sequence354

minimum possible duration exceeds the duration of a period, then there should be355

at least a strictly positive amount of time for producing f in addition to minimum356

possible duration of the sequence.357

We define the minimum possible duration of a sequence as the sum of minimum358

production duration of appearing families and the setup required for the sequence.359

Also note that, with criteria iii), we make sure that even if a sequence is not feasible360

to be executed in a period with respect to its minimum duration, we do not eliminate361

it since our formulations can handle such a case. We explain this further in Section362

3.2.1 and 3.3.1 in detail. Note that, the algorithm generates all possible sequencing363

combinations so that the mathematical models can allocate sequences to periods to364

optimize the plan taking setup costs into account.365

3.2. Pattern Transition Based Model366

Table ?? lists the symbols used in PTBM in addition to common symbols listed in367

Table 1 along with their brief descriptions. We present the constraints in Section 3.2.1.368

First, we define the fundamental constraints of GLSP followed by the constraints369

related to business model, which are tied to specifics of float glass manufacturing.370

Finally, we present the campaign defining constraints. We define the objective function371

and give the complete model in Section 3.2.2.372

In order to facilitate the understanding of the formulation logic, we present Figure373

?? as an illustrative example. We have patterns FM-MV and BR-MV-FM assigned to374

periods t and t+1 respectively, and the relations between periods in terms of variables375
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Algorithm 1: Generate all patterns p for a given set of families F

GeneratePatterns (F,M)
inputs : Set F of all families and setup matrix M
output: List of patterns P
LL← ∅ (LL is a list)
return Extend(LL,F,M)

Extend (LL,F,M)
inputs : A list to be extended with new family insertions, set of families

and setup matrix
output: List of patterns P
P ← ∅
foreach family f ∈ F do

if tail(LL) 6= f and CanAdd(LL, f,M) then
LL← LL ∪ f
P ← P ∪ LL
P ← P ∪ Extend(LL,F,M)

return P

CanAdd (LL, f,M)
inputs : A list and a family f and setup matrix
output: Indicator whether family f can be inserted to given list
D ←MinDuration(LL,M)
if D ≥ length of a period then

return FALSE;

S ←M [tail(LL), f ]
D ← D + S
if D ≥ length of a period then

return FALSE;

else
return TRUE;

MinDuration (LL,M)
inputs : A list and setup matrix
output: Minimum possible duration of given ordered family list LL
D ← 0
foreach family f ∈ LL do

D ← D +M [prev(f), f ] +MDf

return D

10



can be seen on the figure. Moreover, considering pattern BR-MV-FM assigned to376

period t+ 1, let us note that family BR is produced in order b at the beginning, MV377

in m in the middle and FM in e at the end.378

3.2.1. Constraints379

We permit backlog for demand satisfaction since the demands of products can be
spread over the planning horizon whereas the duration and the timing of production
campaigns are restricted. Eq. (1) ensures the consistency of demand satisfactions.∑

k∈T
k≥t

Sjtk + Ujt = Djt ∀ j ∈ J, t ∈ T (1)

Eq. (2) is the inventory balance constraint that links production quantity X, ending
inventory I and demand satisfaction S variables across time periods.

Ij(t−1) +Xjt −
∑
k∈T
k≤t

Sjkt = Ijt ∀ j ∈ J, t ∈ T (2)

Production cannot be interrupted since the furnace needs to be up and running in
24/7 operating mode. Available capacity must hence be fully utilized, which is ensured
by Eq. (3). Note that in addition to time spent for production, Eq. (3) incorporates
the setup time required due to the pattern selection.∑

o∈O
doft +

∑
p∈P

(STpδpt + Fpt +Bpt) = At ∀ t ∈ T (3)

We define the auxiliary variables do corresponding to the number of days allocated380

for production of family f at the beginning, in the middle or at the end of a period t.381

We relate do to the production quantity variables X with Eq. (4).382

∑
j∈J

vjXjt =
∑
o∈O

doft ∀ f ∈ F, t ∈ T (4)

Due to the physical and the chemical nature of the glass production, random errors
are observed on glass surface. Moreover, products can be substituted with respect to
their size s and quality q attributes. For example, a glass sheet of size s can be cut
into smaller sizes. Similarly, a sheet of quality q can be substituted as an item of lower
quality. Furthermore, depending on the characteristics of the production line, produc-
tion amount of a specific size group s and quality q cannot exceed a certain percentage
of the total production quantity within a time period. Consequently, various produc-
tion compositions are feasible. We denote this phenomenon as partially controllable
co-production as explained in Section 2. Eq. (5) ensures that the production quanti-
ties in a time period yield a feasible composition within a specific family. The rates
Rfqs depend on the characteristics of each furnace and are driven from the historical
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production data. Note that this approach is defined in Taşkın and Ünal (2009).∑
j∈J(f)
Q(j)≤q
S(j)≤s

Xjt ≤
∑
j∈J(f)

Xjt Rfqs ∀ f ∈ F, q ∈ Q, s ∈ S, t ∈ T (5)

Our main approach for the campaign planning is based on assigning patterns to
time periods. Eq. (6) ensures that a single pattern is assigned to each period.∑

p∈P
δpt = 1 ∀ t ∈ T (6)

To ensure the efficiency and the stability of the manufacturing process, a mini-383

mum production duration should be ensured for each production run of a product384

family. Eq. (7) models this requirement, ensuring a lower bound for production dura-385

tion of families that are produced in the middle of a pattern. Considering the period386

boundaries, in an optimum solution we can have the minimum duration split into two387

adjacent periods. In order to enable our formulation take such a decision, we introduce388

Eq. (8). On the other hand, we need to make sure that we set a proper upper bound on389

the production duration variables. Eq. (9) ensures that spending time for producing390

family f in order o is permitted only if a corresponding pattern is assigned in that391

period.392

dmft ≥MDfpδpt ∀ p ∈ P, f ∈ Fm(p), t ∈ T (7)

def(t−1) + dbft ≥MDfδpt ∀ p ∈ P, f ∈ F b(p), t ∈ T, t ≥ 1 (8)

doft ≤
∑

p∈P o(f)

Atδpt ∀ f ∈ F, o ∈ O, t ∈ T (9)

In order to properly handle setup crossover, we need to relate θ variables with δ
variables. This can be formulated as in Eq. 10, which is a non-linear constraint.

θprt = δp(t−1)δrt ∀ p, r ∈ P, t ∈ T, t ≥ 1 (10)

Note that we can linearize Eq. 10 as in Eqs. (11)–(13). Hence, we do not consider
Eq. (10) any further. Moreover, Eqs. (11)–(13) permit relaxation of θ variables as
θprt ≥ 0

θprt ≤ δp(t−1) ∀ p, r ∈ P, t ∈ T, t ≥ 1 (11)

θprt ≤ δrt ∀ p, r ∈ P, t ∈ T (12)

θprt ≥ δp(t−1) + δrt − 1 ∀ p, r ∈ P, t ∈ T, t ≥ 1 (13)
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Setup time spent at the beginning and at the end of a period t are managed with
Eqs. (14)–(15). Note that these are big-M type constraints with MSTfg being the
tightest big-M value. When a pattern transition is active through θ variable, setup
time for the corresponding family pair is binding for the sum of setup time variables
B and F . Otherwise, both upper bound and lower bound become redundant. Notice
that it may or may not be the case that the setup time spans period boundaries with
our approach.

STfg +MSTfg(1− θprt) ≥ Bp(t−1) + Frt ∀ p, r ∈ P, f = fTp , g = fHR , t ∈ T, t ≥ 1

(14)

STfg −MSTfg(1− θprt) ≤ Bp(t−1) + Frt ∀ p, r ∈ P, f = fTp , g = fHR , t ∈ T, t ≥ 1

(15)

It is also imperative that the variables for setup time at the beginning and at the
ending of a period are zero unless the corresponding pattern is selected. Eqs. (16)–(17)
ensure this requirement.

Fpt ≤ STSfδpt ∀ p ∈ P, f = fHp , t ∈ T, t ≥ 1 (16)

Bpt ≤ STPfδpt ∀ p ∈ P, f = fTp , t ∈ T, t ≥ 0 (17)

It might be the case that, switching from a certain product family f to another g is
not possible due to some technical restrictions or business practice. Eq. (18) ensures
that the model does not generate such an output.

δp(t−1) + δrt ≤ 1 ∀ p, r ∈ P, f = fTp , g = fHr , (f, g) ∈ Γ(f, g), t ∈ T, t ≥ 1 (18)

3.2.2. Objective Function393

We define the objective function as cost minimization. We assume that production394

cost for each product j remains constant within the planning horizon. Inventory395

holding costs for each product is driven from its production cost. Hence, production396

costs are implicitly included in the model and do not appear in the objective. We397

sum inventory holding and demand satisfaction costs over products and periods398

as the first three components. Our approach for demand unsatisfaction is based399

on the assumption that it is favorable to satisfy a demand, no matter how long400

the backlog period is, over unsatisfying. To achieve this, the cost associated with401

unsatisfaction is calculated as bj (|T | − t + 1), which reflects our assumption that402

demand can be satisfied from an infinite capacity after the planning horizon ends403

with a corresponding backlog cost associated. In addition, having the coefficient set404

as (|T | − t + 1) earlier demands will be satisfied more preferably. Moreover, the cost405

associated to each family setup is significant and we incorporate this cost into the406

objective function with both pattern selection and pattern transition variables as with407

last two components. Model 1 in Appendix A represents the complete formulation for408

PTBM.409

410
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PTBM Objective

Minimize
∑
j∈J
t∈T

hj Ijt + bj (|T | − t+ 1) Ujt +
∑
k∈T
k≤t

(bj (t− k) Sjkt)


+

∑
p∈P

cpδp +
∑
t∈T
f=fT

p

g=fH
r

(f,g)/∈Γ(f,g)

cfgθprt

3.3. Family Transition Based Model411

In PTBM, an auxiliary variable θprt is introduced for each feasible pattern pair and412

time period. This approach may be inefficient in cases where there are multiple pattern413

couples such that the predecessor’s last family and the successor’s first family are same.414

This leads us to the main idea in FTBM. The main difference in FTBM is the way we415

formulate the transition between periods. Instead of introducing an auxiliary variable416

for each feasible pattern couple, we introduce variables for a distinct set of family pairs417

corresponding to one or more pattern pair transition.418

Table ?? lists the symbols used in FTBM in addition to the common symbols listed419

in Table 1 along with their brief descriptions. We present the constraints in Section420

3.3.1. Figure ?? illustrates the formulation logic and the variable mapping to a possible421

campaign plan. Notice that the campaign plan is the same as the one illustrated for422

PTBM in Figure ??.423

3.3.1. Constraints424

First, we note that since FTBM differs from PTBM with respect to the formula-425

tion of the state transition over period boundaries, some other concepts remain the426

same. Hence, the corresponding constraints are still valid for FTBM. In particular, re-427

quirement and inventory balance constraints with Eqs. (1)–(2), Eq. (4), which relates428

production duration and quantity variables and Eq. (5) formulating the production429

composition regarding the size group and the quality are included in FTBM. Simi-430

larly, Eq. (6) ensuring assignment of a single pattern in each period and Eqs. (7)–(9)431

ensuring the minimum duration for producing family f are valid for FTBM.432

Resource balance constraints, that are defined with Eq. (3) in Section 3.2.1 need to
be modified due to the differences in the definitions of setup related variables F and
B. Note that they do not depend on pattern p in FTBM but rather only on period t.
Eq. (19) formulates resource balance as follows:∑

o∈O
doft +

∑
p∈P

STpδpt + Ft +Bt = At ∀ t ∈ T (19)

In order to determine the first and the last family produced in a period we set Eqs.
(20)–(21). Notice that with Eq. (6) combined with Eqs. (20)–(21), variables (γS , γE)
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can only have values from {0, 1}. Hence, we can relax them as γS , γE ≥ 0.

γSft =
∑

p∈PS(f)

δpt ∀ f ∈ F, t ∈ T (20)

γEft =
∑

p∈PE(f)

δpt ∀ f ∈ F, t ∈ T (21)

θ variables indicate whether a changeover is performed from family f to family g
at the beginning of period t, and hence are binary by nature. Similar to Eq. (10),
θ variables should be equal to 1 if and only if both corresponding γ variables are 1,
which is again non-linear. However, similar to Eqs. (11)–(13), Eqs. (22)–(24) allow us
to linearize and relax θ as θ ≥ 0.

θfgt ≤ γEf(t−1) ∀ f, g ∈ F, t ∈ T, t ≥ 1 (22)

θfgt ≤ γSgt ∀ f, g ∈ F, t ∈ T (23)

θfgt ≥ γEf(t−1) + γSgt − 1 ∀ f, g ∈ F, t ∈ T, t ≥ 1 (24)

Eq. (25) ensures that necessary setup time for color transition is spent.

nPfgt + nSfgt = STfgθfgt ∀ f, g ∈ F, (f, g) /∈ Γ(f, g), t ∈ T (25)

We relate setup time variables for families (nS , nE) to period based variables (F,B)
with Eqs. (26)–(27).

Ft =
∑

(f,g)/∈Γ(f,g)

nSfgt ∀ f, g ∈ F, t ∈ T (26)

Bt =
∑

(f,g)/∈Γ(f,g)

nPfg(t+1) ∀ f, g ∈ F, t ∈ T (27)

Eq. (28) ensures that no infeasible family transition is permitted. Note that this is
the counterpart of Eq. (18).

γEf(t−1) + γSgt ≤ 1 ∀ f, g ∈ F, (f, g) ∈ Γ(f, g), t ∈ T, t ≥ 1 (28)

3.3.2. Objective Function433

The objective function is the same as PTBM. Model 2 in Appendix B represents the434

complete formulation for FTBM.435

436
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3.4. Comparison of Pattern Based and Family Based Formulations437

As explained in detail in Sections 3.2 and 3.3, formulations differ from each other438

with respect to the formulation of the state transition over period boundaries. In439

PTBM, there is a θ variable for each pair of patterns whereas in FTBM θ variables440

are mapped to each pair of families. The FTBM associates state decision variables δ441

to setup duration through a convex hull reformulation with Eqs. (20), (21) and (25).442

Hence, we argue that FTBM is tighter than PTBM with the following proposition.443

Proposition 1. Let SFTBM and SPTBM be the feasible regions of linear programming444

relaxations of FTBM and PTBM respectively. Then, SFTBM ⊂ SPTBm.445

Proof. Let I be the set of family pairs (f ′, g′) such that θf ′g′t > 0 in a feasible solution446

to PTBMV. Then summing Eq. (25) over (f ′, g′) ∈ I, we obtain447 ∑
(f ′,g′)∈I

nPf ′g′t +
∑

(f ′,g′)∈I

nPf ′g′t =
∑

(f ′,g′)∈I

STf ′g′θf ′g′t (29)

Note that, the first term is equal to Ft+1 and the second term is equal to Bt on the448

left hand side of the equation. Moreover, from Eqs. (22)–(24), we obtain following449

inequalities respectively by again summing over (f ′, g′) ∈ I.450

∑
(f ′,g′)∈I

STf ′g′θf ′g′t ≤
∑

(f ′,g′)∈I

STf ′g′γ
E
f ′t (30)

451 ∑
(f ′,g′)∈I

STf ′g′θf ′g′t ≤
∑

(f ′,g′)∈I

STf ′g′γ
S
g′(t+1) (31)

452 ∑
(f ′,g′)∈I

STf ′g′θf ′g′t ≥
∑

(f ′,g′)∈I

(γEf ′t + γSg′(t+1)) + |I| (32)

Left hand side of all these three inequalities can hence be replaced by Ft+1+Bt. On the453

other hand, when we sum Eqs. (16) and (17) followed by another sum over (p′, r′) ∈ J454

where p′ and r′ correspond to patterns having f ′ as ending family and g′ as starting455

family respectively, we obtain456 ∑
(p′,r′)∈J

(Bp′t + Fr′(t+1)) ≤
∑

(p′,r′)∈J

(STPf ′δp′t + STSg′δr′(t+1)) (33)

which also has the left hand side equal to Ft+1 +Bt. Summing Eq. (14) over (p′, r′) ∈ J457

gives458 ∑
(p′,r′)∈J

STf ′g′ −
∑

(p′,r′)∈J

MSTf ′g′ +
∑

(p′,r′)∈J

θp′r′t ≤
∑

(p′,r′)∈J

(Bp′t + Fr′(t+1)) (34)

Note that right hand side of the inequality (34) is also equal to Ft+1 + Bt. Then459

from Eq. (30) and Eq. (31), we obtain following inequalities which are always true by460
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definition of STPf ′ and STSg′ with respect to STf ′g′461 ∑
(f ′,g′)∈I

STf ′g′γ
E
f ′t ≤

∑
(p′,r′)∈J

(STPf ′δp′t + STSg′δr′t) (35)

462 ∑
(f ′,g′)∈I

STf ′g′γ
S
g′(t+1) ≤

∑
(p′,r′)∈J

(STPf ′δp′t + STSg′δr′t) (36)

Finally from Eq. (34) we obtain463 ∑
(p′,r′)∈J

STf ′g′−
∑

(p′,r′)∈J

MSTf ′g′ +
∑

(p′,r′)∈J

θp′r′(t+1) ≤
∑

(f ′,g′)∈I

(γEf ′t+γ
S
g′(t+1))−|I| (37)

The first to components of the left hand side is negative by definition of STf ′g′ and464

MSTf ′g′ . The third component is further explored from Eq. (13) by summing over465

(p′, r′) ∈ J466 ∑
(p′,r′)∈J

δp′t +
∑

(p′,r′)∈J

δr′(t+1) − |J | ≤
∑

(p′,r′)∈J

θp′r′t (38)

Since,
∑

(p′,r′)∈J δp′t =
∑

(f ′,g′)∈I γ
E
f ′t,

∑
(p′,r′)∈J δr′(t+1) =

∑
(f ′,g′)∈I γ

S
g′(t+1 and467

|J | ≥ |I|, then (37) is also always true. Hence, for each fractional solution to SFTBM ,468

one can find a corresponding solution in SPTBM .469

On the other hand, let pFM1 and pFM2 be two patterns ending with family FM and470

allocated have corresponding δ variables equal to 0.5 and 0.5 in period t respectively471

in a feasible solution to PTBM. Similarly, let rFM3 and rMV 4 be two patterns starting472

with families FM and MV respectively with corresponding δ variables equal to 0.4473

and 0.6 in period t + 1. Following Eqs. (11)–(13) variable θp(FM3)(t+1)r(MV 4)(t+1) ≥ 0 ≥474

(0.5+0.4−1). Then Eq. (14) and Eq. (15), will become redundant since θ can take value475

of zero. However, in FTBM, the corresponding θ variable, namely θ(FM3)(MV 4)(t+1),476

has a lower bound of 0.6 from Eq. (24). This triggers Eq. (25) such that the left hand477

side has to equal ST(FM3)(MV 4) ∗ 0.6 which might results in different setup duration478

for PTBM and FTBM. Hence there exists a fractional solution of PTBM, which is not479

a feasible solution of FTBM.480

481

3.5. Pattern Set Preprocessing482

Notice that both formulations contain binary variables corresponding to patterns, (δ483

variables). Moreover, PTBM also contains auxiliary variables θ, which can increase484

up to the number of cartesian product of the number of patterns and the number of485

periods. Hence, it is crucial to reduce the number of patterns while ensuring optimality486

of the solution.487

We observe that multiple patterns generated with the Algorithm 1 can result in the488

production of the same set of families for a given beginning and ending family pair.489

Let us elaborate with illustrative examples. Let f1, f2, f3 and f4 be a set of families490

and p1 and p2 be a couple of generated patterns containing these families. Let the491
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sequence of p1 be f1 - f2 - f3 - f4 and the sequence of p2 be f1 - f3 - f2 - f4. If setup492

costs for pattern p1 is less than that of p2, then an optimal solution will favor p1 to493

p2 since both patterns have common starting and ending families, and the same set of494

families produced in only different sequences.495

A similar redundancy appears in cases where a pattern contains as sub-sequence,496

the replication of a specific number of times of another pattern. Let f1 and f2 be a497

couple of families and p1 and p2 be a couple of generated patterns. Let the sequence498

of p1 be f1 - f2 and the sequence of p2 be f1 - f2 - f1 - f2. Notice that p1 is a ‘shrunk’499

version of p2, and that since p2 yields more setup time and setup cost having twice the500

setup f1 to f2 and one f2 to f1 whereas p1 yields more useful production time, p2 can501

be removed from the list of patterns, thus reducing the number of binary variables in502

both formulations.503

Algorithm 2 groups all patterns with respect to their canonical representation and504

keeps the one from each group having the least associated cost. Since we need to keep505

all the patterns enabling all possible transitions over period boundaries, information506

about the beginning and the ending families should not be lost, which we ensure by507

sub procedure GetCanonicalRepresentation in Algorithm 2.508

Algorithm 2: Pattern preprocessing

SimplifyPatterns (P )
inputs : Set of patterns P
output: List of simplified patterns P ′

P ′ ← ∅
G← Group all patterns in P in by GetCanonicalRepresentation(p)
foreach pattern group g ∈ G do

P ′ ← P ′ ∪ argminp = {cp}
return P ′;

GetCanonicalRepresentation (p)
inputs : A pattern p
output: A string value
f ← beginning family of pattern p
g ← ending family of pattern p
M ← ordered distinct list of families in pattern p
s← concatenate(f, f ′ ∈M, g)
return s;

3.6. Formulation Variations509

In both formulations PTBM and FTBM, infeasible changeovers between families over
period boundaries are prohibited explicitly with Eq. (18) and Eq. (28) in PTBM and
FTBM, respectively. From another point of view, this is equivalent to the condition
that over period boundaries, only feasible family setups should be allowed. Hence, this
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can be achieved with Eq. (39) for PTBM:∑
p,r∈P
f=fT

p

g=fH
r

(f,g)/∈Γ(f,g)

θprt = 1 ∀ t ∈ T, t ≥ 1 (39)

and with Eq. (40) for FTBM:∑
f,g∈F

(f,g)/∈Γ(f,g)

θfgt = 1 ∀ t ∈ T, t ≥ 1 (40)

Notice that Eqs. (39)–(40) may decrease the number of constraints significantly510

depending on the number of patterns and families. In PTBM and FTBM, Eq. (18)511

and Eq. (28) are written explicitly for each period transition and for each pair of512

infeasible pattern and family pairs respectively. On the other hand, in variant models513

PTBMV and FTBMV, a single equation exists as Eq. (39) and Eq. (40) for each period514

transition. Model 3 in Appendix C and Model 4 in Appendix D represent the complete515

formulation for PTBMV and FTBMV respectively.516

We argue that the variant formulations are tighter than primary formulations. The517

following proposition shows that PTBMV is tighter than PTBM.518

Proposition 2. Let SPTB and SPTBV be the feasible regions of linear programming519

relaxations of PTBM and PTBMV respectively. Then, SPTBV ⊂ SPTB.520

Proof. Let I be the set of pattern pairs (p′, r′) such that θp′r′(t+1) > 0 in a feasible
solution to PTBMV. Then, for each (p′, r′) we have

δp′t ≥ θp′r′(t+1)

δr′(t+1) ≥ θp′r′(t+1)

from Eqs. (11)–(12) and since
∑

(p′,r′∈I) θp′r′(t+1) = 1 by Eq. (39), then we have521

522 ∑
(p′,r′)∈I

δp′t =
∑

(p′,r′)∈I

δr′(t+1) = 1

Hence,523 ∑
(p′′,r′′)/∈I

δp′′t =
∑

(p′′,r′′)/∈I

δr′′(t+1) = 0

Note that such pattern couples include both feasible and infeasible pattern pairs and524

such feasible pairs Eq. (18) is not relevant. Moreover, for pairs (p′, r′) ∈ I such that525

(p′, r′) setup is infeasible, since
∑

(p′,r′∈I) θp′r′(t+1) = 1 by assumption, we have δp′t +526

δr′(t+1) ≤ 1. Hence, each fractional solution of PTBMV is also feasible with respect to527

PTBM.528

On the other hand, let f1, f2, f3, f4, f5 and f6 be families with no feasible transition529

between any couple except within same family. Let us note patterns including single530
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families also as f1, f2 etc. Let δ values in a solution of PTBM be δf1t = 0.4, δf2t = 0.5,531

δf3t = 0.1, δf1(t+1) = 0.4, δf4(t+1) = 0.5 and δf5(t+1) = 0.1. Note that since there532

is no feasible transition between any couples other than f1t to f1(t + 1), for any533

combination Eq. (18) is satisfied. However, since the only feasible transition (f1t to534

f1(t+ 1)) implies that θf1f1(t+1) ≤ 0.4 then Eq. (39) is violated and hence there exists535

a fractional solution of PTBM, which is not a feasible of PTBMV.536

Note that by similar approach, we can also prove the following proposition.537

Proposition 3. Let SFTB and SFTBV be the feasible regions of linear programming538

relaxations of FTBM and FTBMV respectively. Then, SFTBV ⊂ SFTB.539

4. Computational Experiments540

In this section, we give details about numerical results from running the proposed for-541

mulations. We implemented formulations with C# language of the .NET Framework542

and used commercial solvers CPLEX (12.8) and Gurobi (8.1) for computational ex-543

periments. We executed all experiments on a PC with Intel Core i7-8750H CPU 2.20544

GHz and 16 GB RAM.545

4.1. Data Set546

The data used in the numerical experiments is based on real life data provided by547

a major float glass manufacturer in Turkey. Hence, the data is realistic in terms of548

production, setup and cost perspective. The data set contains 153 unique products of549

different color, size, quality, coating, thickness and packaging type attributes.550

Color is the primary attribute affecting the duration and the cost of a changeover.551

Hence, we include color in the family structure. In addition, coating is another attribute552

that requires setup between products of the same color. Hence, color and coating will553

be considered as attributes that form a family. Moreover, in order to investigate the554

significance of adding or removing an attribute in family structure, we will work with555

three different structures. We can enumerate them as follows:556

• Color: The simplest structure. Only color forms a family, and all coating types557

are considered in the same family558

• Color & C/NC: In addition to color, coating is incorporated into family struc-559

ture in a binary form: C = Coated, NC = Not Coated560

• Color & Coating: Both color and coating attributes are considered in families.561

There are three colors, namely fume (FM), bronze (BR) and blue (MV), and three562

coating types, namely without coating (Z), pyrolitic (P) and titanium (T). For each563

different family structure explained above, we have 3, 6 and 8 families respectively564

aggregating 153 unique products.565

4.2. Formulation Analysis566

In order to compare the performances of the four models proposed with the data set567

explained in Section 4.1 we designed a set of run instances. We can list the main568

attributes for the instances as follows:569
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• Number of Periods: 4, 6 and 8 periods570

• Formulation: PTBM, FTBM, PTBMV and FTMBV571

• Family Structure: Color, Color & C/NC and Color & Coating572

Table ?? shows values for the number of patterns, the number of continuous and573

binary variables and the number of constraints.574

We note that the number of patterns depends on the family structure. Similarly, the575

number of variables in each formulation depends on the formulation and the number576

of periods in addition to the family structure. The number of binary variables, on the577

other hand, depends on the number of patterns and periods (δpt).578

We can observe that the number of variables and constraints increase in all formu-579

lations with respect to the family structure. However, the increase rate is much higher580

in Pattern Transition Based (PTB) models (PTBM and PTBMV). The number of581

variables and constraints are expected to be much higher in Pattern Based models582

than Family Based models, which is the case for family structure Color & Coating583

and eight periods instance. However, we observe that when coating is not selected as584

a family-forming attribute the results are somewhat surprising. For instance when we585

compare PTBM and PTBMV in Color family structure and four periods instance, we586

see that the number of variables remains constant and that the number of constraints587

increases in Variant version. We observe that the reason behind such a case is the588

following: once the coating attribute is removed from the family structure, the family589

sequence setup restrictions disappear as it is possible to change colors in any sequence590

(with different setup durations). Hence, PTBM contains no constraints (18) and its591

variant version contains constraints (39). A similar situation is also observed in Family592

Transition Based models.593

In order to analyse the efficiency of the pattern preprocessing, let us share the details594

about the number of patterns per family structure. In Color structure, Algorithm 1595

generates 42 patterns and Algorithm 2 eliminates 18 of them resulting in 43% decrease.596

Similarly, respective numbers for Color & C/NC are 165, 115 and 30%, and for Color597

& Coating are 171, 135 and 21%. Note that the number of patterns decreases by 31%598

on average, which is important in terms of performance since the number of binary599

variables depends on the number of patterns.600

Regarding the solution performance, let us first observe the Linear Programming601

(LP) relaxation objective values of the formulations. Table ?? shows the objective602

values of LP relaxation of the proposed formulations. We observe that Family Transi-603

tion Based (FTB) formulations generate significantly tighter LP relaxation objectives604

compared to PTB models.605

Moreover, for both PTB and FTB models, variant formulations produce higher606

LP relaxation objectives in all run instances compared to their respective original607

formulations, which is in alignment with Propositions 2 and 3.608

We implemented a general purpose optimization layer in our implementation that609

enables us to use both CPLEX and Gurobi solvers. Table ?? illustrates Central Pro-610

cessing Unit (CPU) time in seconds, relative MILP gap and incumbent solution objec-611

tive value per solver and per run instance. All instances are solved with a time limit612

of 8 hours (28800 seconds).613

We note that for each family structure and number of period combination, at least614

one of the formulations was able to find an optimal solution. Moreover, some of the615

solution runs, such as PTBM in eight periods and Color & C/NC family structure,616

were able to find an optimal objective value but were not able to prove the optimality.617

Regarding the formulations, we note that in all instances FTB models outperform618
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PTB models. We investigate the performances of CPLEX for the sake of simplicity in619

summary. Considering FTBM and its variant, FTBMV, the variant performs better620

than the original formulation regarding computational time except a single instance,621

6 periods and Color as family structure. We observe that FTBM finds an optimal622

solution in the root node, whereas FTBMV also finds an optimal solution at the root623

node but couldn’t prove the optimality without exploring 383 nodes resulting in 1624

second of difference.625

On the other hand, PTBMV consistently performs worse than PTBM regarding626

computational time. To further investigate, we checked the solver logs and observed627

that root node solution time is consistently taking much longer in variant formulations.628

For example, in 8 periods and Color & Coating family structure, root node processing629

takes 1708 seconds in PTBMV while 201 seconds in PTBM. A potential reason for630

such a difference is related to PTBM having many more constraints than its variant631

except for one case explained above. PTBM has more and sparser constraints as in632

Eq. (18) whereas the variant PTBMV has less and denser set of constraints with633

Eq. (39). Considering the solvers’ working mechanism of working with sparse algebra,634

we can explain the difference in computational performance.635

A solver outperforms the other if it obtains a solution with lower optimality gap. If636

both obtain an optimal solution within the time limit, then whichever proves optimal-637

ity earlier is noted as the winner. Let us summarize the number of “wins” per solver638

as follows:639

• 4 Periods: Gurobi wins 5 times while CPLEX wins remaining 7640

• 6 Periods: Gurobi wins 8 times while CPLEX wins remaining 4641

• 8 Periods: Gurobi wins 7 times while CPLEX wins remaining 5642

We observe that, in more cases Gurobi outperforms CPLEX and especially in FTB643

models, Gurobi obtains provably optimal solutions faster than CPLEX. As the problem644

instance becomes more complex, Gurobi tends to outperform CPLEX. However, in645

the most complex instance, which is 8 periods with Color & Coating family structure,646

CPLEX finds a provably optimal solution in 8873 seconds whereas Gurobi is able647

to solve the instance in 17534, which is almost twice the time. Moreover, in smaller648

instances, those with 4 periods, CPLEX outperforms Gurobi. Hence, we can conclude649

that there is no clear superiority of one solver to the other. Nevertheless, we will use650

FTBMV and Gurobi for further experiments, being the combination most frequently651

performing better than the others.652

4.3. Business Insights653

Analysis presented in Section 4.2 discusses the problem and formulations in detail654

from a mathematical point of view. Set of experiments up to now measure the perfor-655

mance of different formulations proposed. However, since the problem has some unique656

challenges it is also valuable to elaborate the analysis on some business insights per-657

spective. Our main goal is to observe the characteristics of the generated campaign658

plans with respect to different business scenarios.659

As stated in Section 4.2, we will use FTBMV in a set of experiments for testing660

further scenarios. Our main goal in the next is to analyse the changes in number661

campaigns and average duration per campaign overall. Total setup duration driven662

by campaign plan is also another metric to be observed. We expect to gather further663

insights from other business indicators such as average total ending inventory per664
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month and total backlogged or unsatisfied demand.665

Costs associated with inventory holding and demand backlog/unsatisfaction are666

subject to some business requirements and assumptions. Moreover, setup costs have a667

crucial role in campaign decisions being a significant expense item and having physical668

counterpart. Since all these costs mentioned are in the objective function to be mini-669

mized, we decided to design a new set of run instances that will enable us to observe670

the marginal effect of each cost component to the resulting campaign plan.671

We adapt an approach similar to Fiorotto et al. (2017) in order to evaluate effects of672

cost components. We first assume a baseline run instance with family structure Color673

& Coating and 8 periods. Then, for each cost component, we solve the campaign674

planning problem having corresponding coefficients multiplied with 0.1, 0.2, 0.5, 2, 5675

and 10. In each case, we observe the changes in various measures such as the number676

of campaigns, total setup duration and average ending inventory. Figure ?? shows an677

optimal campaign plan for our baseline instance.678

We first analyze the effect of setup costs. Figure ?? shows some metrics that will679

help us interpret the behavior of the outcoming campaign plans compared to the680

expectations. In each one of the charts, term Mx corresponds to a run instance where681

M stands for the multiplier used. Note that 1x is the Baseline instance. With increasing682

the setup costs, we expect to have fewer setups, which is validated with Figure ??683

(a). Considering the average campaign duration, although the trend is increasing as684

expected with fewer campaigns per family, in 5x instance we observe the measure685

against our expectation. The difference is driven by family BRP, which in 5x instance686

has a single campaign of 5.06 days whereas in 2x instance there are two BRP campaigns687

with average duration of 17.72 days. We further observe that the ending inventory at688

the end of the planning horizon for family BRP is 14247 in 2x instance whereas this689

figure is only 331 in 5x instance. The inventory to be held shifted to FMZ family in690

5x instance, which did not have any ending inventory in 2x instance. We anticipate691

that with increased setup costs, model could decrease the overall costs with such692

a combination regarding inventory holding costs. With fewer number of campaigns,693

the total setup duration spent is expected to be less as well, which can be observed in694

Figure ?? (c). With longer campaign durations higher amount of inventory is expected695

to be carried, which we validate with Figure ?? (b) and we observe a similar behaviour696

for total backlogged and unsatisfied demand quantity.697

Figure ?? shows the effects of the changes in backlog coefficients. With increasing698

backlog costs, in order to decrease the cost due to backlogging, we expect to have more699

campaigns in shorter duration. Figures ?? (a) and (b) illustrate the increase in both700

number of campaigns and total setup duration. However, average campaign duration701

fluctuates even though the trend is downwards. Clearly, with increasing backlog cost,702

models tend to have less and less backlogged demand and average ending inventory is703

also decreasing since there is a larger number of shorter campaigns.704

Inventory holding cost is the expense item with the least effect on resulting campaign705

plans as observed in Figure ??. With increasing inventory cost, we expect to have706

more campaigns having shorter duration to avoid holding more inventory longer. This707

is observed with Figure ?? (a). Also with more campaigns, we observe eventually708

longer total setup duration. The average ending inventory tends to decrease but only709

a significant change in inventory costs can drive this.710

23



5. Conclusion711

In this paper we studied the single machine campaign planning problem under sequence712

dependent family setups and co-production in the process industry. We proposed two713

formulations PTBM and FTBM and variations being stronger in terms of LP relax-714

ation. With the runs using a realistic dataset, we are able to obtain an optimal solution715

for each problem instance within a given time limit. Regarding the different formu-716

lations, FTBM and its variation are shown to outperform PTB models. Moreover,717

FTBM and FTBMV are both more compact in terms of the number of variables and718

constraints. The sensitivity of some measures related to the business insights are also719

provided showing expected behavior in most cases. As a feature research direction,720

the problem can be studied in multiple machine environments with alternative selec-721

tion considering production costs. Moreover, we can further extend the research by722

including multiple facilities and multiple BOM levels.723
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Figueira, G., Amorim, P., Guimarães, L., Amorim-Lopes, M., Neves-Moreira, F., & Almada-750

Lobo, B. (2015). A decision support system for the operational production planning and751

scheduling of an integrated pulp and paper mill. Computers and Chemical Engineering , 77 ,752

85–104.753

24



Figueira, G., Santos, M. O., & Almada-Lobo, B. (2013). A hybrid vns approach for the short-754

term production planning and scheduling: A case study in the pulp and paper industry.755

Computers and Operations Research, 40 , 1804–1818.756

Fiorotto, D. J., Jans, R., & de Araujo, S. A. (2017). An analysis of formulations for the757

capacitated lot sizing problem with setup crossover. Computers and Industrial Engineering ,758

106 , 338–350.759

Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem. OR760

Spectrum, 19 , 11–21.761

Florian, M., K. Lenstra, J., & H. G. Rinnooy Kan, A. (1980). Deterministic production762

planning: Algorithms and complexity. In Management science (p. 669-679).763

Furlan, M., Almada-Lobo, B., Santos, M., & Morabito, R. (2015). Unequal individual genetic764

algorithm with intelligent diversification for the lot-scheduling problem in integrated mills765

using multiple-paper machines. Computers and Operations Research, 59 , 33–50.766

Ghirardi, M., & Ameiro, A. (2019). Matheuristics for the lot sizing problem with back-ordering,767

setup carryovers, and non-identical machines. Computers and Industrial Engineering , 127 ,768

822–831.769
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Appendix A. Pattern Transition Based Model816

Model 1. Pattern Transition Based Model (PTBM)

Minimize
∑
j∈J
t∈T

hj Ijt + bj (|T | − t+ 1) Ujt +
∑
k∈T
k≤t

(bj (t− k) Sjkt)


+

∑
p∈P

cpδp +
∑
t∈T
f=fT

p

g=fH
r

(f,g)/∈Γ(f,g)

cfgθprt

subject to (1)–(9)

(11)–(18)

Ijt, Xjt, Ujt ≥ 0 ∀(j ∈ J, t)
Sjtk ≥ 0 ∀(j ∈ J, t, k ≥ t)
δpt ∈ {0, 1} ∀(p, t)
Fpt, Bpt, θpt ≥ 0 ∀(p, t)
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Appendix B. Family Transition Based Model817

Model 2. Family Transition Based Model (FTBM)

Minimize
∑
j∈J
t∈T

hj Ijt + bj (|T | − t+ 1) Ujt +
∑
k∈T
k≤t

(bj (t− k) Sjkt)


+

∑
p∈P

cpδp +
∑
t∈T

(f,g)/∈Γ(f,g)

cfgθfgt

subject to (1)–(2)

(4)–(9)

(19)–(28)

Ijt, Xjt, Ujt ≥ 0 ∀(j ∈ J, c, t)
Sjtk ≥ 0 ∀(j ∈ J, t, k ≥ t)
δpt ∈ {0, 1} ∀(p, t)
0 ≤ θfgt ≤ 1 ∀(f, g, t)
γSft, γ

E
ft ≥ 0 ∀(f, t)

Ft, Bt ≥ 0 ∀(t)
nPfgt, n

S
fgt ≥ 0 ∀(f, g, t)

Appendix C. Pattern Transition Based Model Variant818

Model 3. Pattern Transition Based Model Variant (PTBMV)

Minimize
∑
j∈J
t∈T

hj Ijt + bj (|T | − t+ 1) Ujt +
∑
k∈T
k≤t

(bj (t− k) Sjkt)


+

∑
p∈P

cpδp +
∑
t∈T
f=fT

p

g=fH
r

(f,g)/∈Γ(f,g)

cfgθprt

subject to (1)–(9)

(11)–(17)

(39)

Ijt, Xjt, Ujt ≥ 0 ∀(j ∈ J, t)
Sjtk ≥ 0 ∀(j ∈ J, t, k ≥ t)
δpt ∈ {0, 1} ∀(p, t)
Fpt, Bpt, θpt ≥ 0 ∀(p, t)
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Appendix D. Family Transition Based Model Variant819

Model 4. Family Transition Based Model Variant (FTBMV)

Minimize
∑
j∈J
t∈T

hj Ijt + bj (|T | − t+ 1) Ujt +
∑
k∈T
k≤t

(bj (t− k) Sjkt)


+

∑
p∈P

cpδp +
∑
t∈T

(f,g)/∈Γ(f,g)

cfgθfgt

subject to (1)–(2)

(4)–(9)

(19)–(27)

(40)

Ijt, Xjt, Ujt ≥ 0 ∀(j ∈ J, t)
Sjtk ≥ 0 ∀(j ∈ J, t, k ≥ t)
δpt ∈ {0, 1} ∀(p, t)
0 ≤ θfgt ≤ 1, nPfgt, n

S
fgt ≥ 0 ∀(f, g, t)

γSft, γ
E
ft ≥ 0 ∀(f, t)

Ft, Bt ≥ 0 ∀(t)
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