
ORIGINAL PAPER

A branch-and-price algorithm for parallel machine campaign

planning under sequence dependent family setups and co-production

Serkan Kalay and Z. Caner Taşkın

Department of Industrial Engineering, Boğaziçi University, 34342 Bebek, İstanbul, Turkey

ARTICLE HISTORY

Compiled June 12, 2021

ABSTRACT
We investigate a tactical level production planning problem in process industries
under costly sequence dependent family setups, which drives the need for manu-
facturing of product families in campaigns. The motivation of our work is float
glass manufacturing, which has some unique properties such as co-production and
uninterruptible production. To solve the problem, we develop a branch-and-price
algorithm based on a novel formulation of the problem. Our algorithm is capable of
providing consistent performance in different problem sizes. We compare our pro-
posed algorithm with previous work on the same problem by running computational
experiments.

KEYWORDS
Branch-and-price; column generation; sequence dependent family setup; MILP;
process industry

1. Introduction

In this paper, we study a production planning problem in process industries in
the presence of sequence dependent family setups and co-production on parallel
machines. Since process industries are usually capital intensive, cost effectiveness
is critical within the manufacturing process and its planning.

Manufacturing, transportation, inventory holding and demand satisfaction re-
lated costs are often directly considered in supply chain planning. Nevertheless,
loss of efficiency in production line capacity usage can have significant impact on
the overall effectiveness especially in process industries. Setup times and, if the
nature of the process imposes, co-production need to be dealt with to improve
effectiveness.

The motivation of our work stems from float glass manufacturing, which is
an example of process manufacturing such that the cost is the main driver in
major decisions in planning process. This brings in complexities in production
planning in addition to special characteristics of the process itself.

The term float refers to the physical nature of the glass production. Molten
solution, which consists of raw materials such as sand, limestone and soda ash,
fed into a bath and obtains its flat shape by floating over tin bath due to the

CONTACT Serkan Kalay. Email: serkan.kalay@boun.edu.tr

difference in density. The furnace melting the mixture operates on 24/7 basis.
The solution cools down and becomes solid in the annealing step. Finally, the
glass sheet is cut into different sizes before being picked up and stacked in storage
area. Figure 1 illustrates the float glass production.

Figure 1. An illustrative float glass furnace and production line (Glass (2019))

Random errors on the glass surface appear during production due to the chem-
ical nature of the process. There can be different types of error such as visually
detectable defects. There can also be serious errors which would enforce the
output to be scrapped (Taşkın and Ünal (2009)). Depending on where the fi-
nal product is used, some of these errors can be disregarded. Hence, we can
categorize glass with different errors into quality groups. Depending on the cut-
ting decisions regarding the size of the final product, the line can yield different
size group and quality combinations. Using historical data, planners can deter-
mine the maximum yield percentages for product groups such that the prod-
ucts have the same size group and quality. This results in producing several
different products together by necessity with a limited control through cutting
decisions, which is defined as partially controllable co-production. We refer to
Taşkın and Ünal (2009) for further information on co-production in float glass
manufacturing.

The color of the glass is controlled by chemical additives to the solution, and
switching from one color to another requires all the glass produced to be broken
from the beginning of switch until the desired color is actually obtained (Taşkın
and Ünal (2009)). Since the furnace consumes high amount of energy, setup
decisions are critical in terms of cost effectiveness. Moreover, switching from, for
instance, blue glass to clear does not take as much time as switching from blue
to green, which implies the sequence dependency. In addition to color, inline
coating of the glass is another attribute that requires setup. We note here that
float glass manufacturing is a continuous process and at any given time there
is a color that is being actively produced. Hence, we ignore the starting setups,
which happens only after the demolishment of the furnace and its reconstruction.

Expensive nature of the setups require products to be produced in batches at
least for a certain amount of time, in order to compensate the associated costs.
Hence, the products are grouped into families with respect to their attributes
that determine the setups. Production run of a product family is called a cam-

2

paign, which requires to be efficiently planned in terms of timing and duration
as it has impact on demand satisfaction and inventory projection. Campaign
planning is the process of determining the timing and the length of production
run decisions for families (Kalay and Taşkın (2020)).

Campaign planning is typically executed on a monthly basis since demand
forecasts become available in monthly resolution (Kalay and Taşkın (2020)). We
refer to Figure 2 presented by Kalay and Taşkın (2020) for the illustration of the
main components of the campaign planning problem. Demand forecast being
available in discrete time requires the demand satisfaction plan also to be in
discrete time, whereas other input data such as production rates, setup durations
are expressed in continuous time. A method to solve campaign planning problem
needs to incorporate this incompatibility while generating a cost effective plan.
Moreover, the output campaign plan itself needs also to be in continuous time,
which makes the problem differ from aggregate planning.

Figure 2. Main inputs and outputs of Campaign Planning problem (Kalay and Taşkın (2020))

Let us illustrate the campaign planning problem with a small numerical ex-
ample. Let R1 and R2 be two parallel machines and P1, P2, P3, P4 be four
products with P1 and P2 are clear glass denoted as color RZ whereas P3 and P4
are green glass denoted as color YS. Table 1 shows details for products. Table
2 shows the production alternatives and Table 3 shows the setup information
for colors on each resource. For the sake of simplicity, we only include color as
family and consequently setup factor as well as co-production phenomenon. All
the products have demands for 3 periods as shown in Table 4. Figure 3 shows
the optimal campaign plan for the numerical example.

Product Color Inventory Holding Cost Backlog Cost

P1 RZ 6.00 360.00

P2 RZ 2.80 210.00

P3 YS 40.40 570.00

P4 YS 49.20 1050.00
Table 1. Products in illustrative example

3

Product Resource Daily Rate (tons) Cost (per ton)

P1 R1 192.86 100

P1 R2 153.46 150

P2 R1 153.46 50

P2 R2 207.69 90

P3 R1 207.69 360

P3 R2 168.75 325

P4 R1 160.59 243

P4 R2 153.46 452
Table 2. Production alternatives for illustrative example

Resource From Color To Color Duration Cost

R1 RZ YS 2.3 32100

R1 YS RZ 5 94600

R2 RZ YS 5 55700

R2 YS RZ 9.6 175000
Table 3. Color setups for illustrative example

Product Period Quantity

P1 1 10000

P1 2 15000

P1 3 5000

P2 1 7500

P2 2 9000

P2 3 7500

P3 1 1000

P3 2 6500

P3 3 500

P4 1 6000

P4 2 8500

P4 3 750
Table 4. Product demands for illustrative example

Figure 3. Optimal campaign plan for illustrative example.

Period 1 Period 2 Period 3
R1 R2 End Inv. R1 R2 End Inv. R1 R2 End Inv.

P1 0 10000 0 0 15000 0 5000 0 0

P2 0 5507 -1993 3378 564 -7051 11169 12896 9514

P3 8000 0 7000 0 0 500 0 0 0

P4 6104 0 104 9146 0 750 0 0 0
Table 5. Solution to illustrative example.

4

We observe that R1 is dedicated to producing Y S for the first period and
part of the second period. Then it is planned to switch to produce clear glass.
R2 is producing clear glass for all 3 periods. Finally, Table 5 shows the solution
in detail. We read the amount produced on each machine for each period and
projected ending inventory for the corresponding period. Please note that a
negative value in column End Inv. denotes backlog for the product.

Kalay and Taşkın (2020) propose efficient mixed-integer linear programming
formulations of the campaign planning problem on a single machine. Our study
extends this study to parallel machines. Since the parallel machine case is com-
putationally more challenging than the single machine case, we also propose a
branch-and-price algorithm in this paper. Moreover, we keep the co-production
phenomenon within the scope of our study since co-production is a crucial as-
pect of float glass manufacturing. We note that despite our focus on float glass
manufacturing, this study can be generalized to other process industries such as
oil refineries, various chemical processes of pharmaceuticals and food and bev-
erage. Extension to oil industries can particularly be beneficial since they also
have co-production phenomenon.

The remainder of the paper is organized as follows. Section 2 gives an overview
of the related work. Section 3 explains the mathematical formulations. We ex-
plain details of our branch-and-price (B&P) algorithm in Section 4. Section 5
presents the results of computational experiments and finally Section 6 concludes
the paper.

2. Literature Review

Process industries are capital oriented and as a result the main driver within the
manufacturing process is the cost effectiveness. In float glass manufacturing, raw
materials including sand, soda ash, limestone etc. are molten in a furnace, which
needs to operate on 24/7 basis. The energy consumption of the furnace is cost
intensive, hence needs to be properly managed in production planning. Taşkın
and Ünal (2009) explain the unique properties of the production environment
such as random yields, partially controllable co-production and product substitu-
tion, and propose a MIP formulation to efficiently plan the production based on
pre-defined color campaigns. The model determines the campaign durations and
product composition to meet customer demand. Miegeville (2005) studies the
float glass manufacturing process and also develops a MIP for production plan-
ning. Their model determines whether a specific product is produced in a time
period. The model, however, does not address the sequence dependent family
setups, which is complex being dependent on both color and coating attributes.
Kalay and Taşkın (2020) also study the float glass manufacturing problem on
a single machine and they propose two MIP formulations to address both the
campaign duration and sequencing, hence the setups.

Co-production is the phenomenon of producing a family of several dif-
ferent products simultaneously, which occurs usually due to physical or
chemical properties of the system. To embody the formal definition of
co-production, we refer to Ağralı (2012). The author studies uncapaci-
tated lot sizing problem and shows that it can be reduced to sin-
gle item lot sizing problem to be solved by dynamic programming.
Rafiei, Nourelfath, Gaudreault, Santa-Eulalia, and Bouchard (2015) formulate

5

a MIP for exactly four product families in wood remanufacturing industry with
co-production. They propose a re-planning based two phase solution procedure
and test it via simulation. The backorder performance improves with proposed
approach. Gaudreault, Frayret, Rousseau, and D’Amours (2011) study planning
and scheduling in lumber industry, which contains co-production and alterna-
tive process selection. They compare MIP and CP formulations and show that
MIP is unstable in terms of performance between different datasets whereas CP
provides good quality solutions in shorter time. Complex nature of the plan-
ning problem in refineries results in scientific work concentration on subsytems
Joly, Moro, and Pinto (2002). The authors formulate a MINLP containing two
main parts. The model employ the operating rules of the processes and flow
constraints. Moreover, viscosity contraints cause co-production for which types
and rates of co-products are known in advance.

Susarla and Karimi (2011) study campaign planning in batch plants on par-
allel machines with alternative selection. Demand due dates are associated with
macro periods while campaign allocations are tracked on micro periods. Macro
periods correspond to time between consecutive demands, whereas micro peri-
ods correspond to campaign slots within a macro period. Their formulation al-
lows spanning multiple micro periods for only the last campaign in the horizon.
Macro periods generally correspond to higher level decisions whereas micro peri-
ods correspond to operational or more detailed decisions which can also translate
into recourse actions. For instance, a month can be defined as a macro period
and days of the month can be micro periods associated. Camargo, Toledo, and
Almada-Lobo (2012) propose three formulations, which differ from each other
with respect to the time representation. In discrete representation, there ex-
ists both macro and micro periods, whereas in continuous representation the
formulation determines the sequence and the duration of available common re-
source batches. Finally, they propose a hybrid representation which is based on
batch scheduling within periods. Their results favor the discrete formulation since
it is more compact compared to others and is able to provide good solutions.
Kopanos, Puigjaner, and Maravelias (2011) study the problem in the existence
of sequence dependent family setups. Their formulation allows setup crossover
between periods. They also extend their original formulation with a dummy
product which allows to model continuous production. Almada-Lobo, Klabjan,
Maria, Carravilla, and Oliveira (2010) study the production planning in glass
container manufacturing. There needs to be an integer number of mold cavi-
ties planned, which makes the problem hard and the authers apply Lagrangian
decomposition based on these variables. They aim to improve the efficiency of
the plan by penalizing the production losses. To improve the lower bounds the
authors add valid inequalities the impact of which increases for more complex
run instances. Ghirardi and Ameiro (2019) study lot sizing and scheduling on
unrelated parallel machines in the existence of backordering and setup carryover.
They develop three matheuristics driven by local search, local branching and fea-
sibility pump. Their experiments show that local search outperforms other algo-
rithms and base formulation solved by two MIP solvers separately. Guimarães,
Klabjan, and Almada-Lobo (2014) tackle lot sizing and scheduling problem with
sequence dependent setup times. They propose two formulations for the problem.
One decides specifically on setup between products whereas the second model
allocates a sequence of products to a machine for a period. Their work does
not explicitly mention how to come up with pre-defined sequences. Furthermore,

6

their model does not allow for setup crossover, which is necessary in settings
where setup durations are incompatible with micro-period lengths of the model.

MIP based formulations are also applied in the existence of pre-defined jobs,
namely scheduling and sequencing based problems. Vieira, Pinto-Varela, Mo-
niz, Barbosa-Póvoa, and Papageorgiou (2016) use a MIP based approach to
schedule pre-assigned lots in biopharmaceutical processes. The planning horizon
is divided into periods, the length of which is determined through a decision
variable. Shelf-life is also considered in the formulation via a variable counting
storage time. Kramer, Iori, and Lacomme (2019) propose five novel MIP formu-
lations for identical parallel machine scheduling with family dependent setups.
The formulations are inspired by single commodity, arc-flow and set covering
formulations. They conduct extensive set of numerical experiments and show
the efficiency of two of the formulations driven from strong bounds. Hinder and
Mason (2017) study the same problem on a single machine. They formulate a
model exploiting properties of optimal solutions. They argue that the LP relax-
ation of their formulation is stronger than other formulations in the literature.
Hence, the model is able to find optimal solutions for instances with relatively
high number of families and long setup times.

Chen and Powell (1999) develop a general framework based on Dantzig-Wolfe
decomposition applicable to parallel machine scheduling problem with an ob-
jective consisting of additive criterion. The authors suggest a set-partitioning
reformulation, which leads to design of exact branch-and-price algorithms. The
computational experiments on minimizing weighted number of tardy jobs and
total weighted completion time shows the method being promising for solv-
ing large problems. However, the method requires sophisticated integer pro-
gram and set partitioning problem, which may result in extra work modify-
ing the original problem. A branch-and-cut-and-price algorithm is presented
in Pessoa, Uchoa, Poggi, and De Freitas Rodrigues (2010) for identical parallel
machines. The algorithm employs dynamic programming to fix variables. Nu-
merical experiments show the approach can solve medium sized problems to
optimality but requires further improvements to be efficient for larger problems.
Moreover, the method can also be used for solving in a class of vehicle routing
problems. Akker, Hoogeveen, and Kempen (2012) study the same problem with
minmax objective functions. Additionally jobs have release dates and precedence
constraints. Authors apply column generation to obtain lower bound and try to
determine a feasible schedule by solving an integer linear program. Numerical re-
sults on tested instances show that the derived lower bounds are equal to optimal
value. The approach, however is prone to performance decrease with changes to
the problem such as unrelated machines. Yin, Chen, Qin, and Wang (2018) pro-
pose a two agent scheduling problem, where agents have competing objectives.
The method proposed is a branch-and-price algorithm where the pricing prob-
lem reduces to a single machine scheduling problem solved efficiently by dynamic
programming for tested instances. However, they note that for larger instances a
pseudo-polynomial algorithm may not be as efficient. The branching rule is based
on the original variables, which translates into restricting positions for a subset of
jobs and does not have a significant impact on the pricing problem solution effi-
ciency. The method is able to provide good quality bounds and solves to optimal-
ity within a small number of iterations. Xiong, Zhou, Yin, Cheng, and Li (2019)
develop a branch-and-price method to solve multitasking scheduling problem on
unrelated parallel machines. Authors propose a greedy algorithm that exploits

7

the characteristics of optimal schedule to generate initial columns. The algorithm
uses a novel approach combining genetic algorithm and dynamic programming
to efficiently determine the promising columns and employs in-out column gener-
ation, which utilizes a specialized approach for reduced cost calculation based on
the separation point defined as convex combination of an interior and an exterior
dual solution space. The main aim of this approach is to keep the dual variables
stable. Numerical studies provide insights on the efficiency of multitasking to
the decision maker.

Seeanner, Almada-Lobo, and Meyr (2013) study the multi-level lot sizing and
scheduling problem with sequence dependent setups and they formulate a MIP
that allows setup changeover over period boundaries. Since the problem is hard
to solve to optimality, they apply product, resource and process based decom-
positions applied sequentially and develop an improvement heuristic based on
variable neighborhood search (VNS) and fix-and-optimize. James and Almada-
Lobo (2011) propose an iterative MIP based decomposition heuristic for single
and parallel machine lot sizing and scheduling problem. The improvement heuris-
tic is stochastic as opposed to a deterministic relax-and-fix algorithm. For the
initial solution generation, they use a rolling-horizon based construction heuris-
tic. Camargo, Toledo, and Almada-Lobo (2014) develop a new exact algorithm
for the lot sizing and scheduling problem in spinning industry. The algorithm
combines the solutions generated by B&B with a problem specific procedure,
which injects new and better upper bounds into the original problem. Farahani,
Grunow, and Günther (2012) extend the production planning with distribution
plan for perishable food production. The authors employ a hierarchical mod-
elling approach with order batching, production planning and distribution sub-
problem. Since the problem also contains the need for minimizing the quality
decay of products, the solution provided by proposed approach can guarantee a
certain quality without improving the costs much. Bektur and Saraç (2019) study
unrelated parallel machine scheduling problem with sequence dependent setup
times and machine eligibility restrictions. They compare a simulated annealing
(SA) algorithm against a tabu search(TS). The latter is shown to yield better
solutions with long-term memory. In the presence of pre-defined lots Schaller
(2014) compare three metaheuristics for scheduling identical parallel machines
minimizing total tardiness with sequence dependent family setups. According to
their results, genetic algorithm outperforms tabu search and optimal B&B.

Capacitated Lot Sizing Problem (CLP) is the fundamental production plan-
ning problem and is known to be NP-hard Florian, K. Lenstra, and H. G. Rin-
nooy Kan (1980). In this study, we focus on parallel machine case, which can
be classified as General Lot Sizing Problem (GLSP) with sequence dependent
family setup and co-production extensions. Finding a feasible solution for single-
level special case of General Lot Sizing Problem for Multiple Production Stages
(GLSPMS) is NP-complete Fleischmann and Meyr (1997). Kalay and Taşkın
(2020) propose MIP formulations that incorporate continuous and discrete in-
put data for lot sizing and scheduling problem with sequence dependent family
setups on a single machine. We generalize our earlier work to parallel unrelated
machines. Since a straightforward extension of our earlier models are unable to
solve parallel machine instances efficiently, in this paper we introduce a MILP
formulation with a novel approach in representing the entire planning horizon
resulting in a compact model and an efficient B&P algorithm. We also note that
our approach contributes to the existing branch-and-price based studies in the

8

sense that the problem includes not only pre-defined jobs but also lot sizing.

3. Mathematical models

3.1. Family Transition Based Model Variant on Parallel Machines

In this section we extend the mathematical formulation proposed by Kalay and
Taşkın (2020) to solve the campaign planning problem in process industries on
a single machine to parallel machines. The authors formulate two mixed integer
linear models and their variants. All of the models are based on allocating a
pattern to the machine for each production period.

Products are grouped into families with respect to their color and coat-
ing attributes, which determine the sequence dependent setups. A pattern is
an ordered list of families that will be produced consecutively within a pe-
riod while respecting the minimum production duration of each family. Con-
sequently, assigning a pattern to a period will enable production of products of
families that exist within the selected pattern. Optimization models proposed
in Kalay and Taşkın (2020) calculate optimal production quantities of products
in alignment with pattern assignments. Figure 4 illustrates pattern examples.
Kalay and Taşkın (2020) explain that the patterns respect the setup feasibility
and times of families appearing within a pattern. For instance, setup should be
feasible between families FM and MV in order Pattern 2 to be feasible. Similarly,
from family BR to MV and from MV to FM for Pattern 3 and from MV to BR
as well as BR to MV for Pattern 4.

We adapt the pattern generation and pre-processing algorithms proposed by
Kalay and Taşkın (2020) to build set of patterns. Their algorithms work for a
single machine. The generation algorithm takes the set of families and corre-
sponding setup matrix as input and recursively builds patterns by checking
whether a family can be added to the pattern considering the minimum pro-
duction and setup durations as well as period length. The patterns generated
in this way are a subset of all permutations of families. There are three main
reasons for not generating all permutations. For some family pairs, the setup
may not be feasible, hence need not be generated. Second, for patterns which
contain the same distinct set of families and same starting and ending family, the
pattern with least cost will be sufficient to be included in set of patterns, since
more costly patterns will not preferable in an optimal solution. Third, setup
and minimum production durations of selected families must not exceed period
length.

We run the algorithm for each machine separately for parallel machines in-
stances. Their algorithm is pseudo-polynomial with computational complexity
being expressed as O(d|T |/(min|s + f |)en) where n is number of families, T is
length of a period and min|s+ f | being the minimum possible duration of setup
duration for family f and the corresponding minimum production duration. The
algorithm will try to extend an existing pattern while ensuring that the min-
imum setup and minimum production duration can fit within T . For parallel
machine instance, the complexity becomes O(d|T |/(min|s + f |)enr) since we
run the algorithm for each machine r. We note that the algorithms are efficient
in practice since the minimum production and setup durations do not allow for
large number of families being added to a pattern, which reduces the running

9

time. Moreover, they also keep track of the amount produced for a family at
the beginning, in the middle or at the end of a period so that they can prop-
erly manage the minimum production durations and setups between adjacent
periods.

Figure 4. Sample illustrations for patterns including up to 3 families

10

Set Description

J Set of products
R Set of production lines

Q Set of quality groups

S Set of size groups
T Set of time periods

P Set of campaign patterns

F Set of product families
O Set of orders for timing of production in a period (b: beginning, m: middle, e: end)

P (f) Set of patterns containing family f
F (p) Set of families belonging to pattern p

F o(p) Set of families appearing in order o in pattern p

J(f) Set of products belonging to family f
Γr(f, g) Set of product family couples that are infeasible on production line r, f, g ∈ F

(i.e. production of family g is not possible to immediately start after family f)

PS(f) Patterns that family f is the first family
PE(f) Patterns that family f is the last family

Parameter Description

Djt Demand of product j in period t
Ij(−1) Beginning inventory of product j

vjr Production speed of product j on production line r

At Available capacity of production lines in period t

S(j) Index of the size group of product j
Q(j) Index of the quality group of product j

Rfqsr Maximum production ratio for quality group q and size group s for family f on production line r

MDfr Minimum production duration for family f on production line r
NTfp Number of times family f appears in the middle order of pattern p

STpr Setup time needed for family order within pattern p on production line r

STfgr Setup time needed for switching from product family f to family g on production line r
hj Inventory holding cost for product j

bj Cost of backlogging a demand of product j for a single period
ujr Unit production cost for producing product j on line r

cfgr Setup cost for switching from family f to family g on production line r

cpr Total setup cost for family order within pattern p on production line r
Variable Description

Ijt Inventory of product j at the end of period t

Sjtk Satisfied quantity of demand from period t of product j in period k
Ujt Unsatisfied quantity of demand from period t of product j

Xjrt Production quantity of product j on production line r in period t
dofrt Number of days spent for production of family f in order o on production line r in period t

δprt Binary indicator variable for selection of pattern p on production line r in period t
γSfrt Indicator for selection of family f as starting on production line r in period t

γEfrt Indicator for selection of family f as ending on production line r in period t

θfgrt Auxiliary variable indicating whether production line r switched

from family f to family g at the beginning of period t

nP
fgrt Number of days spent for setup on production line r in predecessor period t− 1

for switched from family f to family g at the beginning of period t
nS
fgrt Number of days spent for setup on production line r in successor period t for

switched from family f to family g at the beginning of period t

Frt Setup time spent on production line r at the beginning of period t

Brt Setup time spent on production line r at the end of period t

Table 6. Symbols used in FTBMV-PM

11

We extend the Family Transition Based Model Variant (FTBMV) of the four
models presented, which is shown to outperform other three. We use set of
patterns P generated by algorithms adapted to parallel machine instances. We
call this new model is Family Transition Based Model on Parallel Machines
(FTBMV-PM). Table 6 lists the symbols used in FTBMV-PM along with their
brief descriptions.

Model 1. Family Transition Based Model Variant on Parallel Machines
(FTBMV-PM)

min
∑
j∈J

∑
t∈T

hj Ijt + bj (|T | − t+ 1) Ujt +
∑
k∈T
k≤t

(bj (t− k) Sjkt)

+

∑
r∈R

∑
j∈J

∑
t∈T

ujrXjrt +
∑
r∈R

∑
p∈P

cprδpr

+
∑
r∈R

∑
t∈T

∑
(f,g)/∈Γr(f,g)

cfgrθfgrt

subject to

∑
k∈T
k≥t

Sjtk + Ujt = Djt ∀ j ∈ J, t ∈ T (1)

Ij(t−1) +
∑
r∈R

Xjrt −
∑
k∈T
k≤t

Sjkt = Ijt ∀ j ∈ J, t ∈ T (2)

∑
j∈J

vjrXjrt =
∑
o∈O

dofrt ∀ f ∈ F, r ∈ R, t ∈ T (3)

∑
j∈J(f)
Q(j)≤q
S(j)≤s

Xjrt ≤
∑

j∈J(f)

Xjrt Rfqrs ∀ r ∈ R, f ∈ F, q ∈ Q, s ∈ S, t ∈ T (4)

∑
p∈P

δprt = 1 ∀ r ∈ R, t ∈ T (5)

dmfrt ≥MDfrNTfpδpt ∀ r ∈ R, p ∈ P, f ∈ Fm(p), t ∈ T (6)

defrt + dbfr(t+1) ≥MDfrδprt ∀ r ∈ R, p ∈ P, f ∈ F b(p) ∪ F e(p), t ∈ T (7)

dofrt ≤
∑

p∈Po(f)

Atδprt ∀ r ∈ R, f ∈ F, o ∈ O, t ∈ T (8)

∑
f∈F

∑
o∈O

dofrt +
∑
p∈P

STprδprt + Frt +Brt = At ∀ r ∈ R, t ∈ T (9)

γSfrt =
∑

p∈PS(f)

δprt ∀ r ∈ R, f ∈ F, t ∈ T (10)

γEfrt =
∑

p∈PE(f)

δprt ∀ r ∈ R, f ∈ F, t ∈ T (11)

θfgrt ≤ γEfr(t−1) ∀ r ∈ R, f, g ∈ F, t ∈ T, t ≥ 1 (12)

θfgrt ≤ γSgrt ∀ r ∈ R, f, g ∈ F, t ∈ T (13)

θfgrt ≥ γEfr(t−1) + γSgrt − 1 ∀ r ∈ R, f, g ∈ F, t ∈ T, t ≥ 1 (14)

nP
fgrt + nS

fgrt = STfgrθfgrt ∀ r ∈ R, f, g ∈ F, (f, g) /∈ Γr(f, g), t ∈ T (15)

Frt =
∑

(f,g)/∈Γr(f,g)

nS
fgrt ∀ r ∈ R, f, g ∈ F, t ∈ T (16)

Brt =
∑

(f,g)/∈Γr(f,g)

nP
fgr(t+1) ∀ r ∈ R, f, g ∈ F, t ∈ T (17)

12

∑
f,g∈F

(f,g)/∈Γr(f,g)

θfgrt = 1 ∀ r ∈ R, t ∈ T, t ≥ 1 (18)

Ijt, Ujt ≥ 0 ∀(j, t) (19)

Sjtk ≥ 0 ∀(j, t, k ≥ t) (20)

dofrt ≥ 0 ∀f, r, t (21)

Xjrt ≥ 0 ∀(j, r, t) (22)

δprt ∈ {0, 1} ∀(p, r, t) (23)

0 ≤ θfgrt ≤ 1 ∀(f, g, r, t) (24)

γSfrt, γ
E
frt ≥ 0 ∀(f, r, t) (25)

Frt, Brt ≥ 0 ∀(r, t) (26)

nP
fgrt, n

S
fgrt ≥ 0 ∀(f, g, r, t) (27)

The objective aims to minimize costs summing inventory holding, demand sat-
isfaction costs over products and periods as the first three components. We adopt
the same approach for demand satisfaction costs as Kalay and Taşkın (2020). It
is favorable to satisfy a demand rather than unsatisfying regardless of the back-
log period length. Hence, the cost associated with unsatisfaction is calculated
as bj (|T | − t + 1), which reflects the assumption that demand can be satisfied
from an infinite capacity after the planning horizon ends with a corresponding
backlog cost associated. Moreover, we additionally include production costs in
our model, which are excluded from the objective in single machine instance.
The last two terms in the objective correspond to setup costs within a given
pattern p and between families f and g over period boundaries respectively.
Equation (1) ensures the consistency of demand satisfactions. Equation (2) is
the inventory balance constraints. Equation (3) couples variables representing
number of days of production allocated in an order for a family to production
quantity variables. Order translates into the beginning, middle or ending of a
period. Inequality (4) ensures that production quantities in a time period con-
sist a feasible composition within a specific family on a production line. Due
to the chemical properties of the glass production, random errors are observed
over the flat glass. Depending on the cutting decisions, products of different
size and quality combinations can be obtained from the same glass sheet. De-
pending on the production line characteristics, production amount of a specific
size s and quality q is known to not exceed a certain ratio of the total pro-
duction within a given time period. We refer to Taşkın and Ünal (2009) and
Kalay and Taşkın (2020) for further information. Equation (5) ensures alloca-
tion of patterns to production lines for each period. Inequalities (6)–(8) serve
to model a lower bound for production duration of families that are produced
in the middle of a pattern, split into two adjacent periods and a proper upper
bound, respectively. Equation (9) formulates production line capacity. Equations
(10)–(11) determine starting and ending family within a period. θ variables in-
dicate whether a changeover is performed from family f to family g at the
beginning of period t on each production line, and they are related to γ vari-
ables with Inequalities (12)–(14). Equation (15) ensures that each production
line allocates necessary setup time for color transition. Equations (16) and (17)
relate setup time variables for families (nS, nE) to period based variables (F,B).
Model avoids infeasible family transitions with Equation (18). Equations and
Inequalities (19)–(27) define variable domains.

13

3.2. Extended Pattern

Formulations in Kalay and Taşkın (2020) allocate a pattern from a pre-defined
set of patterns feasible in terms of minimum production duration of families
involved, to each period of the production line. Moreover, a campaign plan is
the sequence of families to be produced on a specific production line with start
and end times of setups and production runs of families. A campaign plan is
itself, from another point of view, another pattern covering the entire planning
horizon as that is also a sequence of families to be executed on the corresponding
line. Hence, we define each campaign plan as an extended pattern.

We define micro period as a unit amount of time. The idea is to be able to
represent the continuous data we need to incorporate into our models in multiples
of micro periods. Recall from Section 1 that data with continuous time resolution
includes setup times and minimum production duration of families. Similar to
the definition of a pattern, extended patterns also represent the sequence of
families and their respective durations, with the exception that durations are
expressed as “number of micro periods”. From another perspective, we divide
the planning horizon into micro periods, and an extended pattern is an ordered
representation of family allocations to each one of these micro periods. Figure
5 illustrates four different extended pattern examples for a set of two families
F1 and F2 each having 2 micro periods of minimum production duration, and 1
and 3 micro periods of sequence-dependent setup times from F1 to F2 and from
F2 to F1 respectively. In our formulation, we define months as macro periods
and days as micro periods. Macro periods map to period definition of FTBMV-
PM. Hence, FTBMV-PM assigns a pattern to a macro period. Note that the
durations of macro and micro periods can be defined based on practical needs.
As an example, macro periods can correspond to months and micro periods can
correspond to days. Moreover, following the continuous nature of the production
line we assume that the first family of the pattern does not require a setup.

Figure 5. Valid extended patterns

14

3.3. Extended pattern based reformulated mathematical model

An extended pattern covers the entire planning horizon by definition, and as-
suming such patterns will be constructed ensuring the minimum production
duration of families and setup transition feasibility, it enables us to simplify
FTBMV-PM. We can associate each production line with an extended pattern
for the entire planning horizon, hence reformulate the campaign planning prob-
lem. We name the reformulation as Extended Pattern Based Campaign Planning
Model (CPM-EP). Table 7 lists the symbols used in CPM-EP along with their
brief descriptions.

Set Description

J Set of products
R Set of production lines

Q Set of quality groups

S Set of size groups
T Set of time periods

P Set of extended campaign patterns

F Set of product families
P (f) Set of patterns containing family f at least once

F (p) Set of families belonging to pattern p

J(f) Set of products belonging to family f

Parameter Description
Djt Demand of product j in period t

Ij(−1) Beginning inventory of product j

vjr Production speed of product j on production line r

S(j) Index of the size group of product j

Q(j) Index of the quality group of product j
Rfqsr Maximum production ratio for quality group q and size group s for family f on production line r

dfpt Number of days family f appears in extended pattern p in period t
hj Inventory holding cost for product j

bj Cost of backlogging a demand of product j for a single period

ujr Unit production cost for producing product j on line r
cpr Total setup cost for family order within extended pattern p on production line r

Variable Description
Ijt Inventory of product j at the end of period t

Sjtk Satisfied quantity of demand from period t of product j in period k

Ujt Unsatisfied quantity of demand from period t of product j
Xjrt Production quantity of product j on production line r in period t

δpr Binary indicator variable for selection of extended pattern p on production line r

Table 7. Sets and parameters used in CPM-EP

15

Model 2. Extended Pattern Based Campaign Planning Model (CPM-EP)

min
∑
j∈J

∑
t∈T

hj Ijt + bj (|T | − t+ 1) Ujt +
∑
k∈T
k≤t

(bj (t− k) Sjkt)

+

∑
r∈R

∑
j∈J

∑
t∈T

ujrXjrt +
∑
r∈R

∑
p∈P

cprδpr

subject to

∑
k∈T
k≥t

Sjtk + Ujt = Djt ∀ j ∈ J, t ∈ T (28)

Ij(t−1) +
∑
r∈R

Xjrt −
∑
k∈T
k≤t

Sjkt = Ijt ∀ j ∈ J, t ∈ T (29)

∑
j∈J(f)
Q(j)≤q
S(j)≤s

Xjrt ≤
∑

j∈J(f)

Xjrt Rfqrs ∀ r ∈ R, f ∈ F, q ∈ Q, s ∈ S, t ∈ T (30)

∑
p∈P

δpr = 1 ∀ r ∈ R (31)

∑
j∈J(f)

vjrXjrt −
∑

p∈P (f)

dfptδpr = 0 ∀ f ∈ F, r ∈ R, t ∈ T (32)

Ijt, Xjt, Ujt ≥ 0 ∀(j, t) (33)

Sjtk ≥ 0 ∀(j, t, k ≥ t) (34)

Xjrt ≥ 0 ∀(j, r, t) (35)

δpr ∈ {0, 1} ∀(p, r) (36)

The objective is the same cost minimization only represented with fewer terms
since there is no need to represent the incurred setup costs separately for setups
within a period and over period boundaries as in Model 1. Equations (28)–(30)
are requirement balance, inventory balance and size group quality constraints
exactly the same as in Model 1. Equation (31) ensures only a single extended
pattern is assigned to a production line. Also note that constraints do not include
index t since extended patterns cover the entire planning horizon. Equation (32)
couples production quantity variables (X) with designated duration of corre-
sponding families in the selected extended pattern, ensuring the plan respects
the capacity of each production line. Finally, Equations and Inequalities (33)–
(36) define variable domains.

Note that Model 2 is a reformulation of Model 1 with only 5 sets of constraints
and variable bounds. Moreover, Model 2 has an exponential number of variables
due to combination of micro periods and families forming extended patterns.
This makes it a candidate for column generation (CG) approach.

4. Branch-and-price algorithm

In this section, we explain the algorithm that we propose to solve the campaign
planning problem. We first describe the CG specifics in Section 4.1, followed
by the modeling of pricing problem as both a binary integer programming for-
mulation and a shortest path problem in Section 4.2. Finally, we explain our
initial column set generation, branching and node selection strategies, root node
processing approach in addition to upper bound generation in Section 4.3.

16

4.1. Column generation

The main decision in CPM-EP is the assignment of an extended pattern to
machines. Let us refer to the optimal campaign plan in the illustrative numerical
example presented in Section 1. Figure 3 shows two extended patterns that are
assigned to R1 and R2, having family order as YS-RZ and RZ respectively.
Let us denote these extended patterns by p1 and p2. Both p1 and p2 qualify as
columns of CPM-EP. Corresponding setup costs for p2, namely cp1(R1) is 0 since
it doesn’t include any family setup, whereas p1 will incur the setup cost from
family YS to RZ. Moreover, we can also deduce the values of dfpt for p1 and p2.
In period 1, p1 has 17 days of YS production and 6 days of RZ production in
addition to 5 days of setup. (Note that period duration for period 1 is 28 days).
Hence, we have d(Y S)p11 = 17 and d(RZ)p11 = 6. We can use P ′ = {p1, p2} with
corresponding cpr and dfpt values.

The number of extended patterns for each machine depends on the number
of families that can be produced on the machine, their respective minimum
production durations and feasibility of setups between families. Hence, there
can be an exponential number of extended patterns, which means in an optimal
solution to CPM-EP, most of the corresponding δ variables will be equal to zero.
As a first step of our column generation strategy, we relax the binary variables,
δ, in CPM-EP and obtain the linear programming relaxation of restricted master
problem as follows:

Model 3. Restricted Extended Pattern Based Campaign Planning Master Model
(RCPM-EP)

min
∑
j∈J

∑
t∈T

hj Ijt + bj (|T | − t+ 1) Ujt +
∑
k∈T
k≤t

(bj (t− k) Sjkt)

+

∑
r∈R

∑
j∈J

∑
t∈T

ujrXjrt +
∑
r∈R

∑
p∈P ′

cprδpr

subject to

(28)–(32) (37)

Ijt, Xjt, Ujt ≥ 0 ∀(j, t) (38)

Sjtk ≥ 0 ∀(j, t, k ≥ t) (39)

Xjrt ≥ 0 ∀(j, r, t) (40)

0 ≤ δpr ≤ 1 ∀(p, r), p ∈ P ′ (41)

RCPM-EP considers a subset of extended patterns noted P ′. To generate
columns which are not already in P ′, we are interested in the reduced cost value
associated with each such extended pattern. By definition, reduced cost is the
amount of necessary improvement in the objective coefficient of the correspond-
ing variable so that the variable becomes a basic variable. Moreover, reduced
cost can be calculated by using optimal dual multipliers of the master problem.

We denote the dual variables associated with Equations (31) and (32) by πr
and µfrt respectively. We can find a new column, namely an extended pattern,
by checking its reduced cost such that reduced cost with respect to Inequality

17

(42) is negative,

π̄r −
∑

f∈P (f)

∑
t∈T

dfptµ̄frt ≤ cpr ∀ r ∈ R (42)

where π̄r and µ̄frt are optimal dual multipliers from RCPM-EP.

4.2. Pricing subproblem

4.2.1. Pricing subproblem as binary integer programming formulation

Given an optimal solution of RCPM-EP, we define the pricing problem de-
noted as (SP(π̄r,µ̄frt)) for each production line r such that cpr − π̄r +∑

f∈P (f)

∑
t∈T dfptµ̄frt is minimized and p corresponds to a feasible extended

pattern. It needs to respect the minimum production duration of each family as
well as sequence dependent setups between families if there are multiple families
included. Model 4 shows the binary integer program for pricing subproblem for
a given production line r.

Model 4. Pricing Subproblem Binary Model (PBM)

min
∑

m∈M

∑
f∈F

∑
g∈F

cfgrγrfgm +
∑
f∈F

∑
m∈M

µ̄frt(m)θrfm − π̄r

subject to

∑
f∈F

θrfm + αrm = 1 ∀ m ∈M (43)

γrfgm ≤ θrfm ∀ f ∈ F, g ∈ F, g 6= f,m ∈M (44)

γrfgm = α′m ∀ f ∈ F, g ∈ F, g 6= f,m,m′ ∈M,m ≤ m′ ≤ m+ STfgr (45)

γrfgm = θrgm′ ∀ f ∈ F, g ∈ F, g 6= f,m,m′ ∈M,m+ STfgr ≤ m′ ≤ m+ STfgr +MDgr (46)

γrfgm ∈ {0, 1} ∀(f, g,m) (47)

θrfm ∈ {0, 1} ∀(f,m) (48)

αrm ∈ {0, 1} ∀(m) (49)

Let us first note that index m correspond to micro periods, and M is the
set of all micro periods. Moreover, t(m) maps to the macro period that a given
m is in. The binary variables θrfm indicate whether machine r is producing
family f in m, while αrm indicates whether r is in setup state in m. Finally,
γrfgm variables indicate whether machine r will start setup from family f to
family g at the end of m. The first term in the objective sums over all setup
costs, which is equivalent to cpr. The summation of θ variables in the second
term is equivalent to dfpt for a given family f . Since each term is multiplied
with corresponding optimal dual multipliers µ̄, the objective is equivalent to
the objective of (SP(π̄r,µ̄frt)). Equation (43) ensures that r is either producing a
family or in setup state. Inequality (44) ensures that r is indeed producing family
f in m so that it can start setup from f to g. Equation (45) makes sure that
a proper setup time is spent while Equation (46) ensures minimum production
duration for each family after setup. Note that to ensure minimum production
duration feasibility for the beginning and ending of the planning horizon the
model can be adjusted by restricting proper variables to be either 0 or 1. We

18

note that the number of variables and constraints of PBM can become large
quickly with respect to number of families and micro periods.

4.2.2. Pricing subproblem as shortest path problem

We can represent an extended pattern as a path on a special network of the
corresponding machine. For each micro period in the planning horizon we create
a node for each family f . Hence, when a node is in a path it means that the
production line r is dedicated to producing products from family f in that micro
period. In addition, we create a source and a sink node so that a path maps to
a directed flow between them. Arcs of this network is constructed in a way that:

• the minimum production duration of each family is respected
• there exist arcs between family pairs such that a setup is feasible
• when an arc corresponds to a setup, it respects both the setup duration in

between families and the minimum production duration of the successor
family.

Note that, for arcs corresponding to a setup and minimum duration of the suc-
cessor family, nodes of the family in related micro periods are not in the path
but they are in the production plan.

In order to illustrate the idea, let F1 and F2 be two families to be produced
on a machine in a planning horizon of 8 micro periods, with 2 micro periods of
minimum production duration each. Sequence-dependent setup times from F1 to
F2 and from F2 to F1 are 1 and 3 micro periods respectively. We further assume
that, each period consists of four micro periods. Figure 6 shows the corresponding
network.

Figure 6. An illustrative s-t network

All the paths in this network are valid extended patterns. To further clarify the
illustration, we provide in Figure 7 the gantt representation of the path consisting

19

of arcs in dotted lines. Arc covering micro periods 4 to 6 corresponds to a setup
from F1 to F2 on micro period 4, and minimum duration of the successor family
F2 on micro periods 6 and 7. Note that minimum production duration of F2 is
covered by production in micro periods 5 and 6, however the corresponding arcs,
e.g. F2 in micro periods 5 and 6 in Figure 6, are not inbound or outbound to
any dashed arc.

Figure 7. Illustration of an s-t network path

Considering our motivation to generate a new column for RCPM-EP with
a promising reduced cost defined as the objective function of pricing problem,
it is sufficient for us to calculate proper costs on arcs. For outbound arcs of
source and inbound arcs of sink node, the associated cost is zero. For all other
arcs, the cost is calculated as follows: we determine the duration of production in
each period and multiply with the proper dual multiplier of the family associated
with destination node. Moreover, if family associated with source node is different
than family of destination node, we account for a setup cost and the minimum
duration of this destination family. Once we calculate the arc costs, the most
promising candidate extended pattern is given by the s-t shortest path in this
network.

We note that the network is a directed acyclic graph (DAG). Since there is no
cycle in a DAG by definition, no negative cost cycle can exist. Hence, shortest
paths are well defined, and we can solve it efficiently with topological ordering, in
O(|A|) time complexity following from Ahuja, Magnanti, and Orlin (1993), where
|A| is the number of arcs in the network. Pricing subproblem (SP(π̄r,µ̄frt)) can
be represented as a DAG and at each iteration we can generate a new column,
namely an extended pattern, in polynomial time by calculating proper arc costs.
Algorithm 1 illustrates how the algorithm based on topological sort determines
the shortest path. Starting from source for each node, the algorithm determines
the shortest inbound arc based on label of the origin node of inbound arcs and the
corresponding cost on arcs themselves. Once algorithm reaches sink node visiting
all nodes exactly once, then it is possible backtrack the determined predecessor
and generate the shortest path. We solve the pricing problem with shortest path
approach instead of solving BPM.

4.3. Algorithm details

We will apply a B&P algorithm, which focuses on generating columns for tighten-
ing an LP relaxation, for the solution of CPM-EP. We defined column generation
and pricing problem in Section 4.1 and Section 4.2 respectively. In this section,
we will focus on the details of the algorithm.

20

Algorithm 1: Shortest path with topological sort

CalculateShortestPath (G)
inputs : Network G topologically sorted with proper costs on arcs (ca)
output: Shortest path
P, S ← ∅
C ← 0
foreach node n ∈ G do

L[n]←∞
foreach node n ∈ G do

a← argmina∈In = {ca +L[Oa]} where ca is cost and Oa is origin of
arc a, In is incoming arcs of n
if a is null then

L[n] = 0

S[n]←origin node of arc a
L[n]←cost of arc a+ L[S[n]]

n←Sink
while n 6= Source do

P ← P ∪ n
n← S[n]

return P

4.3.1. Generating initial set of columns

Starting the algorithm requires an initial set of columns to be assumed as P ′

that RCPM-EP will run with. In principal, such a subset can be determined by
running constructive heuristics. We generate “unit” extended patterns, which
are patterns such that only a single family f is produced on a production line
during the entire planning horizon. We generate all possible unit patterns Pu for
all resources and start the B&P algorithm using them as initial set of columns.
We note that if the number of resources are less than the number of families,
then there can be unsatisfied demand for some of the families depending on the
capacity. Since we solve the RCPM-EP with relaxed δ variables, then theoret-
ically it is possible to satisfy all demands with proper δ values. However, even
if there is unsatisfied demand in the solution with initial columns, this is not a
problem for the overall algorithm since these initial unit extended patterns are
only used to generate initial dual variables to proceed with column generation.

4.3.2. Branching and node selection strategy

At each iteration, we solve RCPM-EP with P ′, followed by solving the pricing
subproblem to identify columns to enter the basis for improved objective. Note
that we solve the pricing s-t shortest path problem for each production line and
add all new columns to P ′. When the pricing problem is unable to generate a
column that will price out, the solution to RCPM-EP is optimal if it is integer
feasible. Otherwise, this means some δ variables are fractional and we need to
do branching.

There are fundamental difficulties in applying column generation techniques
for linear programming in integer programming solution methods (Lime, Gross-

21

mann, & Jiao, 2011). It is essential to choose a branching rule which does
not increase the complexity of pricing problem solution. Considering con-
ventional branching on variables, it has the potential to destruct the struc-
ture of the pricing problem, which is the case for our network representa-
tion. Suppose that we obtain a fractional value in the optimal solution to
RCPM-EP on the illustrative network in Figure 6 for the extended pattern p′,
F1 − F1 − F1 − SETUP − F2 − F2 − F2 − F2.

In order to branch on corresponding δ variable, for the upper branch we can
remove all the arcs other than representing p′ from the network of the production
line. However, for the lower branch, to have δp′ = 0, if we remove the arcs not
included in p′, then we also cut off some other feasible extended patterns as well,
of which F1 − F1 − F1 − F1 − F1 − F1 − F1 − F1 is an example in the example
on Figure 6. Such branching destructs the structure of the pricing problem since
we will need a special algorithm, which in the worst case requires enumerating
all the paths leading to exponential complexity in |N |. Hence, we need to adopt
another branching rule. An intuitive approach is to define a branching strategy
that will correspond to removal of some arcs and/or nodes from the network.

We define a branching strategy based on family nodes in the network of each
production line r. When the CG is unable to generate new columns, we calculate,
for each arc on the network, a weight index such that for each arc it is the sum
of all the extended pattern variables with positive value. This provides us with a
“superposition” of these patterns. Then starting from the source node, we start
tracking paths with positive values. At some node, the paths will need to be
separated which provides reasonable branching point on the network.

Figure 8. An illustrative branching instance

Figure 8 illustrates such an instance. There are two different paths and each
one reaches F1 in micro period 2 from source, continues on F1 onto micro period
3. At the end of micro period 3, there are two possible next nodes to reach: F1 in
micro period 4 and F2 in micro period. Suppose that weights on corresponding

22

arcs are 0.2 and 0.8. We select the arc with highest value, which in this case is
the arc from F1 in micro period 3 to F2 in micro period 6. Our branching decision
is then on upper branch, the network should have to provide a path being in F2

producing state in micro period 4 from now on throughout the algorithm. On the
lower branch, the network should not provide any path being in F2 producing
state in micro period 4.

Note that we do the branching in the adjacent micro period of the last common
node and that being in the setup for destination family is admitted as producing
that family, in this case F2. Another important note is that, in order to avoid
redundant search in the tree, we add B&P node of one single production line
at each iteration. We select the resource to create the branches such that the
resource has its separation at the earliest micro period. If there are multiple re-
source separation at same micro period, then we select the resource with highest
number of families that can be produced on.

At each node, we simply activate or deactivate a node from the network cor-
responding to a family in a micro period, which we call the branching rule. In
practical terms, this corresponds to deciding whether to produce a family in a
specific micro period on a production line or not. Considering the branching in-
stance described above, we can intuitively remove the node F2 in micro period 4
for the lower branch so that the machine produces F1. However, this approach is
incomplete since there exist arcs which implicitly adds up to the undesired state.
In Figure 6 which is the complete network, arc from F1 in micro period 2 to node
F2 in micro period 5 means that the machine is producing F2 in micro period
4. Hence, it requires to carefully account for all nodes and arcs and remove as
necessary to ensure the desired state of the machine on the lower and upper
branches.

Figure 9. Color coded arcs related to producing F2 in micro period 4

Dashed arcs (in green) in Figure 9 means the machine will produce F2 in micro
period 4 and dotted arcs (in red) impose the opposite. Solid arcs are unrelated

23

to the machine state in micro period 4. Figure 10 shows the residual network
for upper branch in (a) and for lower branch in (b). Note that, we also removed
F1 node in the upper and F2 node in the lower branch along with their inbound
and outbound arcs.

Figure 10. Upper (a) and Lower (b) branches related to producing F2 in micro period 4

Since we employ all the related branching rules to the network at each B&P
node to be processed , any generated column throughout the algorithm respects
all of these rules. Hence, going down the B&P search tree, we will not get any
infeasibility and will work on more and more sparse s-t networks. We apply three
most common strategies for the node selection from the search tree: depth-first-
search (DFS), breadth-first-search (BFS) and best-bound-selection (BBS).

4.3.3. Upper bound generation

Upper bound generation is an essential part of B&P algorithms in the sense that
it potentially provides an incumbent solution and enables pruning of nodes with
lower bounds greater than the upper bound. Hence, it is necessary to come up
with an improved approach such that it is capable of balancing running time
efficiency with quality of the solutions found.

As a heuristic approach we propose to run the CPM-EP with P ′ such that P ′

contains all generated columns if we are processing the root node. Otherwise,
P ′ will consist of extended patterns with positive δ variable value in the latest
solution of RCPM-EP. In this way, the heuristic can search within a larger set
of columns while processing the root node and a limited subset while processing
any other node.

We limit the execution time of this upper bound generation heuristic by 300
seconds. Since the model in the root node contains, in general, a much larger
set of columns compared to other nodes, it might terminate without proven

24

optimality. The CPM-EP on other nodes in the B&P tree reaches to an optimal
solution within 30 seconds according our preliminary observations.

4.3.4. Adaptive Root node processing

Root node is by definition the first node in the search tree. Intuitively, we start
with P ′ generated as described in Section 4.3.1. However, using unit extended
patterns as P ′ is questionable in the sense that the CG algorithm might con-
verge slowly to the state where it cannot generate any column, namely finishes
processing the root node. It can be possible for CG to converge faster with a dif-
ferent initial set of P ′. Making use of micro-period concept can provide another
means of generating initial set of patterns such that the root node processing
performance is better with respect to processing time.

We defined micro-periods as a unit amount of time multiplies of which can
represent problem data, especially the input data in continuous resolution. The
longer the micro-period length is, the more lightweight will be the shortest path
network structure. Consequently, the CG algorithm may converge faster. On the
other hand, having longer micro-periods will result in discrepancy in the sense
that the input data is not incorporated into the model fully. We suggest an ap-
proach to dynamically change the micro-period length throughout the processing
of root node, which we call adaptive micro-period length.

We set an initial positive integer k value, and for each k, we process the root
node setting the micro-period length to 2k unit amount of time. Note that, we
use unit extended patterns as P ′ for the initial k value. Once CG converges,
we keep the incumbent solution in P ′, remove all other patterns, reduce k by
1 and iterate on until k = 0. For each value of k, the network is a ‘shrunk’
version of the one with k+1. Hence, an extended pattern, a path in the network
context, can be represented in either of the networks. Note also that, for k = 0,
we have the original problem but this time with a different initial column set
than unit extended patterns. This structure allows us to adaptively change the
sensitivity of the model to input data and obtain initial solutions that will help
CG convergence faster. We name the B&P algorithm employing adaptive root
node processing as Adaptive B&P.

5. Computational experiments

In this section, we give details about numerical results from running the pro-
posed formulations. We implemented formulations with C# language of the
.NET Framework and used commercial solver CPLEX (12.8) for experiments.
We executed all experiments on a PC with Intel Core i7-8750H CPU 2.20 GHz
and 32 GB RAM.

5.1. Data set and problem instances

The data used in the numerical experiments, similar to Kalay and Taşkın (2020),
is based on real life data provided by a major float glass manufacturer in Turkey.
Hence, the data is realistic in terms of production, setup and cost perspective.
Kalay and Taşkın (2020) define three different family structures, which have
effect on the complexity of the problem. Having color and coating in the structure

25

is described as the most complex case, and we will use this structure in our
experiments.

The difficulty in problem stems from the decision on pattern allocation to
resources. In FTBMV-PM, we need to make this decision for each resource and
macro period. In B&P for CPM-EP, we progressively generate the extended
patterns. The number resources and the number of macro periods effect the
number of all possible extended patterns. Hence, it is important to test the
performance of B&P for CPM-EP and FTBMV-PM with datasets ranging in
terms of number of resources and periods.

We have two base datasets each containing 1482 unique products of differ-
ent color, size, quality, coating, thickness and packaging type attributes. Two
datasets differ from each other with respect to the number of machines; one has
3 production lines whereas the other has 5 lines. In each case, all the machines
are unrelated in terms of production speed for products. For each of these base
datasets, we have 5 different demand scenarios, and for each one of the demand
scenarios, we solve the problem for 5 different planning horizon length. In detail,
we solve the instances for 4, 6, 8, 10 and 12 periods.

We assume the micro period length as days and note that it can be modi-
fied according to data or practical needs. Moreover, we adjusted the minimum
production durations and setup times to be allocated over period boundaries
between adjacent patterns in FTBMV-PM.

5.2. Preliminary tests on node selection strategy

We define different node selection strategies, namely DFS, BFS and BBS, in
Section 4.3.2 to be employed throughout the solution. We first run some pre-
liminary tests to determine whether a strategy outperforms the others. In order
to capture performance against different complexities, we randomly selected 3
instances for combinations of 3 and 5 machines with 4, 8 and 12 periods. We
used CPLEX as linear programming (LP) solver. We limit the overall solution
time to 3600 seconds for all instances. Note that we do not employ the adaptive
root node processing explained in Section 4.3.4 in our preliminary tests.

Tables 8 and 9 show the outputs of preliminary test results with 3 and 5
parallel machines respectively. Note that Run column is a representation for the
run instance with the example that “m:3-p:4-d:3” stand for instances with 3
parallel machines (m), 4 macro periods (p) and demand scenario (d) 3. For each
test instance and node selection strategy, we report the optimality gap (“Gap”
column) and the number of nodes explored in the search tree (“Nodes” column).
We calculate Gap as |ObjBound−ObjV al|/|ObjV al| where ObjBound is lower
bound and ObjV al is incumbent solution objective value.

Results show that on 3 machine tests, BFS outperforms the other strategies in
7 out of 9 runs. DFS and BBS strategies each are able to provide the best outputs
in 1 instance. On 5 machine tests on the other hand, the outlook is exactly on
the contrary. DFS outperforms other methods in 7 out of 9 runs with BBS and
BFS having 1 best performance each. First conclusion is that regarding the node
selection strategy in the solution approach we propose, BBS is outperformed by
the other methods. Moreover, for different machine configurations we observe
significantly better performing strategies. Finally, in all test instances BBS has
the least number of nodes process from the search tree. Hence, for the remainder

26

BBS DFS BFS

Run Gap Nodes Gap Nodes Gap Nodes

m:3-p:4-d:1 11.26% 9052 11.26% 8932 9.29% 5216

m:3-p:4-d:3 10.58% 8840 10.58% 8438 9.31% 3733

m:3-p:4-d:5 10.52% 9900 10.86% 9454 11.56% 5341

m:3-p:4-avg 10.79% 9264 10.90% 8941 10.05% 4763

m:3-p:8-d:2 14.69% 4485 14.69% 4247 13.21% 137

m:3-p:8-d:3 13.32% 1139 13.32% 1184 13.31% 151

m:3-p:8-d:4 15.43% 1163 15.43% 1106 11.66% 132

m:3-p:8-avg 14.48% 2262 14.48% 2179 12.73% 140

m:3-p:12-d:2 14.15% 11 14.15% 21 14.07% 11

m:3-p:12-d:3 13.90% 17 13.90% 22 13.20% 6

m:3-p:12-d:5 14.36% 6 13.45% 8 14.36% 1

m:3-p:12-avg 14.14% 11 13.83% 17 13.88% 6
Table 8. Test results on node selection strategy on 3 machines

BBS DFS BFS

Run Gap Nodes Gap Nodes Gap Nodes

m:5-p:4-d:1 5.16% 6766 4.31% 9331 3.67% 1404

m:5-p:4-d:4 10.16% 505 2.89% 8639 5.84% 1545

m:5-p:4-d:5 5.63% 410 4.05% 8408 6.38% 2148

m:5-p:4-avg 6.98% 2560 3.75% 8793 5.30% 1699

m:5-p:8-d:1 6.40% 286 6.32% 1000 6.57% 157

m:5-p:8-d:2 7.41% 10 5.39% 252 7.09% 134

m:5-p:8-d:4 7.57% 14 3.87% 364 6.58% 147

m:5-p:8-avg 7.13% 103 5.19% 539 6.75% 146

m:5-p:12-d:1 10.04% 1 10.04% 1 10.04% 1

m:5-p:12-d:4 13.61% 1 13.61% 1 13.61% 1

m:5-p:12-d:5 11.86% 1 12.00% 1 12.00% 1

m:5-p:12-avg 11.84% 1 11.88% 1 11.88% 1
Table 9. Test results on node selection strategy on 5 machines

27

of our numerical experiments, we will employ BFS in 3 machine instances and
DFS in 5 machine instances.

5.3. Numerical results

Considering dataset and algorithm settings described in Section 5.1, our nu-
merical experiments consist of 200 instances for the B&P algorithm. For the
comparison, we take FTBMV-PM runs for all datasets, which count up to ad-
ditional 100 instances. Similar to our approach in preliminary tests explained
in Section 5.2, we limit the overall solution time to 1-hour for all instances. For
each unique dataset instance, we also solve the model with FTBMV-PM with a
1-hour time limit. Moreover, since our B&P algorithm is implemented to work
on single thread, to have a fair comparison we limit the number of threads to be
used by CPLEX as one.

Tables 10 and 11 show the outputs of B&P for CPM-EP and FTMBV-PM
for 3 and 5 parallel machines respectively. We report the average optimality gap
calculated with the same formula defined in Section 5.2 from all run instances
for FTBMV-PM, B&P and Adaptive B&P. Note that Run column is a smart
representation indicating number of machines with m and number of periods
with p as explained in previous Section. With the increase in number of periods,
the algorithms obtain solution with higher optimality gaps. Overall, B&P algo-
rithms outperform FTBMV-PM for both 3 and 5 machine instances. Amongst
B&P algorithms proposed, adaptive approach consistently performs better than
classical approach in 3 machine instances. On the other hand, in 5 machine
instances, adaptive approach outperforms classical approach in 3 out of 5.

Run FTBMV B&P B&P Adaptive

m:3-p:4 4.62% 10.24% 10.19%

m:3-p:6 26.39% 11.51% 10.00%

m:3-p:8 38.57% 13.63% 11.57%

m:3-p:10 48.18% 13.32% 12.44%

m:3-p:12 49.25% 13.97% 13.05%
Table 10. Average gap FTBMV-PM compared to B&P algorithms on 3 machines

Run FTBMV B&P B&P Adaptive

m:5-p:4 6.26% 4.77% 4.76%

m:5-p:6 72.86% 5.82% 5.64%

m:5-p:8 82.96% 5.79% 6.50%

m:5-p:10 88.63% 7.01% 7.44%

m:5-p:12 88.69% 12.03% 8.54%
Table 11. Average gap FTBMV-PM compared to B&P algorithms on 5 machines

Tables 12 and 13 present explicit results for all run instances comparing
FTBMV-PM with B&P with classical root node processing B&P with adap-
tive root node processing for 3 parallel machines and for 5 parallel machines
respectively. Note that, with our approach, we need to have the root node pro-
cessing finished in order to provide an optimality gap. In cases where the B&P
algorithms require more than the given time limit to provide an optimality gap,
we note the duration as ‘time’.

We compare the results similar to the approach described in Kalay and Taşkın
(2020). An algorithm outperforms the other if it obtains a solution with lower

28

FTBMV-PM B&P B&P Adaptive

Run Gap Time Gap Time Gap Time

m:3-p:4-d:1 0.00% 469 9.29% 3600 12.25% 3600

m:3-p:4-d:2 0.00% 340 10.02% 3600 10.02% 3600

m:3-p:4-d:3 0.00% 604 9.31% 3600 9.31% 3600

m:3-p:4-d:4 0.00% 370 11.49% 3600 11.44% 3600

m:3-p:4-d:5 0.00% 287 11.56% 3600 10.96% 3600

m:3-p:4-d:6 8.42% 3600 11.43% 3600 9.56% 3600

m:3-p:4-d:7 7.61% 3600 7.05% 3600 7.15% 3600

m:3-p:4-d:8 17.67% 3600 9.85% 3600 9.33% 3600

m:3-p:4-d:9 8.06% 3600 11.38% 3600 10.72% 3600

m:3-p:4-d:10 4.40% 3600 11.07% 3600 11.14% 3600

m:3-p:6-d:1 2.19% 3600 10.04% 3600 10.04% 3600

m:3-p:6-d:2 1.78% 3600 11.74% 3600 11.74% 3600

m:3-p:6-d:3 2.54% 3600 10.08% 3600 10.08% 3600

m:3-p:6-d:4 3.18% 3600 8.62% 3600 8.62% 3600

m:3-p:6-d:5 1.80% 3600 10.84% 3600 10.84% 3600

m:3-p:6-d:6 74.27% 3600 12.63% 3600 10.55% 3600

m:3-p:6-d:7 52.35% 3600 13.55% 3600 12.37% 3600

m:3-p:6-d:8 18.15% 3600 12.09% 3600 10.13% 3600

m:3-p:6-d:9 53.49% 3600 12.03% 3600 8.03% 3600

m:3-p:6-d:10 54.15% 3600 13.50% 3600 11.17% 3600

m:3-p:8-d:1 4.12% 3600 14.32% 3600 11.21% 3600

m:3-p:8-d:2 3.29% 3600 13.21% 3600 11.96% 3600

m:3-p:8-d:3 4.52% 3600 13.31% 3600 12.14% 3600

m:3-p:8-d:4 4.76% 3600 11.66% 3600 11.41% 3600

m:3-p:8-d:5 5.93% 3600 12.07% 3600 11.83% 3600

m:3-p:8-d:6 84.09% 3600 12.73% 3600 10.98% 3600

m:3-p:8-d:7 84.51% 3600 14.93% 3600 10.71% time

m:3-p:8-d:8 58.50% 3600 16.24% 3600 12.05% 3600

m:3-p:8-d:9 58.42% 3600 15.49% 3600 10.48% 3600

m:3-p:8-d:10 77.59% 3600 12.40% 3600 12.95% 3600

m:3-p:10-d:1 7.17% 3600 12.58% 3600 13.78% time

m:3-p:10-d:2 11.43% 3600 13.64% 3600 12.20% time

m:3-p:10-d:3 10.80% 3600 15.39% 3600 14.29% time

m:3-p:10-d:4 8.48% 3600 12.61% 3600 11.46% time

m:3-p:10-d:5 10.71% 3600 12.16% 3600 12.60% time

m:3-p:10-d:6 86.72% 3600 13.17% 3600 11.62% time

m:3-p:10-d:7 86.59% 3600 13.68% 3600 12.14% time

m:3-p:10-d:8 86.63% 3600 14.51% 3600 12.56% time

m:3-p:10-d:9 86.67% 3600 12.64% 3600 11.54% time

m:3-p:10-d:10 86.58% 3600 12.76% 3600 12.24% time

m:3-p:12-d:1 13.62% 3600 13.10% 3600 12.54% time

m:3-p:12-d:2 10.06% 3600 14.07% time 12.69% time

m:3-p:12-d:3 9.81% 3600 13.20% 3600 12.94% time

m:3-p:12-d:4 10.82% 3600 15.84% time 12.89% time

m:3-p:12-d:5 8.21% 3600 14.36% time 15.03% time

m:3-p:12-d:6 87.98% 3600 13.68% 3600 13.77% time

m:3-p:12-d:7 88.00% 3600 12.46% 3600 11.56% time

m:3-p:12-d:8 87.97% 3601 14.43% 3600 11.56% time

m:3-p:12-d:9 88.04% 3600 13.60% 3600 13.61% time

m:3-p:12-d:10 88.02% 3600 15.01% 3600 13.92% time
Table 12. FTBMV-PM compared to B&P and B&P Adaptive on 3 machines

29

FTBMV-PM B&P B&P Adaptive

Run Gap Time Gap Time Gap Time

m:5-p:4-d:1 5.21% 3600 4.31% 3600 4.31% 3600

m:5-p:4-d:2 2.87% 3600 5.43% 3600 5.35% 3600

m:5-p:4-d:3 7.94% 3600 3.75% 3600 3.75% 3600

m:5-p:4-d:4 10.86% 3600 2.89% 3600 2.95% 3600

m:5-p:4-d:5 5.29% 3600 4.05% 3600 4.05% 3600

m:5-p:4-d:6 7.76% 3600 4.46% 3600 4.84% 3600

m:5-p:4-d:7 2.29% 3600 3.55% 3600 3.37% 3600

m:5-p:4-d:8 5.56% 3600 7.00% 3600 7.67% 3600

m:5-p:4-d:9 7.48% 3600 5.45% 3600 5.63% 3600

m:5-p:4-d:10 7.35% 3600 6.82% 3600 5.66% 3600

m:5-p:6-d:1 75.09% 3600 6.17% 3600 6.17% 3600

m:5-p:6-d:2 83.09% 3600 5.07% 3600 5.07% 3600

m:5-p:6-d:3 77.27% 3600 6.66% 3600 5.58% 3600

m:5-p:6-d:4 77.29% 3600 5.90% 3600 5.89% 3600

m:5-p:6-d:5 28.56% 3600 5.44% 3600 5.44% 3600

m:5-p:6-d:6 73.46% 3600 6.77% 3600 6.75% 3600

m:5-p:6-d:7 79.03% 3600 5.09% 3600 4.96% 3600

m:5-p:6-d:8 78.77% 3600 4.61% 3600 4.64% 3600

m:5-p:6-d:9 78.36% 3600 6.09% 3600 5.86% 3600

m:5-p:6-d:10 77.72% 3600 6.40% 3600 4.82% 3600

m:5-p:8-d:1 82.05% 3600 6.32% 3600 6.29% 3600

m:5-p:8-d:2 83.02% 3600 5.39% 3600 6.32% 3600

m:5-p:8-d:3 82.02% 3600 7.00% 3600 8.17% 3600

m:5-p:8-d:4 79.06% 3600 3.87% 3600 5.62% 3600

m:5-p:8-d:5 81.80% 3600 6.48% 3600 7.39% 3600

m:5-p:8-d:6 85.65% 3600 6.22% 3600 6.39% 3600

m:5-p:8-d:7 85.61% 3600 5.34% 3600 5.69% 3600

m:5-p:8-d:8 82.82% 3600 5.85% 3600 6.94% 3600

m:5-p:8-d:9 81.96% 3600 5.80% 3600 5.98% 3600

m:5-p:8-d:10 85.64% 3600 5.68% 3600 6.21% 3600

m:5-p:10-d:1 87.36% 3600 7.31% 3600 7.40% time

m:5-p:10-d:2 87.38% 3600 7.01% 3600 5.95% time

m:5-p:10-d:3 87.34% 3600 7.42% 3600 7.00% time

m:5-p:10-d:4 87.31% 3600 6.72% 3600 7.06% time

m:5-p:10-d:5 87.37% 3600 7.54% 3600 8.08% time

m:5-p:10-d:6 87.38% 3600 6.21% 3600 8.20% time

m:5-p:10-d:7 87.37% 3600 6.12% 3600 6.68% time

m:5-p:10-d:8 87.40% 3600 9.30% 3600 7.63% time

m:5-p:10-d:9 87.39% 3600 6.61% 3600 7.76% time

m:5-p:10-d:10 100.00% 3600 5.82% 3600 8.63% time

m:5-p:12-d:1 88.66% 3600 10.04% time 8.04% time

m:5-p:12-d:2 88.69% 3600 11.66% time 9.29% time

m:5-p:12-d:3 88.65% 3600 10.80% time 8.43% time

m:5-p:12-d:4 88.63% 3600 13.61% time 8.45% time

m:5-p:12-d:5 88.77% 3600 12.00% time 7.87% time

m:5-p:12-d:6 88.71% 3600 13.46% time 7.19% time

m:5-p:12-d:7 88.78% 3600 13.65% time 11.08% time

m:5-p:12-d:8 88.65% 3600 12.71% time 7.16% time

m:5-p:12-d:9 88.60% 3600 9.17% time 9.28% time

m:5-p:12-d:10 88.72% 3600 13.20% time 8.64% time
Table 13. FTBMV-PM compared to B&P and B&P Adaptive on 5 machines

30

optimality gap. In 3 machine instances we note FTBMV-PM outperforms B&P
results in 26 out of 50 instances. We observe that FTBMV-PM’s performance
is rather unstable. In 3 machine and 8 periods instances for instance although
the average optimality gap is approximately 38% whereas the explicit instances
vary from 3.29% to 84.51%. In 5 machines instances, B&P algorithms perform
better than FTBMV-PM, in 47 out of 50 instances. Moreover, the adaptive root
node processing is able to provide better optimality gaps in 26 instances whereas
the classical approach provides the best gap in 21 instances. We note that, with
the increase in complexity of the run instance through increase in number of
resources and periods, the B&P algorithms tend to take more time to process,
however generating better solutions. The algorithm we propose, according to the
numerical experiments, is capable of providing good quality solutions in more
complex instances when MIP formulation FTBMV-PM fails to do so. When
there is a smaller number of parallel machines on the other hand, FTBMV-
PM and B&P approaches seem to be both applicable. However, FTBMV-PM’s
performance appears to be unstable with high volatility in optimality gap.

Tables 14 and 15 present the root node processing times and optimality gap
before branching for B&P and B&P Adaptive methods. B&P Adaptive consis-
tently takes longer to process the root node compared to B&P. Each micro period
length processed in B&P Adaptive contributes to increased root node processing
time. On the other hand, we observe that the optimality gap obtained by B&P
Adaptive consistently outperforms B&P method.

B&P B&P Adaptive

Run Gap Time Gap Time

m:5-p:4 19.53% 9.59 16.30% 87.98

m:5-p:6 15.19% 50.85 13.66% 358.10

m:5-p:8 16.69% 322.23 12.32% 1074.63

m:5-p:10 13.64% 1421.45 12.44% time

m:5-p:12 15.11% 2308.95 13.21% time
Table 14. Average gap and root node processing times of B&P algorithms on 3 machines

B&P B&P Adaptive

Run Gap Time Gap Time

m:5-p:4 9.12% 136.03 7.59% 422.86

m:5-p:6 9.17% 159.05 6.63% 556.47

m:5-p:8 7.97% 944.59 6.60% 2209.75

m:5-p:10 7.88% 3238.11 7.31% time

m:5-p:12 12.22% 3600.00 8.54% time
Table 15. Average gap and root node processing times of B&P algorithms on 5 machines

6. Conclusion

In this paper we studied the parallel machine campaign planning problem under
sequence dependent family setups and co-production in the process industry. We
proposed a B&P algorithm to solve the problem and designed some variations
differing in terms of root node processing and node selection strategy. We com-
pared our algorithms with an extension to a previous study, namely FTBMV-
PM. With the runs using a realistic dataset, FTBMV-PM however outperforms
proposed algorithms in instances smaller in number of machines. Our algorithms,

31

on the other hand, are able to provide better results when the instances get more
complex with the increase in number of parallel machines and periods.

As a future research direction, we can extend the research by including mul-
tiple facilities and multiple bill-of-material (BOM) levels. Moreover, as stated in
Section 5.3, B&P currently has a limitation to be running on a single thread,
which exposes extensibility to parallelism. Also, improving a more sophisticated
initial column set can also help in accelerating the root node processing time,
which does not improve significantly with adaptive root node processing.

Acknowledgement(s)

Z. Caner Taşkın’s research was partially supported by Turkish Science Academy
BAGEP award.

References

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and
applications. Prentice hall.

Akker, J., Hoogeveen, J., & Kempen, J. (2012). Using column generation to solve parallel
machine scheduling problems with minmax objective functions. Journal of Scheduling , 15 ,
1-10.

Almada-Lobo, B., Klabjan, D., Maria, Carravilla, A., & Oliveira, J. F. (2010). Multiple
machine continuous setup lotsizing with sequence-dependent setups. Computational Opti-
mization and Applications, 47 , 529–552.

Ağralı, S. (2012). A dynamic uncapacitated lot-sizing problem with co-production. Optimiza-
tion Letters, 6 , 1051–1061.

Bektur, G., & Saraç, T. (2019). A mathematical model and heuristic algorithms for an unre-
lated parallel machine scheduling problem with sequence-dependent setup times, machine
eligibility restrictions and a common server. Computers and Operations Research, 103 ,
46–63.

Camargo, V., Toledo, F., & Almada-Lobo, B. (2012). Three time-based scale formulations
for the two-stage lot sizing and scheduling in process industries. Journal of the Operational
Research Society , 63 , 1613–1630.

Camargo, V., Toledo, F., & Almada-Lobo, B. (2014). Hops – hamming-oriented partition
search for production planning in the spinning industry. European Journal of Operational
Research, 234 , 266–277.

Chen, Z.-L., & Powell, W. B. (1999). Solving parallel machine scheduling problems by column
generation. INFORMS Journal on Computing , 11 , 78-94.

Farahani, P., Grunow, M., & Günther, H. O. (2012). Integrated production and distribution
planning for perishable food products. Flexible Services and Manufacturing , 24 , 28–51.

Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem. OR
Spectrum, 19 , 11–21.

Florian, M., K. Lenstra, J., & H. G. Rinnooy Kan, A. (1980). Deterministic production
planning: Algorithms and complexity. In Management science (p. 669-679).

Gaudreault, J., Frayret, J.-M., Rousseau, A., & D’Amours, S. (2011). Combined planning
and scheduling in a divergent production system with co-production: A case study in the
lumber industry. Computers and Operations Research, 38 , 1238–1250.

Ghirardi, M., & Ameiro, A. (2019). Matheuristics for the lot sizing problem with back-ordering,
setup carryovers, and non-identical machines. Computers and Industrial Engineering , 127 ,
822–831.

32

Glass, G. P. F. (2019). Float glass - gold plus glass [Computer software manual]. Retrieved
from https://goldplusgroup.com/float-glass/ (accessed in September 2020)

Guimarães, L., Klabjan, D., & Almada-Lobo, B. (2014). Modeling lot sizing and scheduling
problems with sequence dependent setups. European Journal of Opreations Research, 239 ,
644–662.

Hinder, O., & Mason, A. J. (2017). A novel integer programing formulation for scheduling with
family setup times on a single machine to minimize maximum lateness. European Journal
of Operational Research, 262 , 411–423.

James, R. J., & Almada-Lobo, B. (2011). Single and parallel machine capacitated lotsizing
and scheduling: New iterative MIP-based neighborhood search heuristics. Computers and
Operations Research, 38 , 1816–1825.

Joly, M., Moro, L. F. L., & Pinto, J. M. (2002). Planning and scheduling for petroleum
refineries using mathematical programming. Brazilian Journal of Chemical Engineering ,
19 , 207–228.

Kalay, S., & Taşkın, Z. C. (2020). Single machine campaign planning under sequence dependent
family setups and co-production. Journal of the Operational Research Society . Retrieved
from https://doi.org/10.1080/01605682.2020.1772016

Kopanos, G., Puigjaner, L., & Maravelias, C. (2011). Production planning and scheduling of
parallel continuous processes with product families. Industrial Engineering and Chemistry
Research, 50 , 1369–1378.

Kramer, A., Iori, M., & Lacomme, P. (2019). Mathematical formulations for schedul-
ing jobs on identical parallel machines with family setup times and total weighted com-
pletion time minimization. European Journal of Operational Research. Retrieved from
https://doi.org/10.1016/j.ejor.2019.07.006

Lime, R., Grossmann, I., & Jiao. (2011). Long-term scheduling of a single-unit multi-product
continuous process to manufacture high performance glass. Computers and Checmial En-
gineering , 35 , 554–574.

Miegeville, N. (2005). Supply chain optimization in the process industry. methods and case-
study of the glass industry. (Unpublished doctoral dissertation). Ecole Centrale, Paris,
Paris.

Pessoa, A., Uchoa, E., Poggi, M., & De Freitas Rodrigues, R. (2010). Exact algorithm over
an arc-time-indexed formulation for parallel machine scheduling problems. Mathematical
Programming Computation, 2 , 259-290.

Rafiei, R., Nourelfath, M., Gaudreault, J., Santa-Eulalia, L. A. D., & Bouchard, M. (2015).
Dynamic safety stock in co-production demand-driven wood remanufacturing mills: A case
study. International Journal of Production Economics, 165 , 90–99.

Schaller, J. (2014). Minimizing total tardiness for scheduling identical parallel machines with
family setups. Computers and Industrial Engineering , 72 , 274–281.

Seeanner, F., Almada-Lobo, B., & Meyr, H. (2013). Combining the principles of variable
neighborhood decomposition search and the fix&optimize heuristic to solve multi-level lot-
sizing and scheduling problems. Computers and Operations Research, 40 , 303–317.

Susarla, N., & Karimi, I. (2011). Integrated campaign planning and resource allocation in
batch plants. Computers and Chemical Engineering , 35 , 2990–3001.

Taşkın, Z. C., & Ünal, A. T. (2009). Tactical level planning in float glass manufacturing with
co-production, random yields and substitutable products. European Journal of Operational
Research, 199 (1), 252–261.

Vieira, M., Pinto-Varela, T., Moniz, S., Barbosa-Póvoa, A. P., & Papageorgiou, L. G.
(2016). Optimal planning and campaign scheduling of biopharmaceutical processes using a
continuous-time formulation. Computers and Chemical Engineering , 91 , 422–444.

Xiong, X., Zhou, P., Yin, Y., Cheng, T. C. E., & Li, D. (2019). An exact branch-and-
price algorithm for multitasking scheduling on unrelated parallel machines. Naval Research
Logistics, 66 , 502-516.

Yin, Y., Chen, Y., Qin, K., & Wang, D. (2018). Two-agent scheduling on unrelated parallel
machines with total completion time and weighted number of tardy jobs criteria. Journal

33

of Scheduling , 22 , 315-333.

34

