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Abstract

We consider an employee scheduling problem arising in service industries with flexible

employee availability and flexible demand. In the system to be planned, there is a

given set of service requirements and a set of employees at any time. Each employee

belongs to one of various skill levels; each service requirement specifies the requested

employee skill level, timing of the service delivery, and a weight that indicates its

priority. Employees have individual flexible contracts with the organization, which

are characterized by weekly/monthly contracted work hours, days the employee is

available for work and availability of overtime. Furthermore, there are regulations on

maximum work hours and minimum rest requirements of employees enforced by the

government and the labor union. The problem that we investigate is to generate an

assignment of employees to service requirements, which (i) ensures that the maximum

weighted number of service requirements are met, (ii) satisfies government and labor

union regulations, (iii) honors individual employee contracts with minimum deviation

from the contracted work hours, and (iv) ensures a fair balance between employee

schedules in terms of work assignments on holidays. We model the problem as a mixed-

integer programming problem and discuss a reformulation strategy, which allows us to
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solve practical problems in a reasonable amount of time. We also report our experience

in a large health-care organization in Belgium.

Keywords: OR in service industries; Employee scheduling; Integer programming;

Flexible contract; Flexible service demand

1 Introduction

Efficient management of workforce is one of the most important concerns in both manufac-

turing and service organizations, since it has a direct effect on the productivity of day-to-day

operations and the quality of the service provided. Especially the employee scheduling prob-

lem has attracted considerable amount of research due to high costs associated with employee

utilization. Employee scheduling problem is NP-Hard (Garey and Johnson, 1979), and this,

by itself, indicates a major challenge. However, in addition to this major challenge, concerns

like large number of strict rules and regulations set by governments and labor unions, which

impose hard constraints over the feasible utilization of employees, and non-numerical ob-

jectives such as well-being and happiness of the employees, and fairness between employees

makes the problem even more interesting as a research topic.

In this study, we investigate an employee scheduling problem that we frequently face in

a group of special health-care organizations, such as care centers for children with disabil-

ities and nursing homes for elderly. Operating environment of these special organizations

involves two basic forms of flexibility. The first flexibility is in the demand for services

rendered in these organizations. The types of patients served require special personalized

care. Timing, content and length of services vary significantly, and it is virtually impossible

to generate a balanced pattern of services for a prolonged period of time. Services such as

emergency health-care, social events, and educational activities that need case-specific re-

sources (personnel and equipment) in an irregular manner must be provided regularly. The

second flexibility is in the availability of human resources that is utilized in the delivery of

these highly flexible services. The span of skills required is very large, and consequently, it is

almost impossible to have full time contracts with all the required human personnel. Hence,

these health-care organizations need to provide a set of flexible services using employees with

flexible contracts in addition to regular full time employees.

The necessity of providing service with flexible contracts is in-line with the general trend

of increasing flexible working conditions in industrialized countries. In recent years, most

European countries have installed new legislations to enable employees to request flexi-
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ble working conditions, including contractual, spatial and temporal flexibility (Joyce et al.,

2010). In terms of employee scheduling, flexible working contracts make it unnecessary to

define a relatively fixed work management structure like a shift. In a flexible organization,

the main management concern is not to manage the existence of the employee in a fixed

location, but to dynamically manage the match between the availability of the employees

with the service requirements.

In the operating environment that we consider, optimal management of employees is

crucial from two perspectives. First of all, a major portion of the operational cost is employee-

related costs. Although some of the organizations providing aforementioned services receive

some form of government support, efficient operation is important to guarantee sustainability

of the services. The second major concern is to keep the employees happy by assigning them

tasks with a good match for their skills and by conforming to their preferences in terms of the

timing of the task assignments. For these special service organizations, employee satisfaction

is, again, a significant determinant of sustainability and high service quality.

In this study, we propose a mixed-integer programming model to solve the employee

scheduling problem for service organizations with the following features:

• Employees have flexible contracts, which do not impose strict shift structures. Instead

each employee has an individual contract with the organization that specifies his/her

working availability per day, week, month, etc. This constrains the employee’s avail-

ability throughout the planning horizon while allowing flexibility in his/her working

pattern.

• Demand for services is given in the form of service requirements. Each requirement

includes a service start and completion time, the minimum skill level needed to deliver

the service, and a weight that indicates the priority level of the requirement.

• In addition to employee contracts, there are constraints that derive from the laws and

regulations, such as minimum rest time between assignments, maximum total time

that an employee can work within a week, etc.

• Fairness between employees needs to be defined and observed.

Based on the general constraints given above, we develop a model to assign employees to the

service requirements. The objectives of the model are to:

• minimize the total number of (weighted) service demand that is not satisfied;
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• maximize the utilization of total contracted hours;

• maximize employee satisfaction

– by assigning tasks that are most appropriate to the skill level of the employee,

– by minimizing overtime assignments;

• maximize fairness between employees by making balanced work assignments during

holidays.

There are two major modeling choices that we made in this study to handle the flexible

working environment:

• Contrary to the general approach in the literature, the model that we develop does

not assume that time is discretized. Service requirements may have any time value on

the continuous time scale as start and end times. Hence, the model generates flexible

assignments to the employees in terms of working hours without increasing the number

of decision variables.

• We do not generate a fixed shift structure (neither explicitly, nor implicitly). Our major

concern is to satisfy the service requirements as much as possible without violating any

conditions defined in the employee contracts, or legislative rules and regulations.

To the best of our knowledge, there is no prior study in the literature that models

the employee scheduling problem with the flexibility of continuous time and without any

reference to an underlying shift structure.

The rest of this paper is organized as follows. Section 2 provides background information

and related literature review on the employee scheduling problem. We formally define the

problem and provide a basic mathematical model in Section 3. In Section 4, we propose

various re-formulations of the basic model to reduce its size and improve its strength. We

used the model developed in this study to solve the employee scheduling problem imposed by

a large health-care organization in Belgium. We performed a number of test runs with the

proposed model using representative real data. We report our implementation experience

in Section 5. We summarize our study and conclude the paper in Section 6 with general

comments.
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2 Background and Literature Review

Employee scheduling has been studied extensively in the literature. Ernst et al. (2004b)

trace back the origin of staff scheduling to Edie (1954)’s work, in which toll booth operations

are analyzed and the relief times for toll collectors are determined. Since then, employee

scheduling has been one of the most important topics for various organizations, such as

airlines (Burke et al., 2010; Chu, 2007; Felici and Gentile, 2004; Gopalakrishnan and Johnson,

2005), railways (Strupchanska et al., 2003), transit bus operators (Smith and Wren, 1988),

retailers (Zolfaghari et al., 2007; Parisio and Jones, 2015), call centers (Bhulai et al., 2008;

Caprara et al., 2003; Dietz, 2011) and health-care organizations (Li et al., 2012; Wright and

Mahar, 2013; Meanhout and Vanhoucke, 2013). We refer the reader to Brunner (2010) and

den Bergh et al. (2013) for recent surveys of the literature on employee scheduling. Since

this paper addresses an employee scheduling problem that is basically applicable in the

health-care industry, we will mainly concentrate on the evaluation of the literature specific

to health-care.

Health-care is one of the major industries where better employee scheduling creates a sig-

nificant added value. In health-care systems, nurse rostering problems have been extensively

studied. Cheang et al. (2003) provide a bibliographic survey of the models and method-

ologies that are used to solve nurse rostering problems. Bard and Purnomo (2005) present

a robust methodology for solving a nurse rostering problem that accommodates individual

preferences while creating schedules. De Grano et al. (2009) also include nurse preferences

in the scheduling problem. The authors develop a two-stage approach in which first nurses’

preferences for specific days and shifts are obtained, and then a schedule that streamlines

those preferences while satisfying important hospital constraints is built. Azaieza and Sharif

(2005) develop a 0-1 linear goal program in which both hospital objectives and nurse prefer-

ences are accounted for. Another important scheduling problem in health-care is physician

scheduling. Scheduling of emergency medicine residents is studied in Topaloglu (2006). The

author develops a multi-objective programming problem and reports results of their tests in

the emergency room of a major local university hospital.

Employee scheduling problem can be decomposed into various sub-problems. Classifi-

cation given in Ernst et al. (2004b) identifies the following major sub-problems: demand

modeling, shift construction, shift scheduling and employee assignment to shifts. In this

study, we keep demand modeling out of our scope and discuss only scheduling-related work.

Depending on the implementation case, some of the sub-problems regarding scheduling may

not exist or some of the sub-problems may be jointly handled within a unified model. For

5



example, in most employee scheduling problems in manufacturing organizations, shift con-

struction is not a major concern since a restricted set of shifts are already defined by the

organization, and the major issue is to assign employees to these fixed shifts (see Berman

et al., 1997). In more flexible working environments, such as health-care organizations, shift

scheduling and employee assignment may be performed in a single integrated model (see

Ernst et al., 2004b).

In most of the studies involving employee scheduling, shift concept plays a crucial role.

Shift defines a period of time that the employee is scheduled to be available in the expectation

that there will be demand for his/her service. Hence, utilization of the employee within a

shift is a related but separate concern for the organization. Mostly, employee scheduling aims

to generate shifts or assign employees to shifts such that, based on a given demand pattern,

expected utilization of the employee is maximized. Generally, shift is modeled explicitly, and

it constitutes a basis for the set-covering formulation of Dantzig (1954). There is a number

of studies that propose an implicit model of shifts to reduce the number of variables in the

formulation (see Bechtold and Jacobs, 1990, 1996; Cote et al., 2011; Thompson, 1995).

Modeling of time is another major issue in employee scheduling problems. A common

approach in the literature is to discretize time into small time buckets, and include time

in the models as an additional index. Especially for problems with long scheduling periods

or very small time buckets, the number of variables increase significantly due to the time

index, and it becomes more difficult to obtain high quality solutions in a reasonable amount

of time. On the other hand, if the bucket sizes are kept large, the accuracy of the model

deteriorates.

The problem that we address in this study involves employees with different skill levels,

where employees with higher skill levels may be assigned to services that require a lower skill

level. In the literature, employee scheduling problem with this property is called the hier-

archical employee scheduling problem. Billionnet (1999) proposes an integer programming

model to solve a hierarchical employee scheduling problem with variable demand, in which

each worker is assigned to one shift type. Based on this model, Seckiner Ulusam et al. (2007)

propose a new model in which workers can be assigned to alternative shifts in a day during

the course of a week. Narasimhan (1997) provides an optimal algorithm for shift scheduling

of employees whose capabilities are arranged hierarchically in seven-day-a-week industries.

Topaloglu (2009) considers scheduling of medical residents that arises in different clinical

settings of a hospital. Residents are grouped according to different seniority levels that are

specified by the number of years spent in residency training, and a schedule is formed by
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enforcing seniority-based workload rules.

Another aspect of our problem is scheduling a workforce that includes different types

of workers including full-time and part-time. Mohan (2008) study a workforce scheduling

problem consisting of part-time workers who have availabilities, preferences for the shifts,

maximum and minimum allowable working hours in a day and a week, and seniority lev-

els. They model the problem as an integer program in which the objective is to maximize

employee satisfaction and to meet the demand requirements for each shift. Based on Mo-

han (2008)’s work, Akbari et al. (2013) study the scheduling problem of part-time and

mixed-skilled workers in which workers productivity is variable during a day. Their model

maximizes workers satisfaction while considering workers availability, productivity, priority

preference, seniority level, and number of workers required.

Employee scheduling problems with multiple objectives is also very common in the litera-

ture. Besides the standard attempt to include objectives of different stakeholders (managers,

employees, unions, regulators, etc.) into consideration, soft constraints that commonly exist

in employee scheduling problems are also included into the model as additional objectives

(see Burke et al., 2010; Kwak and Lee, 1997; Parr and Thompson, 2007; Topaloglu, 2006).

Castillo et al. (2009) consider cost minimization and service level maximization simultane-

ously and propose a multidimensional paradigm. Multi-objective nurse scheduling problems

are studied in Topaloglu (2006, 2009). These multi-objective problems are solved using goal

programming.

3 Problem Definition and Mathematical Model

Before describing our mathematical formulation, we will discuss how some important aspects

of our problem can be modeled in terms of the set definitions, variables and parameters given

in Table 1.

We denote the set of employees by E. Each employee is characterized by his/her skill level

Le ∈ L, where L denotes the set of skill levels. We denote the set of service requirements by

R. A requirement r ∈ R represents the need for a single employee at a certain skill level for a

specified duration of time within the planning horizon. Each requirement is characterized by

its start time Sr, end time Fer, which depends on the employee that is assigned to perform

the requirement, its minimum required skill level Lmin
r , and its priority pr. Note that Sr

and Fer represent arbitrary time points on the continuous time scale and we do not make

any assumptions regarding timings or durations of requirements other than requiring that
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Table 1: Symbols used in our mathematical model
Set Description
E set of employees, indexed by e
R set of employee requirements, indexed by r
R(e) ⊆ R set of requirements to which employee e ∈ E can be assigned
L set of employee skill levels
W set of constrained time intervals (CTI) within planning horizon, indexed by w
W (e) ⊆W set of CTIs within planning horizon for which employee e ∈ E has a contract
H set of holidays within planning horizon (including weekends), indexed by h
H(e) ⊆ H set of holidays within planning horizon for which employee e ∈ E has a contract
R(h) ⊆ R set of requirements that coincide with holiday h ∈ H
Parameter Description
Le skill level of employee e ∈ E
Sr start time of requirement r ∈ R
Fer end time of requirement r ∈ R when employee e is assigned to perform the requirement
Lmin
r minimum skill level of requirement r ∈ R

pr priority of requirement r ∈ R, where a larger value indicates a higher priority
ber amount of time that employee e needs to rest after performing requirement r,

if assigned to
Sw start time of CTI w ∈W
Fw end time of CTI w ∈W
dwer the portion of time that requirement r ∈ R(e) coincides with CTI w ∈W (e)

when employee e is assigned to perform the requirement
cwe the amount of time that employee e ∈ E is contracted to work within CTI w ∈W (e)
dmax
ew the maximum amount of time that employee e is allowed to work within

CTI w ∈W (e)
Variable Description
xer indicator variable that represents whether employee e ∈ E is assigned to

requirement r ∈ R(e)
fr indicator variable for unfulfilled demand of requirement r ∈ R
twe total amount of time employee e ∈ E is scheduled to work within CTI w ∈W (e)
owe the amount of time that employee e ∈ E is scheduled to work over contracted

hours within CTI w ∈W (e)
uwe the amount of time that employee e ∈ E is scheduled to work under contracted

hours within CTI w ∈W (e)
yhe indicator variable that represents whether employee e ∈ E is scheduled to work

during holiday h ∈ H
ye total number of holidays that employee e ∈ E is scheduled to work
ze total number of holiday requirements that employee e ∈ E is scheduled to work
ymax
l maximum number of holidays that an employee having skill level l ∈ L is scheduled

to work
ymin
l minimum number of holidays that an employee having skill level l ∈ L is scheduled

to work
zmax
l maximum number of holiday requirements that an employee having skill level l ∈ L

is scheduled to work
zmin
l minimum number of holiday requirements that an employee having skill level l ∈ L

is scheduled to work
8



Sr < Fer for each r ∈ R. Also note that regular shift structures can be handled in our

model by assigning the starting time of the shift as Sr and the end time of the shift as Fer.

Moreover, having an employee-dependent finish time for each requirement makes our model

more general, and if the duration of a requirement is not employee-dependent, we can simply

assign the same time to Fer for all e ∈ E. Similarly, if the duration of a requirement depends

on the skill level of the employee, then Fer-values for all employees having the same skill level

can be set equal. Our definition of requirement assumes that each requirement is associated

with only one employee. While this assumption may appear to be restrictive, simultaneous

need for multiple employees can easily be handled by creating separate requirements that

have common start and end times. For instance, assume that two nurses (skill level 1)

and a doctor (skill level 2) are needed between February 25, 2015 21:00 and February 26,

2015 01:30. This case can be handled by defining three requirements r1, r2, r3 such that

Sr1 = Sr2 = Sr3 = February 25, 2015 21:00, Fer1 = Fer2 = Fer3 = February 26, 2015 01:30,

Lmin
r1

= Lmin
r2

= 1 and Lmin
r3

= 2.

In our model each employee has an individual contract with the organization that is

characterized by a set of “constrained time intervals” (CTIs) and a contracted number of

working hours within each CTI. In our model a CTI represents a duration of time during

which the employee’s workload is constrained either by the employee’s contract, or due

to government or labor union legislations. For instance, a contract may specify that the

employee is only available between Monday and Thursday for a maximum duration of 25

hours per week and a total of 80 hours per month. This contract can be modeled by defining

• a CTI for each Friday-Sunday interval having contracted duration of 0 hours,

• a CTI for each week having contracted duration of 25 hours, and

• a CTI spanning each month having contracted duration of 80 hours.

CTIs allow us to easily incorporate employees whose contracts do not span the entire planning

horizon. Also, issues such as yearly holidays, relatively long leaves of absence, part-time

employees having different full-time-equivalent (FTE) contracts, part-time student employees

who can work full-time during the summer, etc. can be easily integrated. Note that we do

not enforce any restrictions on the number, timings or durations of CTIs; any two CTIs

can be disjoint, partially overlap or fully overlap. In addition to modeling contract details,

our definition of CTI can also be used to enforce labor laws and legislations that limit the

amount of time that an employee can work per day or week, etc. Moreover, we do not have

any restriction on the duration of the planning horizon.
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We denote the set of CTIs that apply to employee e ∈ E by W (e) ⊆ W , where W

represents the set of all CTIs within the planning horizon. We denote the start time of

CTI w ∈ W (e) by Sw, its end time by Fw and the amount of time that employee e is

available during w by cwe . Let us denote the set of service requirements that employee e can

be assigned to by R(e) ⊆ R. Since each requirement has a minimum skill level, r ∈ R(e)

implies that Le ≥ Lmin
r . Furthermore, explicitly defining R(e) for each employee allows us

to model employee-specific issues such as weekly available days for working, which is often

part of the contract for part-time employees, and employees’ off days within the planning

horizon.

Let us define a binary variable xer for each employee e ∈ E and requirement r ∈ R(e),

whose value is one if employee e is assigned to satisfy requirement r, and zero otherwise.

Constraint (1) ensures that each requirement is assigned to at most one employee∑
e:r∈R(e)

xer + fr = 1 ∀r ∈ R. (1)

Note that fr-variable takes on value one if r is not assigned to any employees and zero

otherwise. Since x-variables are binary variables, f -variables can be relaxed as continuous.

f -variables ensure that our model always has a feasible solution having xer = 0 for all e and

r, which is important for practical applications in order to have a robust system.

Each employee can only be assigned to at most one service requirement at any time.

Furthermore, government regulations and labor union rules require that employees need to

rest for at least some amount of time between two consecutive assignments. This issue is

commonly encountered in shift scheduling literature (see Aykin, 1996; Caprara et al., 2003;

Felici and Gentile, 2004) and is quite straightforward to model if the planning horizon is

discretized into disjoint time periods with the same duration (such as morning, afternoon

and night shifts). In such models, it is often enough to enforce that each employee can be

assigned to a single requirement in each time period and that employees cannot be assigned to

requirements in successive time periods. However, start and end times of requirements in our

model are given on a continuous time scale without any restrictions on the timing or duration

of requirements. Let ber denote the minimum amount of time that employee e needs to rest

after performing requirement r. Note that we allow for the rest duration to be defined per

employee and requirement instead of a single rest duration that is enforced for all employees

and requirements. This allows us to enforce an overnight rest after a long/complicated

task while also being able to assign an employee to several short requirements in a row.
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The flexibility in start and end times of requirements as well as rest durations results in

various possible relationships between requirements. In particular, it is possible that two

requirements

1. start and end at the same time,

2. partially overlap,

3. one of them starts before the other one starts and ends after the other one ends,

4. are disjoint with enough rest duration in between,

where only the last case is allowed in a feasible solution. As an example consider five

requirements to which an employee e can be assigned, i.e. r1, r2, r3, r4, r5 ∈ R(e). Let start

and end times plus the rest periods for the requirements be given in Table 2, where we

assume that t1 < t2 < · · · < t8. Figure 1 shows the five requirements on the continuous

Table 2: Requirement data for the illustrative example
Requirements Starting time, Sr Finishing time plus rest period, Fer + ber

r1 t1 t4
r2 t2 t7
r3 t3 t6
r4 t5 t8
r5 t5 t8

time scale. It can be seen that r4 and r5 start and end at the same time (Case 1), r1 and r2

partially overlap (Case 2), r2 starts before r3 and ends after r3 (Case 3) and r1 and r4 are

disjoint with enough rest duration in between (Case 4).

5r

time
1t 2t 3t 4t 5t 6t 7t 8t

1r

2r
3r

4r

Figure 1: Requirement times for the illustrative example
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We analyze pairs of requirements that each employee can potentially be assigned to, and

generate constraints (2) to eliminate solutions that assign employees to requirements that

do not satisfy the fourth case:

xer̄ + xer̂ ≤ 1 ∀e ∈ E, r̂, r̄ ∈ R(e), r̂ 6= r̄, Sr̄ ≤ Sr̂ ≤ Fer̄ + ber̄. (2)

Constraints (2) enforce that if employee e is assigned to requirement r̄, then e cannot be

assigned to another requirement r̂ that starts after r̄ but before r̄ ends and enough time for

rest passes. Note that (2) are enough to handle the first three cases due to the symmetry

of r̄ and r̂. On the example represented by Figure 1, the following set of constraints are

generated:

xe1 + xe2 ≤ 1, xe1 + xe3 ≤ 1, xe2 + xe3 ≤ 1, xe2 + xe4 ≤ 1,

xe2 + xe5 ≤ 1, xe3 + xe4 ≤ 1, xe3 + xe5 ≤ 1, xe4 + xe5 ≤ 1.

Note that constraints (2) are written for pairs of requirements, and therefore there is an

O(|E||R|2) of such constraints. We will discuss a way of improving these constraints in

Section 4.1.

Recall that each employee has a contracted amount of time for each CTI w ∈ W (e).

While over or under utilization of the employee is possible, it is desired for each employee

to work as close as possible to their contracted time. We define a continuous variable twe

to keep track of the total amount of time employee e is scheduled to work within CTI

w ∈ W (e). Similarly, we define continuous variables owe and uw
e that measure the amount of

over and under utilizations associated with e in w, respectively. Constraints (3) relate t- and

x-variables, where dwer is a parameter that represents the portion of time that requirement

r ∈ R(e) coincides with w ∈ W (e). Formally, dwer = max(0,min(Fer, F
w) − max(Sr, S

w)).

Note that dwer = Fer − Sr if r starts and ends within the same w. Recall that our definition

of requirement assumes that each requirement is associated with only one employee. We use

the dwer-parameter to model requirements overlapping with multiple CTIs. As an example,

assume that a requirement is defined between Week 1 Sunday 10 pm and Week 2 Monday

3 am, and there is a CTI for each week that represents weekly working hours. In this case,

dwer-parameters specify that two hours of the working time are associated with Week 1’s CTI

and three hours are associated with Week 2’s CTI. Constraints (4) enforce the allocation

of assigned working time among contracted time, and over and under utilizations. Finally,

constraints (5) limit the total working time within CTI w by dmax
ew . dmax

ew can be a contract
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parameter to limit overtime, can represent the total length of w, or it can correspond to the

maximum amount of time that an employee can work within a day or week as enforced by

government regulations and labor union rules.

twe =
∑

r∈R(e)

dwerxer ∀e ∈ E,w ∈ W (e) (3)

twe − owe + uw
e = cwe ∀e ∈ E,w ∈ W (e) (4)

twe ≤ dmax
ew ∀e ∈ E,w ∈ W (e) (5)

An important issue in employee scheduling is to ensure fairness among employees with

respect to working on weekends and other holidays. We denote the set of holidays within the

planning horizon by H and the set of holidays that employee e can work on by H(e) ⊆ H.

We define yhe for each e ∈ E, h ∈ H(e) to indicate whether e is assigned to work during

holiday h. Constraints (6) relate yhe -variables with x-variables. We also define variable ye to

count the total number of holidays that e is assigned to work and represent them in terms

of yhe -variables in (7).

yhe ≥ xer ∀e ∈ E, h ∈ H(e), r ∈ R(e) ∩R(h) (6)

ye =
∑

h∈H(e)

yhe ∀e ∈ E (7)

Note that yhe - and ye-variables can be relaxed as continuous variables since the binary x-

variables force yhe - and ye-variables to binary and integer values, respectively. We also define

variables ymax
l and ymin

l , respectively, to denote the maximum and minimum number of

holidays that an employee belonging to skill level l is assigned to work. Note that we aim to

ensure fairness separately within each skill level since availability of employees for some skill

levels are highly constrained, while the average number of holidays that employees need to

work is lower for other skill levels. Constraints (8) and (9) relate ymax
l and ymin

l variables to

ye-variables.

ymax
l ≥ ye ∀l ∈ L, e : Le = l (8)

ymin
l ≤ ye ∀l ∈ L, e : Le = l (9)

Once again, ymax
l and ymin

l can be relaxed as continuous variables since objective function

(17) ensures that ymax
l = maxe:Le=l{ye} and ymin

l = mine:Le=l{ye} for all l ∈ L in an optimal
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solution.

An additional concern regarding ensuring fairness is that the number of service require-

ments that coincides with a holiday that each employee is assigned to needs to be balanced.

For this purpose we define z-variables that are analogous to the corresponding y-variables,

and enforce the following constraints:

ze =
∑

h∈H(e)

∑
r∈R(e)∩R(h)

xer ∀e ∈ E (10)

zmax
l ≥ ze ∀l ∈ L, e : Le = l (11)

zmin
l ≤ ze ∀l ∈ L, e : Le = l. (12)

We next discuss our model’s objective functions. Our first objective is to minimize

the weighted total priority of unmet requirements. This can be modeled by the following

objective:

Minimize
∑
r∈R

prfr. (13)

Even though employees can be assigned to requirements needing a lower skill level than

their own skill level, it is desired to avoid making such substitutions as much as possible.

This can be modeled by objective (14):

Minimize
∑
e∈E

∑
r∈R(e)

(Le − Lmin
r )xer. (14)

A significant goal of planning is to make assignments such that the contracted time

durations of employees are utilized while also minimizing the amount of overtime usage.

Objectives (15) and (16) minimize positive and negative deviations from the contracted

time, respectively.

Minimize
∑
e∈E

∑
w∈W (e)

owe (15)

Minimize
∑
e∈E

∑
w∈W (e)

uw
e (16)

We also define the following two objectives to ensure a balanced assignment of employees

to requirements coinciding with holidays. These objectives reflect the fairness concern of
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the management, and mathematically we formulate fairness as the difference between the

largest and smallest load among employees within the same skill group.

Minimize
∑
l∈L

ymax
l − ymin

l (17)

Minimize
∑
l∈L

zmax
l − zmin

l (18)

In our implementation, we multiply each objective by a weight that is determined by the

decision maker and minimize a weighted combination of these objectives. Each combination

of weights is considered a scenario as described in detail in Section 5, which can be analyzed

and compared to other scenarios in terms of key performance indicators.

4 Model Improvements

In this section we discuss how the model described in the previous section can be improved.

We first observe that the rest constraints (2) dominate the size of the formulation. Recall

that (2) are written for each employee and pairs of requirements that the employee cannot

be assigned to without violating the rest constraint. There is an O(|E||R|2) number of such

constraints and they can be generated in O(|E||R|2) time. Note that the number of such

constraints grows rapidly as the number of employees |E| and the number of requirements |R|
increase and can reach hundreds of thousands for a medium size company employing ≈ 50

employees and for a relatively short planning horizon, where the number of requirements is

≈ 500. As we will describe next, a reformulation allows the number of rest constraints to be

reduced substantially while also significantly tightening the formulation. We also propose

symmetry breaking constraints and valid inequalities to enhance solvability of our model.

4.1 Reformulation of the Rest Constraints

Consider an employee e ∈ E. Let us represent each requirement in R(e) by a node in an

undirected graph G(e), where we add an edge (r̄, r̂) if and only if assigning both r̄ and r̂ to

e violates the rest constraint. We observe that any feasible assignment of e to requirements

in R(e) corresponds to an independent set (also called node packing or stable set) on G(e).

The problem of finding an independent set of maximum cardinality is called the maximum

independent set problem, and is known to be NP-Hard (Garey and Johnson, 1979). The
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maximum independent set problem has been studied extensively from graph theoretical and

mixed-integer programming points of view (e.g., Beigel, 1999; Johnson et al., 1988; Padberg,

1973). Constraints (2) correspond to a natural, edge-based formulation of the independent

set problem given in Padberg (1973). Let C denote a clique in G(e), which is defined as

a subset of nodes that have edges between all pairs of nodes. In our problem, a clique

corresponds to a subset of requirements such that no two requirements in the clique can

be assigned to the same employee without violating the rest constraints. The following

constraint is valid for any clique C, and is facet-defining if C is maximal (see Padberg,

1973): ∑
r∈C

xer ≤ 1. (19)

Since a pair of adjacent nodes forms a clique consisting of two nodes, constraints (2) are

special cases of (19). Furthermore, a constraint (19) written for clique C is dominated by

a constraint of the same type written for clique C ′ if C ⊂ C ′. Therefore, it is enough to

consider constraints (19) only for maximal cliques, which are not contained in any other

clique. Let C(e) denote the set of all maximal cliques of G(e). Then, the rest constraints (2)

can be replaced by ∑
r∈C

xer ≤ 1 ∀e ∈ E,C ∈ C(e), (20)

which yields a significantly tighter formulation (see also Butenko, 2003). A potential concern

is that in general there is an exponential number of maximal cliques in a graph and cutting-

plane algorithms are often needed to solve the resulting formulation. However, as we will

show next, the structure of our problem allows us to efficiently generate all constraints (20).

4.2 Enumerating All Maximal Cliques

Let t denote an arbitrary time instant within the planning horizon. Consider an employee

e and let C(e, t) denote the set of requirements whose start time is before t and finish time

plus the rest duration is after t. Formally, we define

C(e, t) = {r : r ∈ R(e), Sr ≤ t < Fer + ber}. (21)

Note that no two requirements in C(e, t) can be assigned to e without violating the rest

constraint. Hence, by definition, C(e, t) is a clique in G(e). In principle, we can identify

all cliques of G(e) by sweeping t through the planning horizon. Note that C(e, t) = C(e, t′)
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for any t′ > t if no requirement has a start time or end time plus rest duration between

t and t′. In other words, C(e, t) = C(e, t′) if there exists no r such that t < Sr ≤ t′ or

t ≤ Fer + ber < t′. Therefore, it is sufficient to consider only time instants t corresponding

to Sr and Fer + ber for some r to enumerate all cliques. Based on these observations, we

propose an algorithm in the spirit of discrete event system simulation approach, in which

each “arrival” event corresponds to the start time of a requirement and each “departure”

event corresponds to the finish time of the requirement plus the rest period. Algorithm 1

formally defines our approach for generating all maximal cliques.

Table 3: Execution of Algorithm 1 on the illustrative example
Event C (All maximal cliques) C (Current clique) flag

Initialization ∅ ∅ 0
(r1, t1, Arrival) ∅ {r1} 1
(r2, t2, Arrival) ∅ {r1, r2} 1
(r3, t3, Arrival) ∅ {r1, r2, r3} 1

(r1, t4, Departure) {(r1, r2, r3)} {r2, r3} 0
(r4, t5, Arrival) {(r1, r2, r3)} {r2, r3, r4} 1
(r5, t5, Arrival) {(r1, r2, r3)} {r2, r3, r4, r5} 1

(r3, t6, Departure) {(r1, r2, r3), (r2, r3, r4, r5)} {r2, r4, r5} 0
(r2, t7, Departure) {(r1, r2, r3), (r2, r3, r4, r5)} {r4, r5} 0
(r4, t8, Departure) {(r1, r2, r3), (r2, r3, r4, r5)} {r5} 0
(r5, t8, Departure) {(r1, r2, r3), (r2, r3, r4, r5)} ∅ 0

Table 3 shows the steps of Algorithm 1 on the illustrative example given in Figure 1.

Algorithm 1 detects maximal cliques (r1, r2, r3) and (r2, r3, r4, r5). Hence, our clique-based

rest constraints (20) for employee e can be written as:

xe1 + xe2 + xe3 ≤ 1

xe2 + xe3 + xe4 + xe5 ≤ 1.

Recall that eight constraints are needed to enforce the original rest constraints (2) on the

same problem instance.
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Algorithm 1 EnumerateMaximalCliques(e)

Input: e ∈ E {Current employee}
{This algorithm enumerates all maximal cliques associated with employee e ∈ E}
C(e)← ∅ {C(e) represents the set of all maximal cliques associated with e}
EL← {(r, Sr, Arrival) : r ∈ R(e)} ∪ {(r, Fer + ber, Departure) : r ∈ R(e)}
{EL represents the list of events to be considered, where each event is represented as a
triplet of form (associated requirement, event time, event type), and an Arrival and a
Departure event is associated with each requirement.}
sort EL in nondecreasing order of event time, breaking ties by placing Departure events
before Arrival events.
C ← ∅ {C represents the current clique}
flag ← 0 {flag = 1 indicates that the previously processed event was an Arrival event}
for all (r, time, type) ∈ EL do

if type = Arrival then
C ← C ∪ {r}
flag ← 1

else
if |C| > 1 and flag = 1 then
{C represents a maximal clique}
C(e)← C(e) ∪ C

end if
C ← C − {r}
flag ← 0

end if
end for
return C(e)
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The most expensive step in Algorithm 1 is the sorting step. Therefore, the algorithm

executes in O(|R| log |R|) time for each employee. Since no cliques are generated while pro-

cessing Arrival events and at most one clique is generated while processing each Departure

event, O(|R|) cliques are generated for each employee. Therefore, the total number of con-

straints (20) is O(|E||R|) and they can be generated in O(|E||R| log |R|) time. Comparing

our clique-based rest constraints (20) with the original rest constraints (2), we observe that

1. The number of constraints needed is reduced from O(|E||R|2) to O(|E||R|),

2. The amount of time needed to generate the rest constraints is reduced from O(|E||R|2)

to O(|E||R| log |R|),

3. The formulation is significantly tightened since (20) correspond to non-dominated,

facet-defining inequalities,

4. Constraints (20) define specially ordered sets of type 1 (SOS1) on the corresponding x-

variables, which can be exploited by integer programming solvers to apply specialized

branching rules (see Wolsey, 1998).

4.3 Breaking Symmetry

It is well known that existence of symmetry in the formulation can make integer programming

problems very difficult to solve. See Sherali and Smith (2001) for background information

on symmetry breaking in integer programming and Punnakitikashem et al. (2008) for an

application on a nurse scheduling problem. Symmetry often results from the existence of

indistinguishable objects that are modeled explicitly in the formulation. If symmetry exists

in the formulation, equivalent solutions can be obtained from each other by swapping values

of decision variables corresponding to the indistinguishable objects. Recall that the class

of problems that we consider have employee-specific contracts, which significantly reduces

symmetry. However, we observe that there is still some symmetry in our formulation. In

particular, consider two employees ê and ē belonging to the same skill level Le. Assume that

requirements r̂ and r̄ start and end at the same time, and that their minimum required skill

levels are equal to a common skill set Lmin
r ≤ Le. In this case, if ê is assigned to r̂ and ē is

assigned to r̄, a symmetric solution can be obtained by simply swapping the assignments. In

order to eliminate such symmetric solutions, let us define a unique ID for each requirement,

which we denote by IDr,∀r ∈ R, and for each employee, which we denote by IDe. Then,
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we can add the symmetry breaking constraints (22):

xêr̄ + xēr̂ ≤ 1, ∀ê, ē ∈ E, r̂, r̄ ∈ R(ê) ∩R(ē), (22)

Sr̂ = Sr̄, Fer̂ = Fer̄, L
min
r̂ = Lmin

r̄ , IDê < IDē, IDr̂ < IDr̄.

4.4 Valid Inequalities

Valid inequalities are widely used to improve the solvability of integer programming formula-

tions by eliminating some solutions while ensuring that at least an optimal solution remains

within the feasible region. A class of valid inequalities can be derived for our problem by

noting that substitution among employees having different skill levels needs to be avoided if

possible. Consider two employees ê and ē ∈ E such that Lê > Lē. Similar to our symmetry

breaking rule, let r̂ and r̄ be two requirements that start and end at the same time, with

Lmin
r̂ > Lmin

r̄ . Then, employee ê has to be assigned to requirement r̂ in an optimal solution.

We can write this observation as a valid inequality as follows:

xêr̄ + xēr̂ ≤ 1, ∀ê, ē ∈ E,Lê > Lē (23)

r̂, r̄ ∈ R(ê) ∩R(ē), Sr̂ = Sr̄, Fer̂ = Fer̄, L
min
r̂ > Lmin

r̄ .

4.5 Improved Model

Our improved model, which uses the improved rest constraints (20) instead of (2) and adds

symmetry breaking constraints (22) and valid inequalities (23) can be summarized as:

Minimize (13)–(18)

subject to: (1), (3)–(12), (20)–(23)

xer ∈ {0, 1} ∀e ∈ E, r ∈ R(e)

fr ≥ 0 ∀r ∈ R

twe , o
w
e , u

w
e ≥ 0 ∀e ∈ E,w ∈ W (e)

ye, ze ≥ 0 ∀e ∈ E

yhe ≥ 0 ∀e ∈ E, h ∈ H(e)

ymax
l , ymin

l , zmax
l , zmin

l ≥ 0 ∀l ∈ L.
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5 Implementation

We implemented a decision support system based on the mixed-integer programming formu-

lation described in the previous sections for a large health-care organization in Belgium. The

organization has approximately 1500 employees in 17 locations, which are organized in three

main regions. Figure 2 shows the organizational structure of the health-care organization.

In order to assess the viability of our approach for a pilot study, we obtained data from the

organization representing one of the larger locations. Our decision support system was im-

plemented using ICRON Advanced Planning and Scheduling system (www.icrontech.com).

ICRON provides a visual algorithm modeling environment that is based on the object-

oriented design paradigm. It has extensive support for database and ERP systems integra-

tion as well as interfaces to various mixed-integer programming solvers including GLPK,

Cbc, CPLEX and Gurobi.
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(South)

 

Region
(North)

 

Location
 

Location
 

Location
 

Location
 

Location
 

Location
 

Location
 

Location
 

Location
 

Location
 

Team
 

Team
 

Team
 

Location
 

Figure 2: Organizational structure of the health-care organization

To obtain a realistic estimate of the effectiveness of our approach in a rolling horizon,

we obtained 10 snapshots of the planning database over a time span of two months in 2014.

While contents of these data sets are correlated, they provide sufficiently accurate informa-

tion about the magnitude and dynamics of the planning problem. There are approximately
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100 employees in the location that we considered for our pilot study. These employees are

organized in five “teams,” where each team consists of approximately 20 employees. Our

analysis revealed that the planning problem can be separated over teams. Therefore, in-

stead of solving a single optimization problem over 100 employees, a separate problem can

be solved for each team. Hence, the size of the optimization problem to be solved is sig-

nificantly reduced. Each data set contains approximately 3500 service requirements over a

four-month planning horizon. Requirements have various lenghts ranging from 30 minutes

to 8 hours. Employees are organized around ten skill levels and highly skilled employees

are eligible for up to 800 requirements. Each employee has approximately 200 CTIs within

the planning horizon representing daily, weekly, monthly working hour limits and employee

unavailabilities. The employee assignment problem for each team consists of approximately

15,000 decision variables, out of which approximately 12,000 are binary assignment variables.

Our initial formulation based on our original rest constraints (2) takes several minutes

to generate and contains approximately 55,000 constraints. During our computational tests

that we performed on a PC with 4 GB memory and 2.13 GHz CPU using real problem

data, we observed that the initial optimality gap with the original rest constraints (2) was

40%-50% on average, and commercial optimization solvers were able to reduce the optimality

gap to 20%-25% after 30 minutes of computational time. On the other hand, our improved

model based on our clique-based rest constraints (20) contains approximately only 10,000

constraints on the same data set. Our tests showed that it takes less than one minute to

generate the model, and solutions within 1% of optimality can be found using default options

of commercial solvers within one minute for most problem instances. Hence, the planning

problems for all teams can be solved within approximately 15 minutes.

Following the pilot study, our decision support system has been extended into a full-

fledged employee scheduling and dispatching system. Figure 3 represents the architecture of

our decision support system in relation to the organization’s existing information technology

landscape. Unlike the initial implementation of our decision support system as a standalone

application in the pilot phase, its final implementation consists of several components. The

distinction of data and application logic is achieved by having separate environments for

database and ICRON. The database environment contains a Planning Database, which is

a Microsoft SQL Server database. Planning database stores planning-related information

such as employee assignments, planning scenarios and key performance indicators (KPI) in

addition to providing an integration point for existing backoffice systems that store global

employee data such as employee contracts and availability, service requirements, holiday
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Backoffice Systems

ICRON Clients
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Figure 3: Architecture of our decision support system
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calendars, etc. Planning Module, which has been implemented in ICRON, is based on our

optimization model. It reads information about employees such as skill levels and contract

details, service requirements and various business rules from the Planning Database. It

then processes these pieces of data to generate an object model of the planning problem in

computer’s memory, in which each employee, service requirement, etc. is represented as an

object. Next, various relationships between these objects (such as the set of requirements

that can be performed by each employee) are constructed. Planning Module then generates

the mathematical programming formulation given in Section 4.5, passes it to the selected

solver and then reads the solution returned by the solver. In the organization there are

approximately 100 planners. Each planner is responsible of managing a number of teams in

a location. More than one planner may be assigned to a team depending on the size and the

dynamics of the team. Planners interact with the Planning Module via a client application,

also developed in ICRON, that visualizes the optimal solution in various formats including

Gantt charts and tabular reports.

Our decision support system allows planners to generate various scenarios and analyze

them in terms of KPIs. KPIs have been identified by the organization’s management as:

i) percentage of satisfied requirements, ii) percentage of requirements assigned to an em-

ployee whose skill level exactly matches its minimum required skill level, iii) total under-

utilized employee-hours below contracted time, iv) total overutilized employee-hours above

contracted time, v) maximum percentage difference between the largest and smallest load

among employees within the same skill group. Note that these KPIs are in alignment with

our optimization model’s objective functions (13)–(18). A set of objective function weights

that generate good schedules in practice have been determined during the implementation

project. During a planning session, planners can either use these default weights, or can

specify the priority of each KPI as a number between 0 and 1. Our DSS then calculates

normalized weights of the corresponding objective functions, runs the optimization model

and stores its solution along with KPI values as a scenario. Planners can also manually

modify a solution generated by our model, and store it as a scenario. Several scenarios

generated by choosing different KPI priorities or via manual modifications can be compared

within our DSS. This capability allows planners to rapidly generate several alternative plans

and compare them. Note that evaluating and comparing different schedules by investigat-

ing individual assignments suggested by our DSS would be very difficult. Instead, planners

evaluate schedules generated by our DSS and their manually generated schedules in terms

of KPIs listed earlier. During their training, planners learn how KPIs react to changes in
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objective weights, and use this capability to guide the system towards preferred solutions if

needed.

Once a consensus is reached between planners, the generated plan is written to the

Planning Database and is transferred to the Execution Module. Execution Module is also

implemented in ICRON, and its main responsibility is to facilitate operational level dis-

patching. The plan generated by the Planning Module may need to be modified at the

operational level due to various factors such as last-minute changes in employee availability

and service requirements, and tasks taking longer than expected to complete. Dispatchers

track the progress of plan at the operational level and make minor adjustments to the plan

as needed throughout the day. Similar to the Planning Module, Execution Module interacts

with dispatchers via a client application.

Remaining employees interact with the decision support system via the Web Module,

which is an ASP.NET application. Employees have access to their up-to-date schedules via

interactive web pages. Furthermore, they can also submit requests for holidays and their

preferences via the Web Module. Such requests and preferences are written to the Planning

Database, transferred to Planning Module and Execution Module, and are taken into account

in future planning sessions.

We have observed various advantages of the modular design of our decision support sys-

tem throughout design, implementation and roll-out phases. In particular, the fact that each

system component has distinct, well-defined roles and related user groups has enabled the

project team to work in smaller focused groups. For instance, the Planning Module is based

on our optimization model and is used by planners while the Web Module is based on web-

based reports and is used by employees who are not involved in planning. This separation of

responsibilities has allowed multiple sub-teams to work in parallel in implementation, testing

and user training.

6 Summary and Conclusion

In this paper, we discussed an employee scheduling problem that is frequently faced in

a group of health-care organizations, with flexible demand and employee availability. The

driving factor for the operating environment for these organizations is the flexibility of service

demands in terms of timing, content and length of service. In such a complex demand

environment, managing the employees with vastly different skills, which constitutes a major

operational cost item, under traditional shift structures generates an overwhelming burden
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on the budget. A resolution to this conundrum is obtained by following a recent trend in

European countries regarding employee management: flexible contracts. Flexible employee

contracts provide possibility to design the work hours of an employee around a set of work

principles rather then around a relatively static shift structure.

We proposed an integer programming model to solve the employee scheduling problem

that arises in this context: demand is flexible and flexible employee contracts define the

availability of employees. In our model, demand for a service is defined as a service require-

ment that has a starting time, a finishing time, a priority and a minimum skill level required

to perform that service. Employees are assigned to these service requirements based on their

skill levels and the conditions set by their contracts. Our objectives are minimizing weighted

unsatisfied service requirements, maximizing the utilization of contracted hours, maximizing

employee satisfaction by assigning requirements that are consistent with their skill levels

and maximizing fairness between employees by making balanced work assignments during

holidays.

Our model diverges from the main line of research in the literature in two basic proper-

ties: firstly, we consider a continuous time scale in the temporal definitions regarding service

requirements and employee contracts. The general approach in the literature is to discretize

time into buckets. Having large time buckets reduces the expressiveness of the model in

representing the temporal constraints and variables; whereas small buckets increase the size

of the model and prohibits efficient solution procedures. Our approach in modeling the time

eliminates such difficulties. The second novel property of our model is that we do not restrict

the assigned working times of an employee based on a shift structure. Availability restric-

tions of the employee is determined by the employee contracts. Likewise, we make optimal

work assignment decisions based on the work and rest conditions imposed by the contracts.

Hence, even without an underlying shift structure, our model generates an applicable and

satisfactory work environment for both the service organization and the flexible employee.

In addition to a basic integer programming model, we also proposed a number of re-

formulations to tighten and reduce the size of the formulation so that it can be used to

efficiently solve real size problems. The proposed model is implemented and tested on a

series of real size data sets provided by a large health-care organization in Belgium. Our

experience shows that each instance of the integer programing model provides solutions

within 1% optimality gap under one minute, and the full employee planning process of the

health-care organization can be completed in around 15 minutes. While our model was

initially implemented as a stand-alone application, it has later been extended into a full-
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fledged employee scheduling and dispatching system for organization-wide roll-out.

Our model can be extended in a number of ways. In particular, one extension could be

to explicitly minimize irregularity between working hours of employees on their work days.

This can be realized by adding variables that count the amount of working hours assigned

to each employee for his/her working days, and adding an objective function that minimizes

the difference between the minimum and maximum assigned working hour variables.
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