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Abstract

We consider the edge-partition problem, which is a graph theoretic problem aris-
ing in the design of Synchronous Optical Networks. The deterministic edge-partition
problem considers an undirected graph with weighted edges, and simultaneously assigns
nodes and edges to subgraphs such that each edge appears in exactly one subgraph,
and such that no edge is assigned to a subgraph unless both of its incident nodes are
also assigned to that subgraph. Additionally, there are limitations on the number of
nodes and on the sum of edge weights that can be assigned to each subgraph. In
this paper, we consider a stochastic version of the edge-partition problem in which we
assign nodes to subgraphs in a first stage, realize a set of edge weights from a finite
set of alternatives, and then assign edges to subgraphs. We first prescribe a two-stage
cutting plane approach with integer variables in both stages, and examine computa-
tional difficulties associated with the proposed cutting planes. As an alternative, we
prescribe a hybrid integer programming/constraint programming algorithm capable of
solving a suite of test instances within practical computational limits.

1 Introduction

We begin by describing the edge-partition problem of Goldschmidt et al. (2003), which is

defined on an undirected graph G(N,E). In the deterministic edge-partition problem, we

create a set K of (possibly empty) subgraphs of G such that each edge is contained in exactly

one subgraph, subject to certain restrictions on the composition of the subgraphs. These
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restrictions include the stipulations that an edge cannot be assigned to a subgraph unless

both of its incident nodes belong to the subgraph, and that no more than r nodes can be

assigned to any subgraph, for some r ∈ Z
+. Additionally, each edge (i, j) ∈ E has a positive

weight of wij, and the sum of edge weights assigned to each subgraph cannot exceed some

given positive number b. The objective of the problem is to minimize the sum of the number

of nodes assigned to each subgraph.
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Figure 1: (a) An instance of the deterministic edge-partition problem. (b) A solution with
|K| = 3, r = 3, b = 20.

Figure 1 illustrates the deterministic edge-partition problem. The graph G and the

corresponding edge weights are shown in Figure 1a. Figure 1b shows a feasible solution that

partitions G into |K| = 3 subgraphs, where the number of nodes in each subgraph is limited

by r = 3, and the total weight assigned to each subgraph is limited by b = 20. Note that the

degree of node 4 is three, which implies that it must be assigned to at least two subgraphs,

or else there would be at least 4 > r nodes in a subgraph. Similarly, node 5 must be assigned

to at least two subgraphs. Since nodes 4 and 5 are assigned to two subgraphs, and every

other node is assigned to a single subgraph, the solution represented by Figure 1b is optimal.

Goldschmidt et al. (2003) discuss the edge-partition problem (with deterministic weights)

in the context of designing Synchronous Optical Network (SONET) rings. In the SONET

context, each edge (i, j) ∈ E represents a demand pair between two client nodes, and the

weight wij represents the number of communication channels requested between nodes i and

j. All telecommunication traffic is carried over a set of SONET rings, which are represented

by subgraphs in the edge-partition problem. Since each demand must be carried by exactly

one ring, edges must be partitioned among the rings. (Note that the term “ring” describes

only the physical SONET routing structure, and does not place any restrictions on topological

properties of demand edges included on a ring. See, e.g., Goldschmidt et al. (2003) for more
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details.) SONET rings are permitted to carry communication between nodes only if those

nodes have been connected to the ring by equipment called Add-Drop Multiplexers (ADMs).

There are technical limits on the number of ADMs that can be assigned to each ring (e.g.,

r), and on the total amount of channels (e.g., b) that can be assigned to a ring. Since ADMs

are quite expensive, ring networks are preferred that employ as few ADMs as possible, which

echoes the edge-partition problem’s objective of minimizing the sum of nodes assigned to

each subgraph.

The primary contribution by Goldschmidt et al. (2003) is an approximation algorithm

for a specific case of the edge-partition problem in which all wij are equal to one. Sutter

et al. (1998) propose a column-generation algorithm for this problem, and Lee et al. (2000)

employ a branch-and-cut algorithm on a formulation that we adapt for this paper. For the

case in which the weights on the edges can be split among multiple rings, Sherali et al. (2000)

prescribe a mixed-integer programming approach augmented by the use of valid inequalities,

anti-symmetry constraints, and variable branching rules. Smith (2005) formulates the deter-

ministic version of the edge-partition problem as a constraint program, and examines several

issues regarding symmetry and search algorithm design. Specifically, she shows how adding

aggregate variables that represent the number of node copies (similar to our approach in

Section 3) can improve performance.

In this paper, we consider a version of the edge-partition problem where the edge weights

are uncertain, and are only realized after the node-to-subgraph assignments have been made.

As we show in Section 2, this framework allows us to design more robust solutions than those

in the literature, which are virtually all applied to deterministic data. We seek a minimum-

cardinality set of node-to-subgraph assignments, such that there exists an assignment of

edges to subgraphs satisfying the aforementioned subgraph restrictions with a pre-specified

high probability. Such a probabilistic constraint is extremely hard to deal with in an op-

timization framework. One approach, known as scenario approximation (cf. Calafiore and

Campi (2005); Luedtke and Ahmed (2008); Nemirovski and Shapiro (2005)) is to draw inde-

pendent identically distributed (i.i.d.) realizations of the edge weights (called scenarios) and

require the node-to-subgraph assignments to admit a feasible edge-to-subgraph assignment

in each scenario. It can be shown that, with a sufficiently large scenario set, a solution

to this scenario approximation solution is feasible to the true probabilistically constrained

problem with high confidence. In this paper we develop algorithmic approaches for solv-

ing the scenario approximation corresponding to the discussed probabilistically constrained
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edge-partition problem. This scenario approximation will be referred to as the stochastic

edge-partition problem.

Relatively little work has been done in SONET network design when the edge weights

are uncertain. Smith et al. (2004) consider the SONET ring design problem in which edge

demands can be split among multiple rings, and propose a two-stage integer programming

algorithm. The demand splitting relaxation allows the second-stage problems to be solved

as linear programs, and thus standard Benders cuts can easily be derived from the second-

stage recourse problems. However, in this paper we have second-stage integer programs from

which dual information cannot be readily obtained.

The edge-partition problem can also be approached using stochastic integer programming

theory. For problems having binary first-stage variables and mixed-integer second-stage vari-

ables, such as the problem studied in this paper, a well-known decomposition approach is

the integer L-shaped method (Laporte and Louveaux, 1993). This method approximates

the second-stage value function by linear “cuts” that are exact at the binary solution where

the cut is generated, and are under-estimates at other binary solutions. Typical integer

programming algorithms progress by solving a sequence of intermediate linear programming

(LP) problems. Using disjunctive programming techniques, it is possible to derive cuts from

the solutions to these intermediate LPs that are valid under-estimators of the second-stage

value function at all binary first-stage solutions (Sherali and Fraticelli, 2002; Sen and Higle,

2005). This avoids solving difficult integer second-stage problems to optimality in all itera-

tions of the algorithm, providing significant computational advantage. Scenario-wise decom-

position methods have also been proposed (Carøe and Schultz, 1999) as an alternative to the

above stage-wise decomposition approaches. Here copies of the first-stage variables are made

corresponding to each scenario and are linked together via non-anticipativity constraints.

Our proposed methodology draws on constraint programming and stochastic integer pro-

gramming theory. Hybrid algorithms of this nature have recently been successfully employed

to solve notoriously difficult problems. Jain and Grossmann (2001) and Bockmayr and Pis-

aruk (2006) devise hybrid integer programming/constraint programming algorithms for solv-

ing machine scheduling problems. Thorsteinsson (2001) proposes a framework for integrating

integer programming and constraint programming approaches. Hooker and Ottosson (2003)

extend the Benders decomposition framework so that constraint logic programs can be used

as subproblems to generate cuts that are added to a mixed-integer linear master problem.

A recent work by Hooker (2007) uses logic-based Benders decomposition to solve several
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planning and scheduling problems.

The remainder of this paper is organized as follows. In Section 2, we develop a mixed-

integer programming formulation for the stochastic edge-partition problem, and provide

cutting planes that can be used within a two-stage decomposition algorithm. In Section 3,

we prescribe an alternative three-stage algorithm to overcome the computational difficulties

associated with the weakness of the proposed cutting planes. We compare the efficacy of

these algorithms in Section 4 on a set of randomly generated test instances. Finally, we

conclude this paper in Section 5.

2 Formulation and Cutting Plane Approach

Let us introduce binary decision variables xik = 1 if node i is assigned to subgraph k and 0

otherwise, ∀i ∈ N, k ∈ K. For this formulation, we specify a value of |K| that is sufficiently

large to ensure that a feasible solution exists to the problem (as discussed in Section 4). We

denote the vector of node-to-subgraph assignments by x. Let w̃ denote the random vector

of edge weights with known distribution, and w denote a realization with components wij.

We define binary decision variables yijk = 1 if edge (i, j) is assigned to subgraph k. Given

an allowed violation probability ǫ ∈ (0, 1) the probabilistic edge-partition problem can be

formulated as follows:

Minimize
∑

i∈N

∑

k∈K

xik (1)

subject to
∑

i∈N

xik ≤ r ∀k ∈ K (2)

xik ∈ {0, 1} ∀i ∈ N, k ∈ K (3)

Pr {G(x, w̃) ≤ b} ≥ 1 − ǫ (4)

where

G(x,w) = Minimize z (5)

subject to
∑

k∈K

yijk = 1 ∀(i, j) ∈ E, (6)

∑

(i,j)∈E

wijyijk ≤ z ∀k ∈ K (7)

yijk ≤ xik, yijk ≤ xjk ∀(i, j) ∈ E, k ∈ K (8)

yijk ∈ {0, 1} ∀(i, j) ∈ E, k ∈ K. (9)
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The objective (1) minimizes the total number of nodes assigned to subgraphs. Constraints

(2) limit the number of nodes assigned to each subgraph. Constraints (6) require that the

edges be partitioned among the subgraphs. Constraints (7) compute the maximum assigned

weight over all subgraphs. Constraints (8) require that no edge can be assigned to a sub-

graph unless both of its incident nodes are assigned to that subgraph, and (3) and (9) state

logical restrictions on the variables. By convention, the optimal value G(x,w) of the integer

program (5)–(9) is +∞ if the problem is infeasible. Given a node-to-subgraph assignment

vector x and edge weight vector w there exists a feasible edge-to-subgraph assignment if

and only if G(x,w) ≤ b, i.e., the weight assigned to any subgraph does not exceed b. Thus

the probabilistic edge partition problem (1)–(4) seeks a minimum cost node-to-subgraph as-

signment such that the probability that there will be a feasible edge-to-subgraph assignment

when the edge weights are realized is sufficiently high.

To build a scenario approximation of the probabilistic edge partition problem (1)–(4),

we generate an i.i.d. sample of w̃ denoted by {wq}q∈Q (each realization will be called a

scenario). The scenario approximation is then:

Minimize
∑

i∈N

∑

k∈K

xik (10)

subject to
∑

i∈N

xik ≤ r ∀k ∈ K (11)

xik ∈ {0, 1} ∀i ∈ N, k ∈ K (12)

G(x,wq) ≤ b ∀q ∈ Q, (13)

where the probabilistic constraint is replaced by the deterministic requirement that there

must be a feasible edge-to-subgraph assignment for each scenario. As mentioned before we

refer to the above problem as the stochastic edge partition problem. The following result,

which follows from the general results in Luedtke and Ahmed (2008), provides justification

for considering the scenario approximation.

Proposition 1. Let a desired confidence level δ ∈ (0, 1) be given. If the sample size |Q|

satisfies

|Q| ≥
1

ǫ

[

|N ||K| ln 2 − ln δ

]

(14)

then any feasible solution to the stochastic edge partition problem (10)–(13) is feasible to

the probabilistic edge partition problem (1)–(4) with probability at least 1 − δ.
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Proof. Let X denote the set of solutions satisfying the deterministic constraints (2) and

(3), let Xǫ denote the set of feasible solutions to the probabilistic edge partition problem

(satisfying (2)–(4)), and let XQ denote the set of feasible solutions to the stochastic edge

partition problem corresponding to a sample Q (satisfying (11)–(13)). We want to bound

|Q| such that Pr{XQ ⊆ Xǫ} ≥ 1 − δ.

Consider a solution x ∈ X \ Xǫ, i.e., Pr{G(x, w̃) ≤ b} < 1 − ǫ. Then x ∈ XQ if

and only if G(x,wq) ≤ b for all q ∈ Q. Since the wq for q ∈ Q are i.i.d. it follows that

Pr{x ∈ XQ} ≤ (1 − ǫ)|Q|. Now

Pr{XQ 6⊆ Xǫ} = Pr{∃ x ∈ XQ s.t. Pr{G(x, w̃) ≤ b} < 1 − ǫ}
≤

∑

x∈X\Xǫ Pr{x ∈ XQ} ≤ |X \ Xǫ|(1 − ǫ)|Q| ≤ |X|(1 − ǫ)|Q|.

Thus Pr{XQ ⊆ Xǫ} ≥ 1 − |X|(1 − ǫ)|Q|. To guarantee that Pr{XQ ⊆ Xǫ} ≥ 1 − δ we need

|X|(1 − ǫ)|Q| ≤ δ or equivalently

|Q| ≥

[

ln |X| − ln δ

]/

ln

(

1

1 − ǫ

)

.

The claimed bound then follows by noting that |X| ≤ 2|N ||K| and ln(1/(1 − ǫ)) ≥ ǫ. 2

The above result suggests that we can obtain feasible solutions to the probabilistically

constrained edge-partition problem by solving the stochastic edge partition problem with

a “not too large” number of scenarios. Key to this sampling-based approach is the ability

to efficiently solve stochastic edge partition instances having a modest number of scenarios,

which is the motivation of this paper.

Next we describe an extensive form model of the stochastic edge partition problem. Let

Eq be the set of edges with non-zero weights under scenario q. We define binary decision

variables yq
ijk = 1 if edge (i, j) is assigned to subgraph k in scenario q and 0 otherwise,

∀q ∈ Q, (i, j) ∈ Eq, and k ∈ K. The stochastic edge-partition problem can then be

formulated as follows:

Minimize
∑

i∈N

∑

k∈K

xik (15)

subject to
∑

k∈K

yq
ijk = 1 ∀q ∈ Q, (i, j) ∈ Eq (16)

∑

i∈N

xik ≤ r ∀k ∈ K (17)

∑

(i,j)∈Eq

wq
ijy

q
ijk ≤ b ∀q ∈ Q, k ∈ K (18)

7



yq
ijk ≤ xik, yq

ijk ≤ xjk ∀q ∈ Q, (i, j) ∈ Eq, k ∈ K (19)

xik ∈ {0, 1} ∀i ∈ N, k ∈ K (20)

yq
ijk ∈ {0, 1} ∀q ∈ Q, (i, j) ∈ Eq, k ∈ K. (21)

Observe that if one were to solve the above extensive form problem given by (15)–(21),

integrality restrictions need only be imposed on the y-variables, which would, in turn, enforce

the integrality of the x-variables at optimality. Note, also, that given a fixed set of x-

values, this problem decomposes into |Q| separable integer programs, where the subproblem

corresponding to scenario q ∈ Q is given by:

Sq(x) = Maximize 0 (22)

subject to (16), (18), (19), and (21). (23)

Under the foregoing model, it is useful to define vijk = min{xik, xjk} as a part of the

first-stage decision variables, ∀(i, j) ∈ E, k ∈ K. The presence of these variables will allow

us to formulate stronger cutting planes than would be possible with just x-variables (see

also Smith et al. (2004)). Assuming that ∪q∈QEq = E the extensive form problem is now

equivalent to:

Minimize
∑

i∈N

∑

k∈K

xik (24)

subject to
∑

i∈N

xik ≤ r ∀k ∈ K (25)

vijk ≤ xik, vijk ≤ xjk ∀(i, j) ∈ E, k ∈ K (26)
∑

k∈K

vijk ≥ 1 ∀(i, j) ∈ E (27)

xik ∈ {0, 1} ∀i ∈ N, k ∈ K (28)

F q(v) ≤ b ∀q ∈ Q, (29)

where

F q(v) = Minimize max
k∈K

{
∑

(i,j)∈Eq

wq
ijy

q
ijk} (30)

subject to
∑

k∈K

yq
ijk = 1 ∀(i, j) ∈ Eq (31)

yq
ijk ≤ vijk ∀(i, j) ∈ Eq, k ∈ K (32)

yq
ijk ∈ {0, 1} ∀(i, j) ∈ Eq, k ∈ K. (33)

8



The valid inequalities (27) require that for each edge (i, j) ∈ E, both i and j must be assigned

to some common subgraph, and will be useful in improving the computational efficacy of

the decomposition algorithm that we propose. Note that an optimal solution exists in which

vijk = min{xik, xjk}, ∀(i, j) ∈ E, k ∈ K, without enforcing integrality restrictions or lower

bounds on the v-variables.

There can exist up to |K|! − 1 alternative optimal solutions to this problem by simply

reindexing the subgraph indices. These symmetric solutions are known to impede the per-

formance of branch-and-bound algorithms (Sherali et al., 2000; Sherali and Smith, 2001).

To reduce model symmetry we can rewrite the cardinality constraints (25) (or (17) for the

extensive form problem) by using the following inequalities:

r ≥
∑

i∈N

xi1 ≥
∑

i∈N

xi2 ≥ · · · ≥
∑

i∈N

xi|K|. (34)

For a scenario q and a given vector v̂, the problem (30)–(33) is essentially an identical par-

allel machine scheduling problem to minimize makespan (P/ /Cmax) (with some assignment

restrictions). In particular, there would be |K| machines and |Eq| jobs, whose processing

times are given by wq
ij, ∀(i, j) ∈ Eq. Each job must be assigned to exactly one machine,

and the v-variables impose some restrictions on the assignments. The integer programming

scheme developed in Smith (2004) is tailored for a similar problem in which the (weighted)

number of demands that cannot be placed on one of these subgraphs is minimized (i.e.,

minimum weighted number of tardy jobs). This is not equivalent to solving a minimum

makespan problem; however, the optimal solution of F q(v̂) is no more than b if and only if

the minimum number of tardy jobs is equal to 0. If a positive lower bound to the problem

of minimizing the number of tardy jobs is established, one can terminate the subproblem

algorithm and conclude infeasibility.

We now present a cutting plane algorithm for solving (24)–(29). The scheme relaxes con-

straints (29) and adds cutting planes as necessary to enforce feasibility to the subproblems.

Let us call the problem (24)–(28) the master problem (MP).

1. Solve MP. If MP is infeasible then STOP; the problem is infeasible. Otherwise let v̂

be an optimal solution of MP.

2. For q ∈ Q, compute F q(v̂). If F q(v̂) ≤ b for all q, then STOP; the current solution is

optimal. Otherwise, continue to Step 3.
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3. Update MP by adding a cutting plane of the form (37) as presented in Remark 1, and

return to Step 1.

After a finite number of steps, the cutting plane algorithm will terminate with an optimal

solution, or will detect infeasibility.

Remark 1. Suppose F q̂(v̂) > b for some scenario q̂ and a solution vector v̂ to MP. Let Lq̂ be

a global lower bound on F q̂(v), i.e., Lq̂ ≤ F q̂(v) for all v. Also define I(v̂) = {(ijk) : v̂ijk =

1} and O(v̂) = {(ijk) : v̂ijk = 0}. The integer optimality cut proposed by Laporte and

Louveaux (1993) for this class of problems is given by

(F q̂(v̂) − Lq̂)





∑

(ijk)∈I(v̂)

vijk −
∑

(ijk)∈O(v̂)

vijk



 ≤ b + (F q̂(v̂) − Lq̂)(|I(v̂)| − 1) − Lq̂, (35)

Since Lq̂ ≤ b for any feasible instance, and since F q̂(v̂) > b by assumption, we can apply

Chvátal rounding to (35) by dividing both sides by (F q̂(v̂) − Lq̂) and rounding down to

obtain
∑

(ijk)∈O(v̂)

vijk +
∑

(ijk)∈I(v̂)

(1 − vijk) ≥ 1. (36)

However, the following inequality is also a valid cutting plane that dominates (36):

∑

(ijk)∈O(v̂)

vijk ≥ 1. (37)

To see that (37) is valid, consider a solution v′ that does not satisfy the above inequality, i.e.,

v′
ijk = 0 for all (ijk) ∈ O(v̂). Therefore, v′

ijk ≤ v̂ijk for all (ijk). Then F q(v′) ≥ F q(v̂) > b,

and v′ is not feasible. Inequality (37) dominates (36) since the left-hand-side of (37) is not

more than that of (36), and the right-hand-sides are both equal to 1. Thus, (37) serves as a

cutting plane that can be used in Step 3 of the above algorithm. 2

Another reformulation of our subproblem might admit stronger cutting planes than the

ones of the form (37). In the parlance of machine scheduling, instead of trying to minimize

the maximum makespan, we may wish to minimize the total sum of tardiness. Let ck, ∀k ∈ K

be a nonnegative variable that denotes the amount of capacity deficit in subgraph k. Then,

the problem of minimizing the total capacity deficit can be formulated as problem MTq(v)

below:

MTq(v) : T q(v) = Minimize
∑

k∈K

ck (38)
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subject to
∑

k∈K

yq
ijk = 1 ∀(i, j) ∈ Eq (39)

yq
ijk ≤ vijk ∀(i, j) ∈ Eq, k ∈ K (40)

ck ≥
∑

(i,j)∈Eq

wq
ijy

q
ijk − b ∀k ∈ K (41)

ck ≥ 0 ∀k ∈ K (42)

yq
ijk ∈ {0, 1} ∀(i, j) ∈ Eq, k ∈ K. (43)

Clearly, F q(v) ≤ b if and only if T q(v) = 0, and so we can replace master problem constraints

(29) with the restrictions that T q(v) = 0 for all scenarios q ∈ Q. If subproblems T q(v)

are used in lieu of F q(v), we would obtain (36) (directly, this time) from Laporte and

Louveaux’s integer feasibility cut. However, we can state a stronger cutting plane for a

solution vector v̂ having T q̂(v̂) > 0 for some scenario q̂, by requiring that the total amount

of additional capacity that must be allocated to the collection of subgraphs is at least T q̂(v̂).

This inequality is formally stated in the following proposition.

Proposition 2. Suppose for some solution vector v̂ and for some scenario q̂ ∈ Q, we obtain

a lower bound LB q̂(v̂) > 0 for T q̂(v̂). Then the following inequality is a valid cutting plane

for problem MP, and is at least as strong as (37):

∑

(ijk)∈O(v̂)

min{wq̂
ij, LB q̂(v̂)}vijk ≥ LB q̂(v̂). (44)

Proof. Suppose, by contradiction, that there exists a binary vector v∗ such that T q̂(v∗) =

0, but
∑

(ijk)∈O(v̂) wq̂
ijv

∗
ijk < LB q̂(v̂). Then there exists a solution (y∗, c∗) to MTq̂(v∗) having

c∗k = 0 ∀k ∈ K. We will show that the existence of such a v∗ contradicts the assumption

that LB q̂(v̂) is a valid lower bound on T q̂(v̂). We now build a solution (ŷ, ĉ) to MTq̂(v̂).

First, we construct ŷ as follows:

1. For (i, j) ∈ E q̂, if y∗
ijk = 1 and v̂ijk = 1, then set ŷijk = 1 as well.

2. For (i, j) ∈ E q̂, if y∗
ijk = 1 and v̂ijk = 0, then set ŷijk̂ = 1 for any k̂ ∈ K for which

(ijk̂) ∈ I(v̂). (Note that (ijk) ∈ O(v̂) since v̂ijk = 0.)

3. Set all other ŷijk = 0.

In other words, ŷ is constructed in two phases. In the first phase, we ensure that if edge

(i, j) was assigned to subgraph k in solution y∗, then (i, j) is assigned to k in ŷ as well,
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unless v̂ijk = 0 (prohibiting this assignment). In the second phase, if y∗
ijk = 1 but v̂ijk = 0,

then we assign (i, j) to any k̂ such that v̂ijk̂ = 1. Note that this assignment results in a

solution feasible to (39), (40), and (43). Next, let us construct ĉ. Observe that in the first

phase of assigning edges to subgraphs based on (ijk) ∈ I(v̂) for which y∗
ijk = 1, no subgraph

capacities are violated since c∗k = 0, ∀k ∈ K, and so we initialize ĉk = 0, ∀k ∈ K. In the

second phase, we guarantee feasibility to (41) (and maintain feasibility to (42)) by increasing

ĉk̂ by wq̂
ij. Thus (ŷ, ĉ) is a feasible solution to MTq(v̂).

At the end of the second phase of assignments, we have
∑

k∈K ĉk =
∑

(ijk)∈O(v̂) wq̂
ijv

∗
ijk,

since
∑

k∈K ĉk is increased by wq̂
ij only when both v∗

ijk = 1 and (ijk) ∈ O(v̂). However, by

assumption, we have that
∑

(ijk)∈O(v̂) wq̂
ijv

∗
ijk < LB q̂(v̂). Since

∑

k∈K ĉk =
∑

(ijk)∈O(v̂) wq̂
ijv

∗
ijk,

we have that
∑

k∈K ĉk < LB q̂(v̂), which contradicts the fact that LB q̂(v̂) ≤ T q̂(v̂). There-

fore, all feasible solutions must obey the inequality

∑

(ijk)∈O(v̂)

wq̂
ijvijk ≥ LB q̂(v̂),

from which (44) is readily derived. Finally, by dividing both sides of (44) by LB q̂(v̂), we see

that (44) implies (37). 2

Remark 2. In cutting plane implementations based on (37), once any scenario q̂ is found

such that the current v̂ vector is proven to be infeasible with respect to scenario q̂, a cutting

plane is generated and the master problem is re-solved. No further scenarios are tested, since

an identical cut would be generated for each infeasible scenario. However, a cutting plane

implementation based on problem (38)–(43) above with cutting planes (44) might benefit

from deriving multiple cuts for each infeasible scenario, since these cuts could be distinct. 2

Remark 3. Smith et al. (2004) explore the inclusion of “warming constraints” in the mas-

ter problem, which enforce simple necessary conditions for feasibility to SONET problems.

Denote the degree of node i ∈ N by deg(i), and the set of nodes adjacent to i by A(i).

Lee et al. (2000) show that node i must be assigned to at least
⌈

deg(i)
r−1

⌉

subgraphs, since

otherwise, more than r nodes would be assigned to some subgraph. Similarly, for scenario

q ∈ Q, the total weight associated with node i ∈ N is given by
∑

j∈A(i) wq
ij. Since the total

weight that can be assigned to a subgraph is limited by b,
⌈∑

j∈A(i) w
q
ij

b

⌉

is a lower bound on
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the number of copies of node i. We can then compute

ℓi = max

{

⌈

deg(i)

r − 1

⌉

, max
q∈Q

⌈

∑

j∈A(i) wq
ij

b

⌉}

, (45)

and impose the following valid inequalities in the master problem:

∑

k∈K

xik ≥ ℓi ∀i ∈ N. (46)

Let ı̂ denote a node having the largest lower bound, so that ℓı̂ ≥ ℓi ∀i ∈ N . Node ı̂ can be

assigned arbitrarily to subgraphs 1, . . . , ℓı̂, and we fix xı̂1 = xı̂2 = · · · = xı̂ℓı̂
= 1 accordingly.

Note that the symmetry-breaking constraints (34) need to be adjusted so that they are

enforced separately for subgraphs 1, . . . , ℓı̂, and ℓı̂ + 1, . . . , |K|. Sherali et al. (2000) show

computationally that such a variable-fixing scheme improves solvability of problem instances.

Smith et al. (2004) note that a node i cannot be assigned to a subgraph k in an optimal

solution unless an adjacent node is also assigned to the same subgraph. Therefore, we also

include the following constraints in MP:

xik ≤
∑

j∈A(i)

xjk ∀i ∈ N, k ∈ K. (47)

Smith (2005) describes valid inequalities that can be derived by analyzing the topology

of the graph. First, consider an edge (i, j) ∈ E such that ℓi = ℓj = 1. Let A(i, j) = A(i) ∪

A(j)− {i, j} denote the set of distinct nodes that are adjacent to i or j. If |A(i, j)| ≥ r − 1,

then i or j must be assigned to at least two subgraphs. Similarly, we define W q(i, j) =
∑

k∈A(i,j)(w
q
ik + wq

jk) + wq
ij, and note that if W q(i, j) > b for some q ∈ Q, then we cannot

feasibly assign nodes i and j to a single subgraph. If |A(i, j)| ≥ r − 1 or W q(i, j) > b, then

we state the following valid inequality:

∑

k∈K

xik +
∑

k∈K

xjk ≥ 3. (48)

Second, for each edge (i, j) ∈ E, suppose deg(i) ≥ r, deg(j) < r, and |A(i, j)| > 2r − 3.

Smith (2005) shows that nodes i and j collectively need to be assigned to at least four

subgraphs, which we state as:
∑

k∈K

xik +
∑

k∈K

xjk ≥ 4. (49)
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3 A Hybrid IP/CP Approach

The cutting plane algorithms presented in Section 2 are preferable to solving stochastic

edge-partition instances by the extensive form problem given by (15)–(21), as we will show

in Section 4. However, the two-stage cutting plane algorithms still suffer from several com-

putational difficulties. First, the master problem, MP, contains |N ||K| binary variables,

|E||K| continuous variables, and O(|E||K|) constraints, which results in large integer pro-

grams. Second, the linear programming relaxation of MP is quite weak for many problem

instances. Furthermore, the lower bound improves slowly as cuts of the type (37) or (44) are

added to MP in each iteration. The main reason for this slow convergence is the existence

of symmetry in MP. Inequalities (34) reduce, but do not completely eliminate, symmetric

solutions in MP. Therefore when a solution of MP is found to be infeasible to a subproblem,

MP often simply switches to a symmetric solution having the same objective function value.

On the other hand, stronger anti-symmetry constraints tend to make MP very difficult to

solve.

In this section we develop a new decomposition framework in order to remedy these

difficulties. We combat symmetry due to reshuffling of subgraphs by representing subgraphs

as configurations. A configuration c is identified by a subgraph node set Nc (we allow

Nc = ∅) and a positive integer αc, which gives the number of subgraphs having node set Nc.

A solution is represented by a configuration multiset C whose elements are pairs (Nc, αc).

We will eliminate symmetry by ensuring that no isomorphic configuration multisets (i.e.,

those that are identical after reindexing configuration indices) are encountered in our search.

A configuration multiset C satisfies the following necessary feasibility conditions.

F1:
∑

c∈C αc = |K| (partitions E into |K| subgraphs)

F2: |Nc| ≤ r, ∀c ∈ C (no subgraph contains more than r nodes)

F3: ∀(i, j) ∈ E, ∃c ∈ C such that i ∈ Nc, j ∈ Nc (for each edge (i, j), there is at least one

subgraph to which (i, j) can be assigned)

A multiset C that satisfies F1, F2, and F3 represents a feasible solution if all edges can

be partitioned on the set of subgraphs corresponding to C without violating the weight

restrictions for any scenario. Note that the number of distinct configurations in C, which

we denote |C|, will be dynamically determined in our algorithm.

We now provide an overview of our three-stage hybrid algorithm.

14



1. The first-stage problem determines (via optimal solution of a mixed-integer program)

the number of times we assign each node to the configurations in C. For instance, in

the example given in Figure 1a, we could specify that we must use two copies of nodes

4 and 5, and one copy of the other nodes.

2. In the second stage, we seek a multiset C that uses exactly the number of node as-

signments specified in the first phase and satisfies F1, F2, and F3. In the example

mentioned above, a multiset C having configurations {1, 2, 4}, {3, 4, 5}, and {5, 6}

(each with multiplicity one) could be generated based on the first-stage solution.

3. Finally, in the third stage, we determine whether C is feasible. If C is feasible then we

stop with an optimal solution. Otherwise, we return to the second stage, and generate

a different multiset meeting the stated criteria. If no such multiset exists, a cut is added

to the first-stage problem, which is then re-solved. For the example given above, the

multiset yields a feasible solution (see Figure 1b).

3.1 First-Stage Problem

For all i ∈ N , let zi be an integer variable that represents the number of copies of node i

to be used in forming configurations. We say that an |N |-dimensional vector z induces a

multiset C if C contains exactly zi copies of node i, ∀i ∈ N . The first-stage problem can

succinctly be written as:

Minimize
∑

i∈N

zi (50)

subject to z induces a feasible multiset (51)

ℓi ≤ zi ≤ |K| ∀i ∈ N (52)

zi integer, (53)

where ℓi is a lower bound on the number of copies required for node i, as given in (45).

In order to formulate the first-stage problem as an integer program, we rewrite (51) as an

exponential set of linear inequalities by considering the z-vectors that violate it. We first

need to introduce auxiliary binary variables tik, ∀i ∈ N, k = ℓi, . . . , |K|, so that tik = 1 if

zi = k. Then, given a vector ẑ that does not induce a feasible multiset, we note that no z̄

such that z̄i ≤ ẑi, ∀i ∈ N , induces a feasible multiset. Hence, at least one component of ẑ
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must be increased, and so

∑

i∈N

|K|
∑

k=ẑi+1

tik ≥ 1 (54)

is a valid inequality. Our first-stage problem can now be expressed as the following integer

program:

Minimize
∑

i∈N

zi (55)

subject to zi =

|K|
∑

k=ℓi

ktik ∀i ∈ N (56)

|K|
∑

k=ℓi

tik = 1 ∀i ∈ N (57)

∑

i∈N

|K|
∑

k=ẑi+1

tik ≥ 1 ∀ẑ ∈ Z (58)

tik binary ∀i ∈ N, k = ℓi, . . . , |K|, (59)

where Z is the set of all z-vectors that do not induce a feasible multiset. (The z-variables

are in fact unnecessary in this formulation, but we keep them for ease of exposition.) In our

algorithm we relax constraints (58) in the first-stage problem, and add them in a cutting-

plane fashion. In every iteration we solve the first-stage problem to find ẑ, and solve the

second- and third-stage problems to seek a feasible multiset induced by ẑ. If a feasible

multiset is found, then ẑ induces an optimal solution and we stop. Otherwise, we add a cut

of type (58), and re-solve the first-stage problem.

3.2 Second-Stage Problem

Our second-stage problem seeks a multiset induced by ẑ that satisfies F1, F2, and F3, using a

constraint programming search. Given a set of constraints, a set of variables, and the domain

of each variable (i.e., the set of values that each variable can take), constraint programming

seeks a value assignment to each variable that satisfies all constraints. Constraints are

propagated to reduce variable domains, which in turn trigger new constraint propagations.

When no more domain reductions are possible, the algorithm searches for a solution by fixing

a variable to a value in its domain, then recursively propagating constraints and reducing

variable domains. If the domain of a variable becomes empty during constraint propagation,
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then the algorithm backtracks. We refer the reader to Smith (1995), Lustig and Puget (2001),

and Rossi et al. (2006) for a thorough discussion of constraint programming techniques.

3.2.1 Foundations

In our second-stage algorithm, a solution corresponds to a multiset C induced by ẑ that meets

conditions F1, F2, and F3. In a solution each node i has a corresponding |C|-dimensional

distribution vector βi, which represents the number of copies of node i to be allocated to

each existing configuration in C. Note that βi
c cannot exceed αc, and that

∑

c∈C βi
c = ẑi. The

domain of a node i ∈ N is the set of possible βi-vectors that i can take. We say that a node

i is processed if we have selected its distribution vector βi. A partial multiset is constructed

by processing a subset of the nodes in N .

For instance, consider a five-node graph, and let the z-vector obtained by the first-stage

problem be ẑ = (2, 3, 1, 4, 3). Suppose that nodes 1, 2, and 3 have been processed, and the

following partial multiset with |C| = 3 has been obtained:

• N1 = ∅, α1 = 5,

• N2 = {1, 2}, α2 = 2, and

• N3 = {2, 3}, α3 = 1.

Suppose that we process node 4 by choosing its distribution vector as β̂4 = (2, 1, 1). Adding

node 4 to two of the five copies of N1 creates a new configuration N ′
1 whose node set consists

only of node 4 (with multiplicity two), and reduces the multiplicity of N1 by two. After

similarly adding one copy of node 4 to N2 and one copy of node 4 to N3, we obtain the

following partial multiset with |C ′| = 5:

• N1 = ∅, α1 = 3 (reduced α1),

• N ′
1 = {4}, α′

1 = 2 (generated from configuration 1 by adding node 4 to N1),

• N2 = {1, 2}, α2 = 1 (reduced α2),

• N ′
2 = {1, 2, 4}, α′

2 = 1 (generated from configuration 2 by adding node 4 to N2), and

• N3 = {2, 3, 4}, α3 = 1 (added node 4 to N3).

In general, when we process node i by choosing a distribution vector βi, we update the partial

multiset C as follows. For each configuration c ∈ C if βi
c = 0, then no changes are made to

c (since no copies of node i are added to c). If βi
c = αc, then we update configuration c by

setting Nc = Nc ∪ {i}. Finally, if 0 < βi
c < αc, then we create a new configuration c′ having

Nc′ = Nc ∪ {i}, αc′ = βi
c, and update configuration c by setting αc = αc − βi

c.

17



Remark 4. Recall that the configurations in a partial multiset C can be ordered in |C|!

symmetric ways. Our algorithm avoids this symmetry by generating only one such order-

ing after processing a node. Furthermore, the configuration multisets that we compute by

processing node i according to the βi-vectors in its domain must be pairwise nonisomor-

phic, since the βi-values in the domain of node i are distinct. Hence, we never encounter

isomorphic configuration multisets in the second-stage search. 2

3.2.2 Domain Expansion

Processing a node modifies the current partial multiset, and therefore distribution vectors

of the remaining unprocessed nodes need to be updated. Domains of nodes are reduced by

constraint propagation as we will describe in the next section, but must also be expanded

as new configurations are generated. We describe the initialization and expansion of node

domains below.

In the beginning of the second stage we initialize our multiset C with a single configuration

having N1 = ∅ and α1 = |K|. Each node can only be added to the lone configuration,

and so the domain for node i is initially the single one-dimensional vector βi = (ẑi). Our

algorithm next processes some node i ∈ N , and updates the existing set of configurations:

N1 = ∅, α1 = |K| − ẑi and N2 = {i}, α2 = ẑi. Next, the domains of all unprocessed nodes

are updated to reflect the changes in C. For each unprocessed node j, we enumerate all

possible ways of partitioning ẑj copies into node sets N1 and N2. This logic is repeated at

all future steps as well. For instance, in the example given above, suppose that β̂5 = (2, 0, 1)

was the only vector in the domain of node 5 before processing node 4. Since processing node

4 modifies the first configuration by reducing α1 and generates a new configuration (N ′
1, α

′
1),

we expand the domain of node 5 by enumerating all possible ways of assigning β̂5
1 = 2 copies

of node 5 to configurations (N1, α1) and (N ′
1, α

′
1). On the other hand, since β̂5 does not

assign node 5 to the second configuration, the distribution vectors in the expanded domain

do not add node 5 to (N2, α2) or (N ′
2, α

′
2). Finally, since processing node 4 does not generate

any new configurations from the third configuration, all distribution vectors in the expanded

domain of node 5 assign a single copy of node 5 to (N3, α3). After processing node 4 and

updating the configurations as described above, the domain of node 5 is expanded to:

{(2, 0, 0, 0, 1), (1, 1, 0, 0, 1), (0, 2, 0, 0, 1)}.
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3.2.3 Constraint Propagation

The constraints we impose in the second-stage problem limit the number of nodes in each

configuration (F2) and require that each edge has both its end points in at least one config-

uration (F3). Condition F1 (requiring |K| total configurations) will be implicitly satisfied.

We apply constraint propagation algorithms to remove distribution vectors inconsistent with

F2 or F3 from the expanded node domains. Let i ∈ N be the last processed node, and let

Ci ⊆ C represent the subset of configurations to which node i has been added. We only need

to execute constraint propagation for configurations c ∈ Ci, since these are the only newly

modified configurations.

To enforce F2, the propagation algorithm identifies all configurations to which r nodes

have been assigned. For each such configuration c, we remove all distribution vectors βj

having βj
c > 0 from the domains of all unprocessed nodes j ∈ N . To enforce F3, the

propagation algorithm iterates over the domains of the unprocessed nodes j adjacent to i, and

removes all distribution vectors that do not add at least one copy of j to any configuration in

Ci. Otherwise, the configurations containing node i would be disjoint from those containing

node j, which violates F3.

3.2.4 Forward Checking

After all constraints are propagated, we first check whether the domain of any unprocessed

node is empty; if so, then we backtrack. Else, we further analyze the current partial multiset

before resuming the search with the next unprocessed node. This step identifies whether the

current partial multiset can eventually yield a feasible multiset as early as possible to avoid

performing unnecessary backtracking steps (van Beek, 2006).

We call one such test implied node assignment analysis. Suppose that we identify a

processed node i such that ẑi = 1, and the configuration c to which i has been assigned. By

condition F3 it follows that all unprocessed nodes j adjacent to i must also be assigned to

configuration c. We use this analysis to augment partial configurations with implied node

assignments, and then check whether any augmented configuration contains more than r

nodes, and hence violates F2.

We also perform an implied edge assignment analysis by finding all edges that can only

be assigned to a single configuration. For each (i, j) ∈ E, if both nodes i and j have been

processed, then we check whether both i and j are in a single configuration c for which
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αc = 1. In this case edge (i, j) can only be assigned to configuration c. On the other hand if

(without loss of generality) node i has been processed but node j has not yet been processed,

and ẑi = 1, then edge (i, j) can only be assigned to the configuration to which i has been

assigned. After finding all implied edge assignments, we check whether F3 is violated for

any scenario.

Finally, we consider a singleton node analysis, in which we ensure that each node is

adjacent to at least one other node in each configuration. For each processed node i, and

for all configurations c ∈ Ci, we seek a node j adjacent to i so that either j ∈ Nc (if j also

has been processed), or βj
c > 0 for some distribution vector in the domain of j (if j has

not been processed). If no such j can be found for a configuration c ∈ Ci, then the current

partial solution cannot lead to an optimal solution; node i can ultimately be removed from

configuration c without affecting feasibility conditions, leading to a reduction in the objective

function value.

3.2.5 Node Selection Rule

The order in which variables are processed can significantly affect the performance of con-

straint programming algorithms (Smith, 1995; Lustig and Puget, 2001). Especially for infea-

sible second-stage problem instances, processing the “problematic” nodes first can quickly

lead to the detection of infeasibility, and can result in significant savings in computational

time. We employ a dynamic node selection rule in which the order of nodes considered can

vary in different sections of the search tree. In accordance with the “fail-first” principle

widely used in constraint programming algorithms (Haralick and Elliott, 1980; van Beek,

2006), our node selection rule first picks an unprocessed node that

1. has the fewest number of distribution vectors in its domain,

2. has the fewest number of copies to be partitioned, and

3. has the largest number of unprocessed adjacent nodes,

breaking ties in the given order. In this manner, we can quickly enumerate all possible

distribution vectors of a few key nodes, allowing constraint propagation to quickly reduce

the size of the remaining search space.

3.2.6 Distribution Vector Ordering Rule

Once the next node to be processed has been identified, all distribution vectors in its domain

need to be tried, one by one, to see if any of them leads to a feasible multiset. For an infea-
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sible second-stage problem instance, the order in which these vectors are instantiated does

not matter, because all vectors must be enumerated before infeasibility can be concluded.

However, for feasible problem instances it is important to find a vector that leads to a feasible

multiset as soon as possible in order to curtail our search. Our ordering rule attempts to

sort the distribution vectors in nonincreasing order of the likelihood that the vector leads to

a feasible multiset. We calculate the feasibility likelihood score of a distribution vector βi in

the domain of an unprocessed node i with respect to a partial multiset C as:

FL(i, C, βi) =
∑

c∈C

βi
c|{j ∈ Nc : (i, j) ∈ E}|. (60)

FL(i, C, βi) measures the total number of adjacent node pairs (i, j) that would be added

across all configurations if βi is selected to be the distribution vector for node i. Our vector

ordering rule sorts vectors in the domain of the chosen node in nondecreasing order of their

FL-scores. By allowing for a higher degree of flexibility in assigning edges, we increase the

likelihood that a feasible partition of edges to subgraphs can be found.

3.3 Third-Stage Problem

Given a solution of the second-stage problem that consists of a configuration multiset C

satisfying F1, F2, and F3, the third-stage problem must verify whether C is feasible. We

first generate the set of subgraphs from the multiset C = {c1, c2, . . . , c|C|} by assigning the

nodes in Nc1 to the first αc1 subgraphs, then assigning the nodes in Nc2 to the next αc2

subgraphs, and so on. Since we have enforced
∑

c∈C αc = |K|, this transformation creates

exactly |K| subgraphs, some of which can be empty. Then we iterate over all subgraphs

and set vijk = 1 if nodes i and j are in subgraph k, and vijk = 0 otherwise. We then use

formulation (38)–(43) to solve the third-stage problem.

Note that this transformation re-introduces symmetry into the third-stage problem. How-

ever, the solution of the third-stage problems does not constitute a bottleneck in the algo-

rithm, and symmetry-breaking constraints appended to the transformed subproblem will not

impact the computational efficacy of the overall algorithm.

3.4 Infeasibility Analysis

If a z-vector is found not to induce a feasible multiset, we add a constraint to the first-stage

problem so that the same z-vector is not generated in subsequent iterations. Constraints
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(58) state that the number of copies of some node must be increased, but they do not contain

any information about which nodes need to be added. We observe that the progress of our

second-stage algorithm can be analyzed to identify a “problematic” subset of nodes whose

corresponding z-values cause infeasibility regardless of other variable values. Given a vector

ẑ for which no feasible multiset exists, if a node i ∈ N has not been processed, or has not

been identified as the reason of infeasibility in any step of the backtracking algorithm, then ẑ

will not induce a feasible multiset for any value of ẑi. Let P ⊆ N denote the set of nodes that

have been processed, or whose domains have become empty due to constraint propagation

in the second-stage algorithm, possibly during different backtracking steps. The following is

a valid inequality:

∑

i∈P

|K|
∑

k=ẑi+1

tik ≥ 1. (61)

Constraints (61) clearly dominate (58) for any P ⊂ N , and get stronger as |P | decreases.

Based on this observation, we update our node selection rule by giving preference to selecting

nodes that have already been added to P . Our revised node selection rule first picks a node

that

0. has been added to P in a previous backtracking step,

1. has the fewest number of distribution vectors in its domain,

2. has the fewest number of copies to be partitioned, and

3. has the largest number of unprocessed adjacent nodes,

again breaking ties in the stated order.

3.5 Enhancements for the First-Stage Problem

Our computational studies revealed that the first-stage integer programming model solution

represents the bottleneck operation of our algorithm. In order to decrease the computational

time spent by the first-stage problem, we investigate several strategies.

3.5.1 Valid Inequalities

The valid inequalities that we discuss in Remark 3 can be adapted to the first-stage problem

in order to eliminate the z-vectors that violate the corresponding necessary feasibility condi-

tions. In particular, constraints (46) translate to simple lower bounds (52) on the z-variables.
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Constraints (48), which are written for node pairs that satisfy the conditions discussed in

Remark 3, can be written as:

zi + zj ≥ 3. (62)

Similarly, each constraint of type (49) can be equivalently represented as following:

zi + zj ≥ 4. (63)

Smith (2005) discusses an additional valid inequality, which cannot be represented using

the x-variables in our two-stage algorithm, but can be written in terms of the z- and t-

variables in the first-stage problem of our hybrid algorithm. For nodes i ∈ N and j ∈ N ,

if (i, j) /∈ E, deg(i) ≤ r − 1, deg(j) ≤ r − 1, |A(i, j)| ≥ r − 1, and there exists a common

neighbor k ∈ N so that k ∈ A(i), k ∈ A(j), deg(k) ≥ r, and if i, j, k have more than 2r − 4

distinct neighbors in total, then zi = 1, zj = 1 implies zk ≥ 3. This condition can be written

as:

zk ≥ −1 + 2(ti1 + tj1), (64)

which reduces to zk ≥ 3 for zi = zj = 1, and is redundant otherwise.

3.5.2 Heuristic for Obtaining an Initial Feasible Solution

The existence of a good initial feasible solution can help improve the performance of the

first-stage problem because it provides a good upper bound, and allows the solver to apply

strategies such as reduced cost fixing. We first solve the first-stage model enhanced with valid

inequalities (62)–(64) to obtain an initial solution ẑ, and execute the second- and third-stage

algorithms to seek a feasible multiset. If one is found, we terminate with an optimal solution.

Otherwise we investigate the set of processed nodes P̂ ⊆ N , and pick a node ı̂ ∈ P̂ having

the fewest number of copies (breaking ties by picking a node having the largest degree). We

then set ẑı̂ = ẑı̂ + 1, and re-invoke the second- and third-stage algorithms. This algorithm

eventually finds a feasible multiset, or concludes that the entire problem is infeasible after

generating the solution ẑi = |K|, ∀i ∈ N . We also generate a cut of type (61) for each

ẑ generated before a feasible multiset is found, which we add to the first-stage problem in

order to improve the lower bound.

3.5.3 Processing Integer Solutions

We can interrupt the branch-and-bound solution process of the first-stage problem each time

the solver finds an integer solution ẑ, and check whether ẑ induces a feasible multiset by

23



solving the second- and third-stage problems. If a feasible multiset exists, we accept ẑ as the

new incumbent and resume solving the first-stage problem. Otherwise, we reject ẑ, generate

a constraint of type (61), and again resume the solution process. The same idea is also

applicable to the master problem (MP) of the two-stage algorithm discussed in Section 2.

In our tests, this approach turned out to be more effective than solving the first-stage

problem to optimality in each iteration, adding a cut, and re-solving it. The reason is that

the problem is solved using a single branch-and-bound tree, which we tighten by adding cuts

as necessary on integral nodes, instead of repeatedly generating a branch-and-bound tree in

each iteration. It also allows us to obtain good feasible solutions for problem instances that

are too difficult to solve to optimality.

We note that this approach requires a minor modification to the second-stage algorithm.

All constraint propagation (Section 3.2.3) and forward checking rules (Section 3.2.4) except

for singleton node analysis are based on necessary conditions for feasibility of configurations,

and therefore they are valid for any integral ẑ. However, singleton node analysis is based on

an optimality condition, and hence can only be used if ẑ is a candidate optimal solution to

the first-stage problem.

4 Computational Results

We implemented the algorithms discussed in the previous sections using CPLEX 11.1 running

on a Windows XP PC with a 3.4 GHz CPU and 2 GB RAM. Our base set of test problem

instances consists of 225 randomly generated problem instances for which the expected edge

density of the graph (measured as |E|
|N |×(|N |−1)

) takes values 0.2, 0.3, and 0.4, the number of

nodes ranges from 5 to 15, and the number of scenarios is between 1 (corresponding to the

deterministic edge-partition problem) and 100. There is no practical limit on the number of

subgraphs (|K|), but a limit needs to be specified to model the problem (see Sherali et al.

(2000); Goldschmidt et al. (2003); Smith (2005)). Choosing |K| too small may make the

problem infeasible, and large values of |K| increase difficulty of the problem. In our tests,

we chose |K| sufficiently large to yield a feasible edge partition in each problem instance.

In generating instances we first picked a random subset of edges to have a positive weight,

and then we assigned a weight uniformly distributed between 1 and 10 to each edge in each

scenario. We generated five problem instances for each problem size, which is determined

by the expected edge density, the number of nodes and the number of scenarios. The data
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set names and details used in our experiments are given in Table 1.

Name |N| |K| |Q| r b Name |N| |K| |Q| r b

5-1 5 5 1 4 20 12-1 12 10 1 5 50
5-30 5 5 30 4 20 12-30 12 10 30 5 50
5-100 5 5 100 4 20 12-100 12 10 100 5 50
8-1 8 7 1 4 35 15-1 15 10 1 8 70
8-30 8 7 30 4 35 15-30 15 10 30 8 70
8-100 8 7 100 4 35 15-100 15 10 100 8 70
10-1 10 8 1 5 40
10-30 10 8 30 5 40
10-100 10 8 100 5 40

Table 1: Descriptions of the problem instances used for comparing algorithms

We used the default options of CPLEX for solving the extensive form problems. Prelimi-

nary computational experience on our two-stage algorithm indicated that the best implemen-

tation includes the valid inequalities (27), (46)–(49), and the symmetry-breaking constraints

(34), and uses the model given by (38)–(43) for the subproblem, which is the formulation

that minimizes the total tardiness. In our base setting for the three-stage algorithm, we

used our heuristic to find an initial feasible solution, generated valid inequalities (62)–(64),

and (similar to the two-stage algorithm) we used formulation (38)–(43) for the third-stage

problem. We used callback functions of CPLEX to generate a single branch-and-bound tree

for both two-stage and three-stage algorithms as discussed in Section 3.5. We imposed a

half-hour (1800 seconds) time limit past which we halted the execution of an algorithm in

all our experiments.

Our first experiment compares the performance of the extensive form, two-stage, and

three-stage algorithms. Table 2 summarizes the results of these three algorithms on low

density graphs having expected edge density 0.2. For each problem size, we report the

following statistics calculated over five random instances: (i) the number of problems solved

to optimality (“Solved”), (ii) the average optimality gap obtained at the root node (“Root

Gap”), (iii) the average final optimality gap for instances that could not be solved within the

allowed time limit (“Final Gap”), (iv) the average amount of time spent by each algorithm on

the instances that were solved to optimality (“Time”). Out of the 75 instances in this data

set, CPLEX could solve the extensive form to optimality for 61 instances, while both two-

stage and three-stage algorithms solved all 75 instances to optimality within a few seconds.

The results reveal that the performance of the extensive form formulation deteriorates rapidly

as the number of scenarios increases, but the effect of the number of scenarios is mitigated

for the two-stage and three-stage algorithms. We observe that the average optimality gap
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obtained by the three-stage algorithm at the root node is 1.46%, which is significantly less

than the initial gaps obtained using other approaches.

Extensive Form Two-Stage Three-Stage

Root Final Root Final Root Final

Name Solved Gap Gap Time Solved Gap Gap Time Solved Gap Gap Time

5-1 5 0.00% - 0.1 5 5.00% - 0.1 5 0.00% - 0.1
5-30 5 18.33% - 6.6 5 4.00% - 0.2 5 0.00% - 0.1
5-100 5 12.38% - 5.4 5 11.00% - 0.6 5 0.00% - 0.3
8-1 5 25.90% - 0.4 5 6.67% - 0.1 5 0.00% - 0.1
8-30 5 12.89% - 4.0 5 3.64% - 0.2 5 0.00% - 0.1
8-100 5 37.61% - 223.1 5 14.84% - 1.2 5 0.00% - 0.3
10-1 5 19.58% - 0.5 5 17.80% - 0.4 5 0.00% - 0.1
10-30 5 57.01% - 147.3 5 10.71% - 0.8 5 0.00% - 0.2
10-100 4 30.35% 7.14% 684.1 5 13.94% - 2.0 5 0.00% - 0.4
12-1 5 47.25% - 8.1 5 24.66% - 2.2 5 0.00% - 0.1
12-30 4 55.09% 25.00% 507.3 5 17.99% - 4.3 5 3.08% - 0.3
12-100 2 62.21% 24.88% 713.1 5 36.28% - 4.7 5 2.11% - 0.8
15-1 5 31.85% - 33.0 5 64.38% - 16.4 5 4.56% - 0.2
15-30 1 65.29% 21.65% 864.6 5 39.13% - 27.1 5 7.29% - 0.6
15-100 0 57.33% 28.47% - 5 24.49% - 20.4 5 4.86% - 1.2

Table 2: Comparison of the algorithms on graphs having edge density = 0.2

Tables 3 and 4 compare the three approaches on denser graphs having edge density 0.3

(medium density) and 0.4 (high density), respectively. We observe that performances of

all three algorithms deteriorate as the edge density increases, which is not surprising due

to the nature of the edge-partition problem. The number of instances that can be solved

Extensive Form Two-Stage Three-Stage

Root Final Root Final Root Final

Name Solved Gap Gap Time Solved Gap Gap Time Solved Gap Gap Time

5-1 5 0.00% - 0.1 5 2.86% - 0.1 5 0.00% - 0.1
5-30 5 25.76% - 10.4 5 6.15% - 0.5 5 0.00% - 0.1
5-100 5 10.00% - 3.1 5 10.77% - 0.4 5 0.00% - 0.2
8-1 5 31.30% - 0.5 5 11.20% - 0.1 5 0.00% - 0.1
8-30 5 42.57% - 18.0 5 7.48% - 0.4 5 0.00% - 0.2
8-100 4 39.37% 7.14% 110.0 5 16.19% - 1.3 5 1.43% - 0.3
10-1 5 32.42% - 3.7 5 16.27% - 0.6 5 1.18% - 0.1
10-30 4 51.33% 21.05% 953.0 5 40.82% - 8.2 5 5.83% - 0.3
10-100 2 61.24% 29.05% 382.6 5 35.43% - 302.7 5 8.89% - 0.5
12-1 5 53.85% - 312.0 5 39.49% - 16.8 5 4.65% - 0.2
12-30 0 63.41% 27.06% - 5 46.98% - 120.5 5 9.31% - 0.8
12-100 0 84.24% 65.50% - 4 42.78% 4.35% 89.0 5 11.99% - 1.4
15-1 4 46.88% 11.54% 460.4 5 72.86% - 250.5 5 12.93% - 0.9
15-30 0 66.01% 42.41% - 2 72.20% 16.02% 30.4 5 13.51% - 3.5
15-100 0 80.76% 74.48% - 0 53.05% 13.21% - 5 16.31% - 4.1

Table 3: Comparison of the algorithms on graphs having edge density = 0.3

by the extensive form decreases from 61 for low density graphs to 49 for medium density

graphs, and finally to 36 for high-density graphs. The two-stage algorithm also exhibits a

similar behavior; it can solve 75, 66, and 61 instances for low, medium, and high-density

graphs, respectively. On the other hand, the three-stage algorithm is able to solve almost

all instances, failing to solve two instances in the high-density 15-30 and 15-100 data sets to
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optimality within the allowed time limit. Table 4 clearly shows that the three-stage algorithm

dominates the other approaches, and the two-stage algorithm provides better results than

directly solving the extensive formulation. Our analysis of optimal solutions obtained for the

Extensive Form Two-Stage Three-Stage

Root Final Root Final Root Final

Name Solved Gap Gap Time Solved Gap Gap Time Solved Gap Gap Time

5-1 5 5.00% - 0.1 5 0.00% - 0.1 5 0.00% - 0.1
5-30 5 24.67% - 2.6 5 19.79% - 0.3 5 0.00% - 0.1
5-100 5 12.38% - 5.6 5 8.31% - 0.6 5 0.00% - 0.2
8-1 5 41.32% - 2.0 5 3.33% - 0.1 5 0.00% - 0.1
8-30 5 48.89% - 140.9 5 17.68% - 1.1 5 1.43% - 0.1
8-100 3 47.23% 22.50% 113.0 5 21.08% - 8.7 5 2.50% - 0.4
10-1 5 45.08% - 48.3 5 32.36% - 3.5 5 2.16% - 0.1
10-30 0 61.52% 20.64% - 5 56.55% - 39.5 5 8.45% - 0.4
10-100 0 64.47% 50.91% - 3 54.82% 7.50% 151.7 5 12.73% - 1.5
12-1 1 67.13% 14.30% 33.2 5 40.60% - 327.3 5 7.86% - 0.5
12-30 0 88.61% 46.74% - 5 42.93% - 160.9 5 3.16% - 0.8
12-100 0 84.37% 68.24% - 5 51.54% - 583.7 5 13.91% - 1.7
15-1 2 60.11% 11.21% 369.6 3 53.01% 5.56% 410.0 5 11.57% - 0.9
15-30 0 85.29% 65.29% - 0 66.72% 22.66% - 3 18.03% 4.74% 120.2
15-100 0 96.00% 86.92% - 0 62.62% 24.58% - 3 19.98% 6.45% 173.8

Table 4: Comparison of the algorithms on graphs having edge density = 0.4

problem instances shown in Tables 2–4 showed that the average objective function value for

the deterministic (single-scenario) problem instances is 14.8. This value is smaller than the

average objective function value for 30-scenario and 100-scenario instances (15.52 and 15.6,

respectively). We also observe that several subgraphs can be empty in an optimal solution.

Our next experiment analyzes the performance of our three-stage algorithm for larger

instances. For this experiment, we generated additional random problem instances using

the parameter settings given in Table 5. Similar to our previous experiments, we generated

Name |N| |K| r b

5 5 5 4 20
8 8 7 4 35
10 10 8 5 40
12 12 10 5 50
15 15 10 8 70
17 17 10 8 100
20 20 10 10 120
22 22 10 10 140

Table 5: Descriptions of the problem instances used for analyzing the three-stage algorithm

problem instances for which the expected edge density of the graph takes values 0.2, 0.3, and

0.4. For each data set, we calculated the number of scenarios corresponding to ǫ, δ = 0.05

and ǫ, δ = 0.01 using Proposition 1. Hence, inequality (14) ensures that we can be 95%

(99%, respectively) certain that all demands can be satisfied 95% (99%, respectively) of the

time. We generated five random instances for each data set, resulting in 240 instances in
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total. In addition to the columns given in Table 2, Tables 6, 7, and 8 show the relative gap

between the quality of the solution found by our initial heuristic (Section 3.5.2) and the best

lower bound obtained (“Heuristic Gap”).

ǫ, δ = 0.05 ǫ, δ = 0.01

Root Final Heuristic Root Final Heuristic

Name |Q| Solved Gap Gap Time Gap |Q| Solved Gap Gap Time Gap

5 407 5 0.00% - 0.8 2.86% 2194 5 0.00% - 3.5 0.00%
8 837 5 0.00% - 2.2 1.54% 4343 5 0.00% - 12.7 3.33%
10 1169 5 10.88% - 5.6 5.09% 6006 5 1.33% - 19.6 1.33%
12 1724 5 1.11% - 13.2 4.19% 8779 5 3.00% - 58.5 3.33%
15 2140 5 7.24% - 22.1 2.74% 10858 5 12.41% - 170.9 4.37%
17 2417 5 10.19% - 41.0 4.78% 12245 5 9.82% - 211.1 8.01%
20 2833 5 16.55% - 79.8 7.01% 14324 5 12.40% - 403.7 4.51%
22 3110 5 14.77% - 128.2 6.49% 15710 5 15.78% - 699.9 6.46%

Table 6: Three-Stage algorithm on graphs having edge density = 0.2

ǫ, δ = 0.05 ǫ, δ = 0.01

Root Final Heuristic Root Final Heuristic

Name |Q| Solved Gap Gap Time Gap |Q| Solved Gap Gap Time Gap

5 407 5 0.00% - 0.8 2.86% 2194 5 0.00% - 3.5 0.00%
8 837 5 0.00% - 2.6 2.86% 4343 5 3.33% - 13.0 2.86%
10 1169 5 6.58% - 7.5 8.99% 6006 5 11.86% - 27.4 4.80%
12 1724 5 8.61% - 16.1 4.51% 8779 5 8.22% - 71.7 4.31%
15 2140 5 15.45% - 45.1 3.05% 10858 4 18.53% 3.45% 176.4 4.25%
17 2417 5 13.63% - 42.4 3.43% 12245 5 9.93% - 189.3 2.68%
20 2833 5 17.47% - 362.5 3.24% 14324 5 18.13% - 639.1 3.32%
22 3110 4 16.18% 4.76% 159.3 5.82% 15710 5 15.86% - 738.5 3.45%

Table 7: Three-Stage algorithm on graphs having edge density = 0.3

ǫ, δ = 0.05 ǫ, δ = 0.01

Root Final Heuristic Root Final Heuristic

Name |Q| Solved Gap Gap Time Gap |Q| Solved Gap Gap Time Gap

5 407 5 0.00% - 0.8 2.22% 2194 5 0.00% - 3.2 0.00%
8 837 5 7.71% - 2.7 2.43% 4343 5 7.25% - 17.3 5.33%
10 1169 5 16.38% - 9.4 5.71% 6006 5 15.84% - 52.1 9.73%
12 1724 5 16.71% - 63.2 5.41% 8779 5 14.13% - 118.4 5.45%
15 2417 4 16.24% 2.86% 338.8 4.07% 12245 2 16.55% 4.71% 549.8 6.86%
17 2140 1 23.46% 8.46% 993.7 9.23% 10858 1 24.77% 11.44% 1515.5 13.07%
20 2833 0 18.83% 9.46% - 9.46% 14324 0 20.01% 11.30% - 11.81%
22 3110 0 18.36% 11.05% - 11.47% 15710 0 17.83% 9.90% - 10.29%

Table 8: Three-Stage algorithm on graphs having edge density = 0.4

Our algorithm can solve 206 instances out of 240 to optimality, and provides an average

optimality gap of 9.21% for the 34 instances that it cannot solve to optimality. The maximum

optimality gap obtained for the entire data set is 21.22%. The results also suggest that our

heuristic for finding an initial feasible solution is quite effective: the average optimality

gap for our heuristic is 4.97%, and the maximum optimality gap is 22.72%. Since these

calculations are based on the lower bounds obtained for the problem instances that could

not be solved to optimality, our reported gaps possibly overestimate the true gap between

heuristic and optimal objective values.
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5 Conclusions

In this paper we considered the stochastic edge-partition problem, which arises in a telecom-

munication network design problem in Synchronous Optical Networks. We first developed an

integer programming formulation of the problem, and prescribed a cutting plane algorithm

with integer variables in both stages. Our computational tests showed that both the direct

solution of the integer programming formulation and the execution of our cutting plane algo-

rithm are capable of solving only small problem instances to optimality, especially for graphs

having a high edge density. We then designed a hybrid integer programming/constraint pro-

gramming algorithm to overcome the computational difficulties encountered by the first two

approaches. Our hybrid approach first allocates node copies that are to be distributed

across configurations using an integer programming formulation, and then assigns nodes to

subgraphs using a constraint programming algorithm. After assigning nodes to subgraphs,

it partitions edges to subgraphs for each scenario in a third stage, using another integer

programming formulation. This decomposition of the problem also leads to the development

of an effective heuristic, which we use to obtain initial upper bounds. Our computational

experiments show that the hybrid approach significantly outperforms the other approaches

we designed, and can handle thousands of scenarios unlike the other approaches. It can solve

problem instances of relatively large dimensions to optimality, and can provide tight bounds

on instances that cannot be solved to optimality within given time limits. Our algorithm

can also be used to solve the deterministic (single-scenario) edge-partition problem more

efficiently than the direct solution of the traditional integer programming formulation of the

problem.
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