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Abstract
We consider the problem of intensity-modulated radiation therapy (IMRT)
treatment planning using direct aperture optimization. While this problem
has been relatively well studied in recent years, most approaches employ a
heuristic approach to the generation of apertures. In contrast, we use an
exact approach that explicitly formulates the fluence map optimization (FMO)
problem as a convex optimization problem in terms of all multileaf collimator
(MLC) deliverable apertures and their associated intensities. However, the
number of deliverable apertures, and therefore the number of decision variables
and constraints in the new problem formulation, is typically enormous. To
overcome this, we use an iterative approach that employs a subproblem whose
optimal solution either provides a suitable aperture to add to a given pool
of allowable apertures or concludes that the current solution is optimal. We
are able to handle standard consecutiveness, interdigitation and connectedness
constraints that may be imposed by the particular MLC system used, as well
as jaws-only delivery. Our approach has the additional advantage that it can
explicitly account for transmission of dose through the part of an aperture that
is blocked by the MLC system, yielding a more precise assessment of the
treatment plan than what is possible using a traditional beamlet-based FMO
problem. Finally, we develop and test two stopping rules that can be used
to identify treatment plans of high clinical quality that are deliverable very
efficiently. Tests on clinical head-and-neck cancer cases showed the efficacy of
our approach, yielding treatment plans comparable in quality to plans obtained
by the traditional method with a reduction of more than 75% in the number
of apertures and a reduction of more than 50% in beam-on time, with only a

* This work was supported by the National Science Foundation under grant no. DMI-0457394.
3 This author owns stock in and is Chief Science Officer of ViewRay Incorporated and as such may benefit financially
as a result of the outcomes of work or research reported in this manuscript.

0031-9155/07/247333+20$30.00 © 2007 IOP Publishing Ltd Printed in the UK 7333

http://dx.doi.org/10.1088/0031-9155/52/24/009
mailto:chhmen@ufl.edu
mailto:romeijn@ise.ufl.edu
mailto:taskin@ufl.edu
mailto:dempsey@ufl.edu
http://stacks.iop.org/PMB/52/7333


7334 C Men et al

modest increase in computational effort. The results also show that delivery
efficiency is very insensitive to the addition of traditional MLC constraints;
however, jaws-only treatment requires about a doubling in beam-on time and
number of apertures used. Finally, we showed the importance of accounting
for transmission effects when assessing or, preferably, optimizing treatment
plan quality.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Traditionally, intensity-modulated radiation therapy (IMRT) treatment plans are developed
using a two-stage process. In particular, each beam is typically modeled as a collection of
hundreds of small beamlets or bixels, and the intensities of each of these bixels are assumed
to be controllable on an individual basis. The problem of finding an optimal intensity profile
or fluence map for each beam, called the (beamlet-based) fluence map optimization (FMO)
problem, must then be followed by a leaf-sequencing stage in which the fluence maps are
decomposed into a manageable number of apertures that are deliverable using a multileaf
collimator (MLC) system. The objective of this second stage problem is to accurately
reproduce the ideal fluence map while limiting the total treatment time. More formally, in this
second stage it is desirable to limit both the total time that radiation is delivered, i.e., the total
beam-on time, and the total number of apertures used. Both the beamlet-based FMO problem
and the leaf-sequencing problem are well studied in the literature. For modeling and solution
approaches to the FMO problem we refer to the review paper by Shepard et al (1999). More
recently, Lee et al (2000, 2003) studied mixed-integer programming approaches, Romeijn
et al (2003, 2006) proposed new convex programming models, and Hamacher and Küfer (2002)
and Küfer et al (2003) considered a multi-criteria approach to the problem. The problem of
leaf sequencing while minimizing the total beam-on time is very efficiently solvable in general.
We refer in particular to Ahuja and Hamacher (2005), Bortfeld et al (1994), Kamath et al
(2003) and Siochi (1999); in addition, Baatar et al (2005), Boland et al (2004), Kamath et al
(2004a–2004d), Lenzen (2000), Siochi (1999) and Dai and Hu (1999) studied the problem
under additional MLC hardware constraints, while Kalinowski (2005b) studied the benefits
of allowing rotation of the MLC head. The problem of decomposing a fluence map into
the minimum number of apertures has been shown to be strongly NP-hard (see, Baatar et al
(2005)), motivating the development of a large number of heuristics for solving this problem.
Notable examples are the heuristics proposed by Baatar et al) (who also identified some
polynomially solvable special cases), Dai and Zhu (2001), Que (1999), Siochi (1999) and Xia
and Verhey (1998). In addition, Engel (2005), Kalinowski (2005) and Lim and Choi (2006)
developed heuristics to minimize the number of apertures while constraining the total beam-on
time to be minimal. Langer et al (2001) developed a mixed-integer programming formulation
of the problem, while Kalinowski (2004) proposed an exact dynamic programming approach.
Finally, Taşkın et al (2007) proposed a new exact optimization approach to the problem of
minimizing the total treatment time.

A major drawback in the decoupling of the treatment-planning problem into a beamlet-
based FMO problem and a MLC leaf-sequencing problem is that there is a potential loss in the
treatment quality. This has led to the development of approaches that integrate the beamlet-
based FMO and leaf-sequencing problems into a single optimization model, which are usually
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referred to as direct aperture optimization approaches to FMO. In this approach, we explicitly
solve for a set of apertures and the corresponding intensities in a single aperture-based FMO
problem. For examples of integrated approaches to fluence map optimization, sometimes also
called aperture modulation or aperture-based fluence map optimization, we refer to Preciado-
Walters et al (2004), Shepard et al (2002), Siebers et al (2002), Bednarz et al (2002) and
Romeijn et al (2005). The way the dose distribution received by the patient is modeled in
a beamlet-based FMO model is necessarily an approximation since this distribution depends
not only on the intensity profile but also on the actual apertures used to deliver this profile.
The current literature on aperture modulation has, however, not yet exploited the ability of
aperture modulation to take into account such effects. In particular, while the leaves in the
MLC system do block most of the radiation beam, there is some small but not insignificant
amount of dose (on the order of 1.5–2%, see Arnfield et al (2000)) that is transmitted through
the leaves in the MLC system. Finally, while several aperture-based FMO approaches attempt
to limit the total treatment time by limiting the number of apertures used, these models do not
explicitly incorporate the total beam-on time as a measure of treatment plan efficiency.

In this paper, we extend the approach developed by Romeijn et al (2005) by (i) allowing
for the incorporation of more general treatment plan evaluation criteria, and (ii) accounting
for transmission effects. In addition, we extend the method to MLC systems that can only
deliver apertures that are rectangular in shape. Our goals in this paper are to

• evaluate the ability of our approach to efficiently find high-quality treatment plans with a
limited number of apertures and beam-on time;

• evaluate the effect of MLC deliverability constraints on the required number of apertures
and beam-on time;

• evaluate the importance of explicitly incorporating transmission effects.

2. Direct aperture optimization

With most forms of external-beam radiation therapy, a patient is irradiated from several
different directions, which we assume are chosen based on experience by a physician or
clinician. We will denote the set of beam directions by B. Each beam b ∈ B is discretized into
a matrix of bixels, indicated by the set Nb. For convenience we let N ≡ ∪b∈BNb denote the set
of all bixels. We will denote the set of apertures that can be delivered by a MLC system from
beam direction b ∈ B by Kb and the set of all deliverable apertures by K ≡ ∪b∈BKb. For
convenience, we let bk denote the beam that contains aperture k, i.e., k ∈ Kbk

for all k ∈ K .
Clearly, each aperture can then be viewed as a subset of bixels in a beam, so we will denote
a particular aperture k ∈ Kb by the set of beamlets Ak ⊆ Nb. With each aperture k ∈ K we
associate a decision variable yk that indicates the intensity of that aperture.

The dose distribution in a patient is evaluated on a discretization of the three-dimensional
geometry of the patient, obtained via a CT scan, into a number of voxels. We denote the set of
all voxels by V , and associate a decision variable zj with each voxel j ∈ V that indicates the
dose received by that voxel. The vector of voxel doses can be expressed as a linear function
of the intensities of the apertures through the so-called dose deposition coefficients Dkj , the
dose received by voxel j ∈ V from aperture k ∈ K at unit intensity.

Finally, we assume that a collection, say L, of treatment plan evaluation criteria has
been identified that measure clinical treatment plan quality and are expressed as functions of
the dose distribution: G� : R

V → R for � ∈ L. Each of these criteria is usually, but not
necessarily, a function of the dose distribution in a particular structure only. Without loss
of generality we assume that the criteria are expressed in such a way that smaller values are
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preferred to larger values. Finally, we assume that all criteria are convex. This is justified
by the fact that most criteria proposed in the literature to date are indeed convex or can be
replaced by a convex criterion that has the property that the Pareto-efficient frontier associated
with all criteria is unchanged (see, Romeijn et al (2004)). Examples of such criteria are tumor
control probability (TCP), normal tissue complication probability (NTCP), equivalent uniform
dose (EUD), conditional value at risk (CVaR), voxel-based penalty functions, etc (see, e.g.,
Niemierko (1997, 1999), Lu and Chin (1993), Kutcher and Burman (1989), Rockafellar and
Uryasev (2000) and Tsien et al (2003)).

Our aperture-based FMO model can now be formulated as follows:

minimize
∑
�∈L

γ�G�(z)

subject to

(A) zj =
∑
k∈K

Dkj yk for all j ∈ V (1)

yk � 0 for all k ∈ K. (2)

Here z ∈ R
|V | and y ∈ R

|K| are the vectors containing the voxel doses and aperture intensities,
respectively. Moreover, the coefficients γ� (� ∈ L) are nonnegative weights associated
with the clinical treatment plan evaluation criteria. Many other aperture-based FMO models
that have been proposed in the literature are heuristics that are based on deterministic or
stochastic search, such as simulated annealing, for which it often cannot be guaranteed that
all deliverable apertures are (explicitly or implicitly) considered. In contrast, our approach
explicitly incorporates all deliverable apertures and corresponding intensities.

Traditional beamlet-based FMO models as well as all aperture-based FMO models to date
have assumed that the dose deposition coefficients can be written as

Dkj =
∑
i∈Ak

Dij , (3)

where Dij is the dose received by voxel j from bixel i at unit intensity. However, this definition
ignores any transmission and scatter effects that are due to the shape of the apertures used.
Both of these effects cannot be modeled in a beamlet-based FMO model. In this paper, we
will explicitly incorporate the transmission effect. In particular, the expression for the dose
deposition coefficients given in (3) assumes that any bixel that is blocked in an aperture does
not transmit any radiation. If we denote the fraction of the dose that is transmitted by ε ∈ [0, 1],
we obtain the following expression for the dose deposition coefficients:

Dkj =
∑
i∈Ak

Dij + ε
∑

i∈Nbk
\Ak

Dij

= (1 − ε)
∑
i∈Ak

Dij + ε
∑
i∈Nbk

Dij

= (1 − ε)
∑
i∈Ak

Dij + εD̄bkj ,

where D̄bj = ∑
i∈Nb

Dij . Clearly, the traditional expression (3) corresponds to the special case
where ε = 0.
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3. Column generation algorithm

3.1. Introduction

It is clear that the number of allowable apertures (i.e., the cardinality of K) is typically
enormous. For example, consider an MLC that allows all combinations of left and right
leaf settings. Even with a coarse 10 × 10 bixel grid and five beams, this would yield more
than 1018 deliverable apertures to consider. However, it is reasonable to expect that in the
optimal solution to (A) only a relatively small number of apertures will actually have positive
intensity. The challenge is therefore to identify a small but judiciously chosen set of apertures
that yield a high-quality treatment plan. Since it does not seem possible to intuitively identify
or characterize such a set of apertures for each individual patient, we use a formal column
generation approach to solving the aperture-based FMO problem. This method starts by
choosing a limited number of apertures, for example corresponding to a conformal plan, given
by a set K̂ ⊆ K . It then solves a restricted version of (A) using only that set of apertures.
Next, an optimization subproblem, called the pricing problem, is solved. This

(i) identifies one or more promising apertures that will improve the current solution when
added to the collection of considered apertures; or

(ii) concludes that no such apertures exist, and therefore the current solution is optimal.

In case (i), we add the identified apertures to K̂ , re-optimize the new aperture-based
FMO problem, and repeat the procedure. Intuitively, the pricing problem identifies those
apertures for which the improvement of the objective function per unit intensity is largest (and
therefore show promise for significantly improving the treatment plan). The very nature of our
approach thus allows us to study the effect of adding apertures on the quality of the treatment
plan, thereby enabling a sound trade-off between the number of apertures and treatment plan
quality.

3.2. Derivation of the pricing problem

Let us denote the dual multipliers associated with constraints (1) and (2) by πj (j ∈ V ) and
ρk (k ∈ K). The Karush–Kuhn–Tucker (KKT) optimality conditions (see, e.g., Bazaraa et al
(2006)) for (A), which are necessary and sufficient for optimality because of the convexity of
the objective function and the linearity of the constraints, can be written as follows:

πj =
∑
�∈L

γ�

∂G�(z)

∂zj

for all j ∈ V

ρk =
∑
j∈V

Dkjπj for all k ∈ K

zj =
∑
k∈K

Dkj yk for all j ∈ V

ykρk = 0 for all k ∈ K

yk, ρk � 0 for all k ∈ K.

Any solution to this system can be characterized by y � 0 only: this vector then determines, in
turn, z, π and ρ. Let (ŷ; π̂ , ρ̂) be an optimal pair of primal and dual solutions to a subproblem
in which only apertures in the set K̂ ⊂ K are considered, where we have set ŷk = 0 for
k ∈ K\K̂ . We can then conclude that this solution is in fact optimal for (A) if and only
if ρ̂k � 0 for all k ∈ K (note that this inequality is satisfied for k ∈ K̂ by construction).
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In other words, if and only if the optimal solution to the following so-called pricing problem
is nonnegative:

minimizek∈K

∑
j∈V

Dkj π̂j .

Since each aperture contains beamlets in a single beam only, we may alternatively solve a
pricing problem for each individual beam b ∈ B:

minimizek∈Kb

∑
j∈V

Dkj π̂j .

Now note that if k ∈ Kb we have

∑
j∈V

Dkj π̂j =
∑
j∈V

⎛
⎝(1 − ε)

∑
i∈Ak

Dij + εD̄bj

⎞
⎠ π̂j

= (1 − ε)
∑
j∈V

∑
i∈Ak

Dij π̂j + ε
∑
j∈V

D̄bj π̂j .

This then means that the current solution is optimal for (A) if and only if, for all b ∈ B, the
optimal solution to the following optimization problem

minimizek∈Kb

∑
i∈Ak

⎛
⎝∑

j∈V

Dij π̂j

⎞
⎠

exceeds the threshold value

− ε

1 − ε

∑
j∈V

D̄bj π̂j . (4)

We can now justify the intuition behind the pricing problem and the column generation
algorithm that was provided earlier: realizing that

∑
j∈V Dij π̂j measures the per-unit change

in the objective function value if the intensity of beamlet i is increased; it follows that the
pricing problem for a given beam identifies the aperture with the property that the rate of
improvement in the objective function value, as the intensity of the aperture is increased, is
largest among all deliverable apertures. Furthermore, this aperture is added to the model
only if increasing the intensity of that aperture actually corresponds to an improvement in the
objective function value.

3.3. Solving the pricing problem

We will consider the following four common sets of hardware constraints on the set of
deliverable apertures:

(C1) Consecutiveness constraint This constraint simply corresponds to the fact that apertures
are shaped by pairs of leaves, which means that, in each given bixel row, the exposed
bixels should be consecutive.

(C2) Interdigitation constraint
This constraint says that, in addition to C1, the left leaf of a row cannot overlap with the
right leaf of an adjacent row.

(C3) Connectedness constraint
This constraint says that, in addition to C2, the bixel rows that contain at least one exposed
bixel should be consecutive.
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(C4) Rectangle constraint
This constraint says that only rectangular apertures may be formed.

Note that constraint C4 corresponds to the use of conventional jaws only. Recently, the
viability of this delivery technique has been shown by Kim et al (2007) for treating prostate
cancer and by Earl et al (2007) for treating pancreas, breast and prostate cancer.

Romeijn et al (2005) provide polynomial-time algorithms for solving the pricing problem
corresponding to C1–C3. In particular, suppose that each beam is discretized into an m × n

matrix of bixels. They then show that the pricing problem for a particular beam can be solved
in O(mn) time for C1 and in O(mn4) time for C2 and C3. For completeness sake, we will
briefly describe these algorithms below. Next, we will develop an efficient algorithm for
solving the pricing problem under C4.

It is easy to see that, under C1, the pricing problem decomposes by a bixel row, i.e., we
may find the optimal leaf settings for each row individually and then form the optimal aperture
by simply combining these leaf settings. We are thus interested in finding, for each bixel row,
a consecutive set of bixels for which the sum of their coefficients in the objective function of
the pricing problem is minimal. We can find such a set of bixels by making a single pass, from
left to right, through the n bixels in a given row and beam. In doing so, we should keep track
of (i) the sum of the coefficients for all bixels considered so far, and (ii) the maximum value
of these sums encountered so far. Now note that, at any point in this procedure, the difference
between these two is a candidate for the best solution value found so far, so we simply identify
the leaf setting that corresponds to the minimum value of this difference. (See also Bates and
Constable (1985) and Bentley (1986).)

The algorithm for identifying the optimal aperture to add under C2 and C3 is somewhat
more complicated. For these two situations, we formulate the pricing problem as the
shortest path problem in an appropriately defined network. In particular, we define a node
corresponding to each potential leaf setting in each bixel row, i.e., (r; c1, c2) for r = 1, . . . , m

and c1, c2 = 1, . . . , n with c1 < c2, where c1 and c2 denote the rightmost and leftmost blocked
bixel in a row r, respectively. In addition, we define the so-called source and sink nodes
representing the ‘top’ and ‘bottom’ of the aperture. We then create arcs between nodes that
correspond to feasible combinations of leaf settings in the adjacent bixel rows, and assign to
any arc leading to a particular node a cost equal to the sum of all coefficients corresponding
to the exposed bixels. That is, under C2 we create arcs between a pair of nodes if the
interdigitation constraint is satisfied. Under C3, we ignore all nodes that correspond to the
bixel rows in which all bixels are blocked; then, in addition to the arcs created for C2, we
also create arcs from the source node to all other nodes and from all nodes to the sink node,
representing the fact that leaf settings that block all bixels are allowed at the ‘top’ and ‘bottom’
of the aperture.

We will next develop a polynomial-time algorithm for the pricing problem associated
with C4. For convenience, let (b, r, c) denote the bixel in row r and column c of beam
b (r = 1, . . . , m; c = 1, . . . , n; and b ∈ B). Moreover, let (b, r1, r2, c1, c2) represent a
rectangular aperture in which r1 and r2 denote the first and the last row, while c1 and c2 denote
the leftmost and rightmost column of bixels which form the rectangular aperture in beam b.
We can then formulate the pricing problem for beam b under C4 as follows:

minimize
r2∑

r=r1

c2∑
c=c1

⎛
⎝∑

j∈V

D(b,r,c)j π̂j

⎞
⎠

subject to

r1 < r2 c1 < c2 r1, r2 ∈ {1, . . . , m} c1, c2 ∈ {1, . . . , n}.
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It is easy to see that we can employ the algorithm for C1 to construct an algorithm for C4. In
particular, suppose that we fix the range of rows in the rectangular aperture as r1 and r2 (with,
of course, r1 < r2). Then the problem reduces to

minimize
c2∑

c=c1

⎛
⎝

r2∑
r=r1

∑
j∈V

D(b,r,c)j π̂j

⎞
⎠

subject to

c1 < c2 c1, c2 ∈ {1, . . . , n},
which is precisely a pricing problem of the form as for C1 with respect to the sum of rows
r1, . . . , r2 in the matrix of objective function coefficients. Therefore, given these aggregate
objective coefficients we can solve the pricing problem for C4 in O(m2n) time by enumerating
all O(m2) possible collections of consecutive rows and selecting the best solution among these
candidates. Now note that we can, for each value of r1, determine all aggregate objective
function coefficients in O(mn) time. This means that all objective function coefficients can
be determined in O(m2n) time, and the running time of the entire algorithm is O(m2n).

Clearly, if, for each beam b ∈ B, the best solution found has an objective function
value that exceeds the corresponding threshold value (4) derived in section 3.2, no aperture
can improve the current solution, which is therefore optimal for (A). Otherwise, adding the
optimal aperture, say (b∗, r∗

1 , r∗
2 , c∗

1, c
∗
2), to the set K̂ can improve the current solution.

4. Results

4.1. Clinical problem instances

To test our models, three-dimensional treatment planning data for ten head-and-neck cancer
patients were exported from a commercial patient imaging and anatomy segmentation system
at the University of Florida, Department of Radiation Oncology. These data were then
imported into the University of Florida Optimized Radiation Therapy (UFORT) treatment
planning system and were used to generate the data required by the models described above.

For all ten cases, we designed plans using five equispaced 60Co-beams. Note that this
does not affect the optimization algorithm, which is, without modification, applicable to
high-energy x-ray beams as well (for example, see Romeijn et al (2005) for results with
6 MV photon beams). The five beams are evenly distributed around the patient with angles
0◦, 72◦, 144◦, 216◦ and 288◦, respectively. The nominal size of each beam is 40 × 40 cm2.
The beams are discretized into bixels of size 1 × 1 cm2, yielding on the order of 1600 bixels.
However, we reduce the set of beamlets that actually need to be considered in the optimization
by using the fact that the actual volume to be treated is usually significantly smaller. That
is, for each beam, we identify a ‘mask’ consisting of only those bixels that can help treat the
targets, i.e., we identify the bixels for which the dose deposition coefficient Dij associated
with at least one target voxel is nonzero. We then extend the mask to a rectangle of minimum
size to ensure that all deliverable apertures from C1–C4 that can help treat the targets are
considered. For all cases we generated a voxel grid with voxels of size 4 × 4 × 4 mm3 for the
targets and critical structures, except for unspecified tissue, for which we used voxels of size
6 × 6 × 6 mm3. Table 1 shows the problem dimensions for the ten cases.

Each case contained two targets, which are referred to as planning target volume 1
(PTV1) and planning target volume 2 (PTV2). PTV1 consists of the gross tumor volume
(GTV) expanded to account for both sub-clinical disease as well as daily setup errors and
internal organ motion; PTV2 is a larger target that also contains high-risk nodal regions, again



Direct aperture optimization in IMRT treatment planning 7341

Figure 1. A typical CT slice illustrating target and critical structure deliniation. In particular, the
targets PTV1 and PTV2 are shown, as well as the right parotid gland (RPG), the spinal cord (SC)
and normal tissue (Tissue).

Table 1. Model dimensions.

No of No of No of
Case structures voxels bixels

1 14 85 017 990
2 13 104 298 1637
3 8 189 234 1658
4 11 195 113 2006
5 12 86 255 1113
6 13 58 636 765
7 10 102 262 1247
8 10 84 369 1149
9 10 71 837 938

10 12 148 294 2183

expanded to account for sub-clinical disease and setup errors and organ motion. PTV1 and
PTV2 have prescription doses of 73.8 Gy and 54 Gy, respectively. Figure 1 shows an example
of target deliniation.

Our FMO model employed treatment plan evaluation criteria that are quadratic one-sided
voxel-based penalties. In particular, denoting the set of targets by T the set of critical structures
by C, the set of all structures by S = T ∪ C, and the set of voxels in structure s ∈ S by Vs , we
use the following treatment plan evaluation criteria:

Gs−(z) = 1

|Vs |
∑
j∈Vs

(max{0, T −
s − zj })2 s ∈ T (5)

Gs+(z) = 1

|Vs |
∑
j∈Vs

(max{0, zj − T +
s })2 s ∈ S. (6)
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(Clearly, this means that the set of treatment plan evaluation criteria can be expressed as
L = {s− : s ∈ T } ∪ {s+ : s ∈ S}.) Criteria (5) penalize underdosing below the underdosing
threshold T −

s in all targets s ∈ T , while criteria (6) penalize overdosing above the overdosing
threshold T +

s in all structures s ∈ S. We choose this model based on the fact that it, in our
experience, can be solved very efficiently and yields high-quality treatment plans. However,
recall that our algorithm can easily be applied to models that include other convex treatment
plan evaluation criteria, such as voxel-based penalty functions with higher powers, or EUD.
The resulting model (A) was solved by our in-house primal-dual interior point algorithm (see,
Aleman et al (2007)). We tuned the problem parameters (underdose and overdose thresholds
and criteria weights) by manual adjustment based on two of the ten patient cases and a
beamlet-based FMO model. We then used this set of parameters to solve different variants
of the beamlet-based and aperture-based FMO problem for all ten patient cases. Finally, all
of our experiments were performed on a PC with a 3.4 GHz Intel Pentium IV processor and
2 GB of RAM, running under Windows XP. Our algorithms were implemented in Matlab 7.

4.2. Dose–volume histogram (DVH) criteria

Our approach is to employ a convex, and therefore efficiently solvable formulation of the
FMO problem. However, we use clinical DVH criteria to objectively verify both the ability
of our models to create clinically acceptable treatment plans as well as the robustness of the
problem parameters (which, as mentioned above, are not tuned for individual patients). We use
the DVH criteria used in the Department of Radiation Oncology at the University of Florida.
These criteria are based on the current clinical guidelines formulated by the Radiation Therapy
Oncology Group (2000, 2002):

• PTV1

– At least 99% should receive 93% of the prescribed dose (0.93 × 73.8 Gy).
– At least 95% should receive the prescribed dose (73.8 Gy).
– No more than 10% should be overdosed by more than 10% of the prescribed dose

(1.1 × 73.8 Gy).
– No more than 1% of PTV1 should be overdosed by more than 20% of the prescribed

dose (1.2 × 73.8 Gy).

• PTV2

– At least 99% should receive 93% of the prescribed dose (0.93 × 54 Gy).
– At least 95% should receive the prescribed dose (54 Gy).

• Salivary glands (right and left parotid glands, right and left submandibular glands).

– No more than 50% of each gland should receive more than 30 Gy.

• Other structures.

– Tissue should receive less than 60 Gy.
– Spinal cord should receive less than 45 Gy.
– Mandible should receive less than 70 Gy.
– Brain stem should receive less than 54 Gy.
– Eye should receive less than 45 Gy.
– Optic nerve should receive less than 50 Gy.
– Optic chiasm should receive less than 55 Gy.
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4.3. Stopping rules

We use the column generation algorithm to solve the aperture-based FMO problem. In our
implementation, we identify in each iteration the best aperture (among all beams) that could
improve the treatment plan quality, and add this aperture to the set of apertures currently
under consideration. This approach allows us to make a trade-off between the number of
apertures and the treatment plan quality. As the number of apertures increases, at some point
the improvement in treatment plan quality may no longer be clinically significant. Moreover, a
high number of apertures in general leads to a high beam-on time. Hence, rather than allowing
the column generation algorithm to formally converge, we propose to terminate the algorithm
based on the observed development of the clinical DVH criteria. In particular, we investigate
the merits of the following two stopping rules:

• Convergence:
This stopping rule is based on observing that treatment plan quality, with respect to a
particular criterion, has not improved markedly in recent iterations. More formally, we
say that we are satisfied with the solution with respect to a particular criterion if, in the
last five iterations, the range of observed criterion values spans less than δ (where we use
δ = 0.5% for target criteria and δ = 2% for critical structure criteria).

• Clinical:
This stopping rule is based on observing that the treatment plan performance with respect
to a clinical criterion has been satisfactory in the last five iterations. More formally, we
say that we are satisfied with the solution with respect to a particular criterion if either
the first stopping rule is satisfied or, in the last five iterations, the clinical DVH criterion
is satisfied, allowing for a 1% error bar in all but one of those iterations. (Note that we
allow for the clinical stopping rule to be ‘satisfied’ if the convergence stopping rule is
satisfied to account for the fact that certain clinical criteria cannot be achieved. This may,
for example, be the case if a critical structure is wholly or partially contained in a target.)

In either case, we say that the algorithm has converged if the stopping rule has been satisfied
for all convergence (respectively clinical) criteria. Moreover, we report the solution obtained
in the first iteration of the last sequence of five iterations.

4.4. Results

We divide the discussion of our results into two parts according to the goals that we formulated
in section 1. First, we evaluate the ability of our approach to efficiently find high-quality
treatment plans with a limited number of apertures, as well as the effect of MLC deliverability
constraints on the required number of apertures and beam-on time. Next, we evaluate
the importance of explicitly incorporating transmission effects into the optimization model.
However, before we do so, in figures 2 and 3 we illustrate the behavior of our FMO model by
showing the DVHs and isodose curves superimposed on a typical CT slice, both corresponding
to an optimal treatment plan found for case 5. The isodose curves show both the conformality
of the plan with respect to the two targets and the sparing of the spinal cord and saliva glands.

4.4.1. Delivery efficiency. Tables 2 and 3 show the number of apertures and beam-on time
(in minutes) for the ten cases obtained with our aperture-based approach. We used the two
stopping rules described in section 4.3. For these experiments, we have not incorporated any
transmission effects. For comparison purposes, the tables also show the results of traditional
beamlet-based FMO where the optimal fluence maps were first discretized to integer multiples
of 5% of the maximum beamlet intensity in each beam, and subsequently decomposed into
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Figure 2. DVHs of the optimal treatment plan obtained for case 5 with C1 aperture constraints
and the convergence stopping rule.

Figure 3. Isodose curves for 73.8 Gy, 54 Gy and 30 Gy on a typical CT slice, corresponding to
the optimal treatment plan obtained for case 5 with C1 aperture constraints and the convergence
stopping rule.

apertures with the objective function of minimizing the beam-on time. We used the algorithms
by Kamath et al (2003, 2004a) to minimize the beam-on time under C1 and C2, respectively.
Furthermore, we applied a modification of the approach by Boland et al (2004) to minimize the
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Table 2. Number of apertures without transmission effects.

Aperture-based

Clinical Convergence Beamlet-based

Case C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

1 17 29 22 59 57 48 51 142 170 189 329 334
2 35 45 33 115 47 47 33 132 213 230 390 650
3 19 19 20 33 35 31 33 39 212 252 384 592
4 23 24 24 51 29 29 24 52 262 293 449 636
5 32 19 26 42 39 37 64 55 185 227 348 378
6 18 29 42 52 54 65 93 83 183 211 285 321
7 18 18 19 32 49 22 30 55 196 219 357 445
8 50 72 86 137 77 100 86 137 173 198 327 394
9 19 20 23 38 30 30 27 66 181 203 312 384

10 17 19 19 47 24 27 34 59 248 295 418 611

Average 24.8 29.4 31.4 60.6 44.1 43.6 47.5 82.0 202.3 231.7 359.9 474.5

Table 3. Beam-on time without transmission effects.

Aperture-based

Clinical Convergence Beamlet-based

Case C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

1 2.56 2.90 2.70 6.59 3.98 3.52 3.56 12.43 7.43 8.23 14.51 14.67
2 2.98 3.09 2.77 9.14 3.21 3.12 2.77 9.84 8.46 9.16 15.65 26.00
3 2.92 2.72 2.70 4.66 3.30 3.08 3.06 4.98 8.07 9.43 14.48 22.86
4 2.73 2.68 2.65 6.26 2.89 2.82 2.65 6.30 10.35 11.68 18.85 27.19
5 3.24 2.60 2.78 5.05 3.49 3.09 3.89 6.13 8.94 10.95 17.52 19.45
6 2.56 2.72 3.26 5.00 3.54 3.69 4.06 6.91 6.81 7.81 10.70 12.11
7 2.56 2.52 2.49 3.98 3.30 2.62 2.82 5.77 7.98 8.79 14.11 18.00
8 4.04 4.42 4.68 12.12 4.48 4.92 4.68 12.12 7.31 8.35 13.92 16.81
9 2.65 2.56 2.69 4.42 3.12 2.96 2.82 6.29 7.09 7.70 12.51 17.18

10 2.72 2.76 2.70 6.86 2.97 2.97 3.25 7.99 10.71 12.81 18.33 26.79

Average 2.89 2.89 2.94 6.41 3.42 3.28 3.36 7.87 8.31 9.50 15.05 20.10

beam-on time under C3, while we used a linear programming model for the case of C4. (Note
that there are, in general, many decompositions that attain the minimum beam-on time; the
number of apertures that is given is for a particular solution that the so-called leaf-sequencing
algorithm found, but that number is not minimized explicitly.)

Our main conclusions are given as follows:

• With our direct aperture optimization approach and based on our stopping rules, we
conclude that the number of apertures required under aperture constraints C1–C3 is, on
average, on the order of 30–45, increasing to 60–85 with jaws-only delivery.

• The direct aperture optimization approach leads to a reduction of the required number
of apertures by, on average, more than 75% of the number obtained with the traditional
two-phase approach. Moreover, the required beam-on time is reduced by, on average,
more than 50%.

• There is very little effect on the required number of apertures and beam-on time when
interdigitation or connectedness constraints are imposed; however, the required number
of apertures and beam-on time increase by, on average, approximately 50% when only
rectangular apertures are considered.
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Case 5 PTV1: Volume >73.8 Gy 

90

91

92

93

94

95

96

97

98

99

100

0 10 20 30 40 50 60 70 80 90 100

Number of apertures

Vo
lu

m
e 

consecutiveness constraint

interdigitation constraint

connectedness constraint

rectangle constraint

(b)

Case 5 PTV2: Volume >54 Gy 
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Figure 4. Case 5: the relative volume of (a) PTV1 and (b) PTV2 that receives in excess of its
prescription dose.

It is interesting to see that in some cases fewer apertures are required when the
deliverability constraints are strengthened. This is caused by a combination of the fact that
our approach does not explicitly minimize the number of apertures and the fact that the effect
of some constraints (in particular, the added constraint in C3 as compared to C2) is apparently
negligible in practice.

The amount of time required, on average, by our optimization algorithm to find the
aperture-based solutions ranges from about 1–3 min of the CPU time for the case of
consecutiveness constraints only. The required time increases up to 4 min when interdigitation
and connectedness are imposed, while it further increases up to about 12 min when only
rectangular apertures are allowed. This is in comparison with an average of a little over
1 min of the CPU time required for the traditional two-phase approach. Note that these times
do not include the time required to read the DICOM data and compute the dose deposition
constraints, which took about 10–25 min of the CPU time depending on the size of the case.
However, note that these tasks only need to be performed once for each patient.

To illustrate how our approach may be used to make a trade-off between treatment plan
quality and delivery efficiency, figures 4 and 5 show the behavior of target coverage and
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Case 5 LSG: Volume >30 Gy 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Number of apertures

Vo
lu

m
e

consecutiveness constraint

interdigitation constraint

connectedness constraint

rectangle constraint

(b)

Case 5 RSG: Volume >30 Gy
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Figure 5. The relative volume of (a) LSG and (b) RSG that receives in excess of 30 Gy.

submandibular gland sparing as a function of the number of apertures used for C1–C4 for a
typical example, case 5.

4.4.2. Transmission effects. We have also studied the effect of incorporating transmission
effects into the FMO problem. First, tables 4 and 5 show the number of apertures and beam-on
time with incorporation of transmission effects. We have used ε = 1.7% as the transmission
rate (see, Arnfield et al (2000)). A comparison with tables 2 and 3 reveals that the incorporation
of transmission effects has very little effect on the treatment delivery efficiency.

Next, tables 6–8 show the results of the aperture-based FMO problem under C1 without
and with transmission effects using the convergence stopping rule. In particular, the tables
show values of the DVH criteria for the targets and main critical structures for all ten cases.
For example, the data in the column labeled PTV2@93% represents the fraction of volume
(in %) of PTV2 receiving 0.93×54 Gy. The labels of the other columns follow a similar format,
where the acronyms correspond to the left parotid gland (LPG), right parotid gland (RPG),
left submandibular gland (LSG) and right submandibular gland (RSG). Comparing tables 6
and 8 suggests that treatment plans of very similar quality can be found with and without
incorporation of transmission effects. However, the results of table 6 neither incorporate
transmission in the optimization problem nor account for transmission in the presentation of
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Table 4. Aperture-based FMO: number of apertures with transmission effects.

Clinical Convergence

Case C1 C2 C3 C4 C1 C2 C3 C4

1 26 25 29 87 44 32 102 106
2 32 31 38 79 35 62 59 140
3 17 18 16 36 37 23 23 51
4 28 32 20 39 28 32 29 63
5 23 24 24 68 60 68 31 68
6 24 31 27 49 79 76 43 55
7 24 17 22 24 41 41 30 68
8 68 74 66 138 70 74 66 138
9 18 19 20 23 56 68 55 81

10 16 21 22 33 27 36 34 51

Average 27.6 29.2 28.4 57.6 47.7 51.2 47.2 82.1

Table 5. Aperture-based FMO: beam-on time with transmission effects.

Clinical Convergence

Case C1 C2 C3 C4 C1 C2 C3 C4

1 2.84 2.80 2.89 7.17 3.44 2.97 4.04 7.65
2 2.84 2.68 2.78 6.62 2.92 3.25 3.18 8.91
3 2.70 2.65 2.58 4.70 3.24 2.74 2.76 5.55
4 2.78 2.81 2.53 5.05 2.78 2.81 2.72 6.10
5 2.72 2.64 2.65 6.83 3.69 3.81 2.96 6.83
6 2.65 2.82 2.60 4.65 3.69 3.65 2.94 4.70
7 2.65 2.46 2.53 3.42 3.08 3.02 2.72 5.25
8 4.04 4.09 3.78 8.23 4.06 4.09 3.78 8.23
9 2.56 2.50 2.52 3.36 3.68 3.76 3.56 6.47

10 2.61 2.78 2.90 4.85 2.96 3.22 3.16 6.11

Average 2.84 2.82 2.78 5.49 3.36 3.33 3.18 6.58

Table 6. Aperture-based FMO: DVH criteria under C1 without transmission effects.

PTV2 PTV2 PTV1 PTV1 PTV1 PTV1 LPG RPG LSG RSG
Case @ 93% @ 100% @ 93% @ 100% @ 110% @ 120% @ 30 Gy @ 30 Gy @ 30 Gy @ 30 Gy

1 99.4 98.7 100.0 99.0 4.5 0.0 21.8 18.5 33.1 100.0
2 99.1 98.9 99.7 97.9 9.9 0.0 49.3 100.0 100.0 100.0
3 99.8 99.6 100.0 99.3 2.7 0.0 20.4 18.3 n/a n/a
4 98.8 98.0 100.0 100.0 2.7 0.0 10.3 4.1 54.1 17.7
5 98.6 97.7 100.0 100.0 8.1 0.0 42.2 0.0 44.4 34.6
6 99.5 99.0 100.0 98.6 6.7 0.0 26.2 36.2 n/a n/a
7 99.1 98.6 100.0 99.2 2.4 0.0 0.5 46.7 24.6 100.0
8 99.2 98.9 100.0 98.6 9.9 0.0 28.6 4.9 100.0 52.3
9 99.2 98.1 100.0 99.6 2.1 0.0 5.9 39.8 36.4 100.0

10 100.0 100.0 100.0 100.0 4.3 0.0 0.2 25.4 7.7 100.0

the actual results, so that the treatment plan quality in that table is a perceived rather than an
actual one. Table 7 shows the actual quality of the treatment plan that was obtained when
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Table 7. Aperture-based FMO: DVH criteria under C1 with transmission effects added after
optimization.

PTV2 PTV2 PTV1 PTV1 PTV1 PTV1 LPG RPG LSG RSG
Case @ 93% @ 100% @ 93% @ 100% @ 110% @ 120% @ 30 Gy @ 30 Gy @ 30 Gy @ 30 Gy

1 99.6 99.2 100.0 99.9 19.5 0.0 23.8 21.4 38.6 100.0
2 99.3 99.0 99.9 99.0 34.0 0.0 51.0 100.0 100.0 100.0
3 99.8 99.7 100.0 100.0 24.3 0.0 21.8 19.1 n/a n/a
4 98.8 98.1 100.0 100.0 20.9 0.0 10.5 4.1 55.7 17.7
5 98.8 98.1 100.0 100.0 30.6 0.0 43.0 0.0 46.8 39.5
6 99.6 99.2 100.0 99.2 25.7 0.0 28.2 38.4 n/ n/a
7 99.2 98.8 100.0 99.8 15.0 0.0 0.7 48.2 29.8 100.0
8 99.3 99.0 100.0 100.0 41.6 0.0 29.5 5.5 100.0 58.1
9 99.5 98.8 100.0 99.9 18.9 0.0 7.2 46.1 40.2 100.0

10 100.0 100.0 100.0 100.0 11.2 0.0 0.2 25.4 9.1 100.0

Table 8. Aperture-based FMO: DVH criteria under C1 with transmission effects.

PTV2 PTV2 PTV1 PTV1 PTV1 PTV1 LPG RPG LSG RSG
Case @ 93% @ 100% @ 93% @ 100% @ 110% @ 120% @ 30 Gy @ 30 Gy @ 30 Gy @ 30 Gy

1 99.3 98.4 99.7 96.9 4.9 0.0 22.9 20.2 33.1 100.0
2 99.0 98.6 99.9 97.5 6.7 0.0 44.6 100.0 100.0 100.0
3 99.7 99.6 100.0 99.3 1.3 0.0 20.0 18.1 n/a n/a
4 98.4 97.5 100.0 100.0 2.4 0.0 9.5 1.4 53.0 15.6
5 98.5 97.7 100.0 99.4 3.1 0.0 38.9 0.0 42.7 33.3
6 99.3 98.9 100.0 97.4 4.0 0.0 24.8 35.7 n/a n/a
7 99.0 98.4 100.0 99.1 0.5 0.0 0.5 47.5 17.5 100.0
8 98.9 98.6 100.0 97.7 8.8 0.0 26.9 3.9 100.0 48.9
9 99.1 98.3 100.0 99.2 1.2 0.0 2.6 35.1 33.6 100.0

10 100.0 100.0 100.0 100.0 8.6 0.0 0.2 23.1 1.4 100.0

Table 9. Beamlet-based FMO: DVH criteria under C1 without transmission effects.

PTV2 PTV2 PTV1 PTV1 PTV1 PTV1 LPG RPG LSG RSG
Case @ 93% @ 100% @ 93% @ 100% @ 110% @ 120% @ 30 Gy @ 30 Gy @ 30 Gy @ 30 Gy

1 99.4 99.0 99.9 98.3 5.0 0.0 19.4 17.5 32.3 100.0
2 99.2 98.8 99.9 98.7 3.8 0.0 43.0 96.7 100.0 100.0
3 99.8 99.7 100.0 99.7 2.6 0.0 19.3 17.8 n/a n/a
4 98.8 98.3 100.0 100.0 1.1 0.0 9.0 1.6 53.0 16.7
5 98.8 98.1 100.0 100.0 3.1 0.0 37.7 0.0 39.5 32.1
6 99.9 98.9 100.0 98.3 8.4 0.0 24.2 34.3 n/a n/a
7 99.2 98.8 100.0 99.1 1.8 0.0 0.3 46.5 14.9 100.0
8 99.2 98.9 100.0 99.3 14.1 0.0 28.3 4.4 100.0 51.7
9 99.3 98.6 100.0 98.6 0.5 0.0 2.1 34.6 33.6 100.0

10 100.0 100.0 100.0 100.0 3.7 0.0 0.2 22.8 0.0 100.0

solving an optimization model that does not take transmission effects into account, i.e., for the
results in table 7 transmission effects were added a posteriori to the plan.

Finally, we analyzed the results of using a beamlet-based FMO approach followed by
a leaf-sequencing phase, under C1. Table 9 shows the perceived quality of the obtained
treatment plan (in which transmission effects are ignored), while table 10 shows the actual
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Table 10. Beamlet-based FMO: DVH criteria under C1 with transmission effects.

PTV2 PTV2 PTV1 PTV1 PTV1 PTV1 LPG RPG LSG RSG
Case @ 93% @ 100% @ 93% @ 100% @ 110% @ 120% @ 30 Gy @ 30 Gy @ 30 Gy @ 30 Gy

1 99.9 99.8 100.0 100.0 69.1 1.3 32.5 27.2 55.1 100.0
2 99.6 99.5 100.0 99.9 96.5 0.4 59.1 99.3 100.0 100.0
3 99.9 99.9 100.0 100.0 94.3 0.1 25.8 21.0 n/a n/a
4 99.7 99.5 100.0 100.0 100.0 6.8 17.7 10.4 74.6 40.3
5 99.6 99.3 100.0 100.0 83.1 1.3 48.0 2.1 56.5 56.8
6 99.9 99.4 100.0 100.0 75.8 0.0 33.6 41.7 n/a n/a
7 99.7 99.5 100.0 100.0 96.7 1.8 4.4 59.3 42.1 100.0
8 99.7 99.5 100.0 100.0 86.9 1.4 40.2 18.5 100.0 70.69
9 99.8 99.7 100.0 100.0 72.7 0.0 9.4 54.5 51.4 100.0

10 100.0 100.0 100.0 100.0 100.0 70.6 4.7 41.7 16.1 100.0

quality of the treatment plan (in which transmission effects are added to the final treatment
plan).

From the latter two tables, it is clear that using a beamlet-based FMO optimization
approach may severely underestimate target hotspots (overdosing) and effects on critical
structures. The direct aperture optimization approach with transmission effects incorporated,
however, provides a high-quality treatment plan with, on average, a comparable number of
apertures and beam-on time. Taking case 5 as an example, a treatment plan that ignored
transmission effects appeared to spare all four saliva glands, while less than 10% of PTV1
received in excess of 110% of its the prescription dose. Adding transmission effects to the
plan found using beamlet-based FMO showed that in fact only two saliva glands were spared
with the PTV1 hotspot increasing to over 80%. Incorporating transmission effects into the
aperture-based FMO model showed that it was possible to spare all saliva glands and that keep
the dose to PTV1 in excess of 110% of its prescribed dose to about 3%.

5. Concluding remarks and future research

In this paper, we used a direct aperture optimization approach to design radiation therapy
treatment plans for individual patients. This approach allows us to make a sound trade-
off between treatment plan quality and delivery efficiency. In addition, our model is able
to explicitly incorporate transmission effects, which can dramatically affect the quality of a
treatment plan but are ignored by the most existing FMO models. Future research could extend
the research in this paper by explicitly incorporating a measure of treatment plan efficiency,
such as beam-on time, into the optimization model.
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