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DECENTRALIZED DECOMPOSITION ALGORITHMS FOR
PEER-TO-PEER LINEAR OPTIMIZATION

M. ASLI AYDIN 1 AND Z. CANER TAŞKIN 1

Abstract. We propose Decentralized Benders Decomposition and Decentral-
ized Dantzig-Wolfe Decomposition algorithms for large-scale block angular
linear programming problems. Our methods allow multiple peer decision mak-
ers to cooperate with the aim of solving the problem without the need of a
central coordination mechanism. Instead we achieve cooperation by partial in-
formation sharing across a strongly connected communication network. Our
main goal is to design decentralized solution approaches for decision makers
who are unwilling to disclose their local data, but want to solve the global prob-
lem collaboratively for mutual benefit. We prove that our proposed methods
reach global optimality in a finite number of iterations. We confirm our theo-
retical results with computational experiments.

Keywords: Linear programming; Decentralized Coordination; Peer-to-peer
Optimization; Block Angular Structure

1. INTRODUCTION

The main motivation of this study is driven by some optimization problems that we
have encountered in practical applications of supply chain planning. Consider a manu-
facturer and a supplier within a supply chain. The manufacturer purchases certain ma-
terials from the supplier and uses these materials in its manufacturing processes. The
supplier has its own resources, possibly produces other products and has other customer
demands. In a planning approach commonly used in the industry, the manufacturer first
performs its planning to seek an optimal allocation of its capacity to satisfy its customer
demands, and identifies materials that it needs to purchase from the supplier to execute
this plan. These material requirements are then translated into purchase orders and are
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passed to the supplier. Next, the supplier runs its own planning process to ensure that
its own capacity is used efficiently and its customer demands are satisfied on time with
minimum cost. Linear programming-based optimization models are commonly used in
planning processes such as sales and operations planning (S&OP) and aggregate produc-
tion planning [17, 22]. Thus, in many practically relevant cases planning problems of the
manufacturer and supplier can be formulated as linear programming problems, which are
solved by the individual entity in sequence. However, such a sequential approach has two
main drawbacks: i) the two plans may be inconsistent in case the supplier has limited ca-
pacity so that it cannot satisfy the manufacturer’s demand on time, and ii) the overall plan
generated sequentially may not yield the same quality as a plan that would be generated
if the manufacturer and the supplier cooperated to generate a plan simultaneously.

One possible approach that the manufacturer and the supplier can use to cooperate is
to build a single optimization problem that combines their variables, constraints and ob-
jective functions into a single problem, and add constraints that ensure that the number
of items shipped by the supplier is equal to the number of items received by the man-
ufacturer. Then, the resulting optimization problem represents a primal block angular
structure as shown in Fig.1.

FIGURE 1. Primal Block Angular Structure [5].

Each block along the diagonal consists of local constraints of the manufacturer and
the supplier associated with their own operations. The set of uppermost complicating
constraints is associated with inventory transfer constraints plus any common capacity,
material or budget constraints that link the interactions among the entities. This approach
is only applicable if the manufacturer and the supplier are completely transparent about
their data and optimization models, which might contain sensitive information such as
profitability of products, capacities and planning objectives. Therefore, this approach can
only be used in practice if the manufacturer and supplier belong to the same company.

A number of decomposition methods have been proposed in the literature to provide
an efficient way for solving linear problems in block angular structure [4, 8, 18]. These
methods are based on the observation that, without the complicating constraints, the over-
all problem can be partitioned into independent subproblems associated with each block.
Thus, instead of solving one large-scale linear optimization problem, the problem is par-
titioned into several easier to solve subproblems. A solution set can be found by finding
an independent solution for each subproblem. However, this rarely gives a solution for
the overall problem because of the violation of complicating constraints. Hence a mas-
ter problem is required to coordinate individual solutions of subproblems for obtaining a
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system-wide optimal solution. Thus, each entity sends a proposal to the center as a solu-
tion of its subproblem, then the center examines the proposals to obtain a global optimal
solution by solving the master problem. Fig.2 represents the structure and information
flow in existing decomposition methods.

MASTER PROBLEM

Subproblem1 ...Subproblem2 SubproblemN

FIGURE 2. Structure and information exchange scheme for existing de-
composition methods.

Since some constraints and variables are maintained by the subproblems, decompo-
sition methods reduce the amount of information sharing between entities. However,
such methods still require a master problem to coordinate all subproblems. Thus, they
are applicable in settings such as a multi-national firm consisting of separate companies
in different countries, which are aligned via a central coordination unit belonging to the
headquarters. However, such approaches are not directly applicable in settings where the
collaborating entities belong to independent companies since in this case it is not clear
which entity would assume the role of the central coordination unit. Thus, there is a need
for a decentralized decision making mechanism that allows multiple independent entities
that are unwilling to share their private information but want to collaborate to solve the
global problem by partial information exchange. Our main goal in this paper is to de-
sign optimization-based coordination mechanisms for linear programming problems in a
peer-to-peer setting.

Decentralization approaches that exploit decomposition methods have attained signif-
icant attention recently. The authors in [12] address a capacity planning problem where
finite capacity of a single facility is allocated among organizations to satisfy demand
constraints. They propose Cooperative Interaction via Coupling Agents algorithm based
on Lagrangian Relaxation where the facility and organizations act as coupling agents.
A hybrid method especially for solving a cross-facility capacity allocation problem that
combines Lagrangian relaxation and immunity-inspired coordination scheme is proposed
in [15]. A distributed simplex method allowing more than two decision makers to solve
linear programs is proposed in [10] that specifically addresses the security and access
control issues arising in distributed data mining environments. Two-Stage Distributed
Simplex Algorithm is proposed for block angular problems in a multi-agent setup in [6].
The algorithm solves the problem with information exchange only among the agents while
utilizing the column generation method. In [2], the authors propose a decentralized coor-
dination algorithm especially for sales and operations planning problems in supply chain
environments. Decision makers may play one of the two specific roles: an Informed
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Party or one of the several Reporting Parties. The algorithm allows exchange of primal
information among the parties.

In this paper, we propose two methods, Decentralized Benders Decomposition and
Decentralized Dantzig-Wolfe Decomposition for solving block angular linear programs
(BALP). We exploit the special structure of the problem to decompose it into a subproblem-
local master problem pair for each decision maker, which we call optimization agent
(OA). We solve the overall problem collaboratively by allowing minimum required in-
formation sharing among the OAs through peer-to peer communication. Fig.3 shows the
structure and information exchange scheme for our methods. We prove the convergence

...
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FIGURE 3. Structure and information exchange scheme for proposed methods.

of the proposed methods to a global optimal solution in a finite number of iterations in
case of the decision makers are tied to each other through a strongly connected commu-
nication network.

Main differences between our work and the existing literature can be summarized as
follows. Different from [12], our methods allow more than two decision makers to solve
their problem collaboratively. Only partial information sharing is required in both meth-
ods. The first one relies on sharing dual information while the second one requires primal
information sharing. Thus, we offer two choice of methods to the users with respect to
the type of information that they want to reveal. Our methods have no restriction on the
number of complicating constraints in the global problem unlike [2]. Our methods do not
require a distinct role definitions for decision makers as it is the case in [2] and [10]. The
decision makers in our approaches are equal on hierarchy and task assignment. Further-
more we prove the convergence of the proposed methods to the same optimal solution
with centralized methods in finite number of iterations while [2], [12], [15] and [19] state
near-optimal solution.

The rest of this paper is organized as follows. In Section 2 we introduce the block
angular problem that we address and we present notation for the communication network.
In Section 3 we apply Classical Benders Decomposition as a solution approach before we
present Decentralized Benders Decomposition method. In Section 4, we present Decen-
tralized Dantzig-Wolfe Decomposition method. Section 5 presents experimental results
on two groups of test instances with a discussion. Finally, Section 6 concludes the paper
with possible future research directions. We provide correctness and convergence proofs
of our proposed methods in appendices for brevity.
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2. PROBLEM STATEMENT AND NOTATION

2.1. PROBLEM STATEMENT

The problem has N independent decision makers which we call optimization agents
(OA). Each OA i ∈ {1,2, ...,N} has its own set of decision variables xi j’s for activity
j ∈ {1,2, ...,ni}. OAs aim to minimize their linear cost ∑

ni
j=1 ci jxi j, where ci j ∈ ℜ and

xi j ∈ℜ, while satisfying a block of local constraints given by (1c). There is also a set of
complicating constraints given by (1b) linking the interactions among the OAs. Hence,
the resulting problem has primal block angular structure.

BALP

Minimize
N

∑
i=1

ni

∑
j=1

ci jxi j (1a)

subject to
N

∑
i=1

ni

∑
j=1

ak
i jxi j ≥ rk ∀k = 1,2, . . . ,K (1b)

ni

∑
j=1

bi jxi j ≥ li ∀i = 1,2, . . . ,N (1c)

xi j ≥ 0 ∀i = 1,2, . . . ,N ∀ j = 1,2, ...,ni (1d)

where ak
i j,bi j,rk and li are all in ℜ. Note that, the local constraint set given by (1c) may

consist of more than one equation. Furthermore, the number of local constraints does not
necessary to equal to each other for all OAs.

We may present an example of BALP as a supply chain problem that we address in
Section 1. We use the following description:

Indices
i = 1,2, . . . ,N : Entities (either manufacturer or supplier) in the supply chain network
j = 1,2, . . . ,ni : Activities/operations associated with entity i
k = 1,2, . . . ,K : Common resources shared by the entities

Parameters
ci j : unit cost for activity/operation j of entitiy i
rk : capacity of common resource k
li : capacity of local resources of entity i
ak

i j : consumption rate of the common resource k for activity/operation j by entity i
bi j : consumption rate of local resources for activity/operation j by entity i

Decision variable
xi j : decision variable controlled by entity i for activity/operation j

In this model, the system-wide objective is to minimize the total cost given by (1a).
(1c) gives the blocks of local constraints of manufacturer and the supplier associated with
their own operations. (1b) gives the complicating constraints associated with inventory
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transfer, common capacity, material or budget. Note that rk values related to inventory
transfer constraints are equal to zero to ensure that the number of items delivered by the
supplier is equal to the number of items received by the manufacturer.

2.2. COMMUNICATION NETWORK

One possible approach for solving (1) is centralization where a center builds the prob-
lem as a whole, announces the solution after solving it with Simplex Algorithm or Interior
Point methods [7, 14]. However, in this work we propose decentralized decomposition
methods to solve the problem without a central coordination unit. Thus, individual OAs
need to communicate and exchange information with each other in order to solve the
problem collaboratively.

We consider a directed graph, G(N,A), to model the communication network among N
decision makers. In this setting, OAs are the nodes of the graph and the arcs represent
a communication link between two OAs. OA t is called a neighbour of OA i if there
is an arc from OA i to OA t and Ni ⊆ N denotes the set of neighbours of OA i. Note
that communication between any two nodes may be uni-directional, i.e., if OA i is a
neighbour of OA t, it does not necessarily mean that OA t is a neighbour of OA i. In order
for the problem to reach global optimality, any pair of the optimization agents should
communicate to each other. OA i can communicate with OA t where t /∈ Ni if there
exists a path from node i to node t. Hence, we assume a strongly connected graph for a
communication network where there exists a path that goes from i to t for every pair of
the nodes of the graph.

There are several common communication network topologies in the literature. Fig.4
illustrates the topologies which we consider in our work. In Star Topology, there is a
node in the middle and all other nodes are directly connected to it. Connection among the
nodes are achieved indirectly through the node in the middle. In Ring Topology, nodes
are connected in a closed loop configuration. While adjacent pairs of nodes are directly
connected, other nodes are connected indirectly through one or more intermediate nodes.
In Mesh Topology, each node is directly connected to all other nodes. We assume that the
communication between any two nodes is bi-directional.

STAR RING MESH

FIGURE 4. Some Commonly Used Network Topologies
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3. DECENTRALIZED BENDERS DECOMPOSITION

Classical Benders Decomposition is equivalent to Dantzig-Wolfe decomposition ap-
plied to the dual of the linear program in Primal Block Angular structure [20]. Thus, it
can be best applied to the linear programs in Dual Block Angular Structure [21]. Fig.5
shows dual block angular structure. Instead of complicating constraints, there is a number
of complicating variables that connects independent blocks.

In this section, first we describe an application of Classical Benders Decomposition to
primal BALP. Then, we propose Decentralized Benders Decomposition.

 

 

FIGURE 5. Dual Block Angular Structure [5].

3.1. CLASSICAL BENDERS DECOMPOSITION APPLIED TO PRIMAL BALP

We propose a reformulation of (1) that enables decomposing the complicating con-
straints in (1b) into several subproblems. To this end, we introduce a new variable, rk

i ,
denoting the share of OA i for k. Hence we add a new set of constraints (2b) satisfying
the sum of the shares is equal to the total available amount for each k. Then, instead of
each complicating constraint in (1b), the following set of constraints is introduced:

∑
ni
j=1 ak

i jxi j ≥ rk
i ∀i.

Hence, an equivalent formulation for (1) after decomposing the complicating constraints
can be given as the following:

Minimize
N

∑
i=1

ni

∑
j=1

ci jxi j (2a)

subject to:
N

∑
i=1

rk
i = rk ∀k = 1,2, . . . ,K (2b)

ni

∑
j=1

ak
i jxi j ≥ rk

i ∀i = 1,2, . . . ,N ∀k = 1,2, . . . ,K (2c)

ni

∑
j=1

bi jxi j ≥ li ∀i = 1,2, . . . ,N (2d)

rk
i unrestricted ∀i = 1,2, . . . ,N ∀k = 1,2, . . . ,K (2e)

xi j ≥ 0 ∀i = 1,2, . . . ,N ∀ j = 1,2, ...,ni. (2f)
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With this reformulation, (2) has a dual block angular structure, where rk
i are treated as

complicating variables. Furthermore, note that (2c) can be treated as local constraints
in addition to (2d). Assume that the complicating variables are fixed to a given value, r̂k

i
while satisfying (2b). Then, the centralized problem in (2) can be solved as N independent
problems only in xi j variables. Given r̂k

i values, the ith subproblem is formulated as the
following:

SPi(r̂k
i )

Minimize
ni

∑
j=1

ci jxi j (3a)

subject to:
ni

∑
j=1

ak
i jxi j ≥ r̂k

i ∀k = 1,2, . . . ,K (3b)

ni

∑
j=1

bi jxi j ≥ li (3c)

xi j ≥ 0 ∀ j = 1,2, ...,ni. (3d)

Note that (3) is a linear program for given r̂k
i values . If any one of the subproblems is

unbounded for r̂k
i , then (2) is also unbounded. This implies the unboundedness of the

centralized problem in (1). Hence, we assume bounded subproblems. By introducing
dual variables πk

i associated with constraints (3b) and wi associated with the constraint
(3c), the dual subproblem can be formulated as the following:

Dual−SPi(r̂k
i )

Maximize
m

∑
k=1

r̂k
i π

k
i + liwi (4a)

subject to:
K

∑
k=1

ak
i jπ

k
i +bi jwi ≤ ci j ∀ j = 1,2, ...,ni (4b)

π
k
i ≥ 0 ∀k = 1,2, . . . ,K (4c)

wi ≥ 0. (4d)

Note that only the objective function depends on the values of r̂k
i . If the feasible region

in (4) is empty, then for any r̂k
i either (3) is unbounded or infeasible. Hence, we assume

that the feasible region of dual subproblem is non-empty. Thus, the extreme points of
the feasible region in (4) can be enumerated as {

(
πk

i
wi

)p
}, where p is an element of the set

of extreme points, Pi. Similarly, its extreme rays can be enumerated as {
(

πk
i

wi

)r
}, where r

is an element of the set of extreme rays, Ri. If dual subproblem is bounded, then there
exists an extreme point, p∈ Pi that maximizes the objective function value r̂k

i (π
k
i )

p+ liw
p
i .

Otherwise, if the the dual subproblem is unbounded, then there exists an extreme ray,
r ∈ Ri such that r̂k

i (π
k
i )

r + liwr
i > 0. In this second case, (3) is infeasible. Thus, (4) can be

reformulated as the following:
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DSPi(r̂k
i )

Minimize qi (5a)

subject to:
K

∑
k=1

r̂k
i (π

k
i )

p + liw
p
i ≤ qi p ∈ P (5b)

K

∑
k=1

r̂k
i (π

k
i )

r + liwr
i ≤ 0 r ∈ R (5c)

qi unrestricted. (5d)

Constraints of type (5b) are called Benders optimality cuts, while constraints of type (5c)
are called Benders feasibility cuts. Then, (1) can be reformulated equivalently by using
the Benders cuts:

MP

zMP=Minimize
N

∑
i=1

qi (6a)

subject to:
N

∑
i=1

rk
i = rk ∀k = 1,2, . . . ,K (6b)

K

∑
k=1

rk
i (π

k
i )

p + liw
p
i ≤ qi p ∈ Pi ∀i = 1,2, . . . ,N (6c)

K

∑
k=1

rk
i (π

k
i )

r + liwr
i ≤ 0 r ∈ Ri ∀i = 1,2, . . . ,N (6d)

qi unrestricted (6e)

rk
i unrestricted. (6f)

The number of Benders cuts in (6) is generally huge. Hence, Classical Benders Decom-
position starts with a Relaxed Master Problem (RMP) consisting of a subset of feasibility
and optimality cuts. A center solves RMP and announces the r̂k

i values. Each OA updates
(4) with r̂k

i and solves to optimality to produce either a feasibility or an optimality cut.
Then, RMP is re-solved after the addition of the cuts. The algorithm terminates if no new
cut is generated. The convergence of Classical Benders decomposition in a finite number
of iterations follows since in each time a dual subproblem is solved, a unique Benders cut
is generated associated with an extreme point or an extreme ray. Since the sets of extreme
points and extreme rays are finite, there are finitely many feasibility or optimality cuts
to be added. Efficiency of Classical Benders Decomposition is based on the observation
that the algorithm typically reaches optimality after adding a fraction of possible Benders
cuts.

3.2. DECENTRALIZED BENDERS DECOMPOSITION ALGORITHM

Classical Benders Decomposition requires a center to solve RMP. By Decentralized
Benders Decomposition method, our aim is to achieve complete removal of the center
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from the system. Thus, instead of solving a global master problem by a center, we intro-
duce a local copy of the relaxed master problem for each OA.

MPi

Minimize qi (7a)

subject to:
N

∑
i=1

rk
i = rk ∀k = 1,2, . . . ,K (7b)

rk
i unrestricted ∀i = 1,2, . . . ,N ∀k = 1,2, . . . ,K (7c)

qi ≥ LBi. (7d)

Note that initially (7) consists of linking constraints (2b), only. We also initialize a
lower bound LBi for qi which denotes the objective function value of the ith subproblem
to ensure feasibility of local master problem at initial iterations. To find an LBi, we solve
a problem consisting of local constraints given by (3c) only.

Algorithm 1: DECENTRALIZED BENDERS DECOMPOSITION ( Dual − SPi(r̂k
i ),

MPi, G =(N, A))

Input: Dual−SPi(r̂k
i ){ Dual subproblem for OA i}

Input: MPi {Local master problem for OA i}
Input: G =(N, A){Cut exchange network}

1 {rk
i denotes the share of rk for OA i}

2 {V denotes the visited neighbours list for finding a new cut}
3 {BC denotes the Benders cut}
4 for i = 1 to N do
5 repeat
6 Solve MPi→ (rk

i )

7 V ←∅
8 BC← GetCut(i,V,rk

i )

9 until BC = Null

Algorithm 1 describes Decentralized Benders Decomposition algorithm. It starts with
a pair of problems Dual− SPi(r̂k

i )−MPi for each OA and a strongly connected commu-
nication graph, G = (N,A). Each OA solves its local master problem, MPi, and gets the rk

i
values. Algorithm 1 utilizes GETCUT procedure, which looks for a cut from neighbours
recursively, if there is no cut generated by the OA itself. Hence, Algorithm 1 keeps track
of the visited OAs with the list, V . It terminates when no new cut is generated for any of
the OAs.

Algorithm 2 gives the details of the GETCUT procedure. It is a recursive procedure
that returns a Benders cut, if it exists. First, the procedure adds t, the identity of the
current OA, to the visited neighbours list, V , to avoid visiting it more than once. Then
the objective function of Dual − SPi(r̂k

i ) is updated with the given rk
i values and it is

solved. According to the solution status of Dual− SPi(r̂k
i ), either a Benders feasibility
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Algorithm 2: GETCUT(t, V, rk
i )

Input: t {Identity of OA}
Input: V {Visited Neighbours List}
Input: rk

i ∀k = 1,2, . . . ,K {Share of rk for OA i}
Output: BC {Benders Feasibility or Optimality cut}

1 if t ∈V then
2 return Null

3 V ←V ∪{t}
4 Update objective function of Dual−SPi(r̂k

i )

5 Solve Dual−SPi(r̂k
i )→ GetStatus

6 if GetStatus = Optimal then
7 BC← Generate Benders optimality cut according to (5b)

8 else if GetStatus =Unbounded then
9 BC← Generate Benders feasibility cut according to (5c)

10 else
11 BC← Null

12 if BC = Null then
13 forall n ∈ Nt do
14 BC← GETCUT(n,V,rk

i )

15 if BC 6= Null then
16 Break out of the ForAll loop

17 Add BC to MPt

18 return BC

cut or a Benders optimality cut is generated. Otherwise, Algorithm 2 looks for a new cut
recursively from all neighbouring OAs until it finds a new cut. Here Nt ⊂ N denotes the
set of all neighbours of OA t. If a new cut is generated then it is added to the local master
problem of OA t. Algorithm 2 runs until all OAs are visited. A flowchart of Algorithm 2
is shown in Figure 6. Note that, when a cut is generated by OA t with respect to OA i’s
allocations through GETCUT procedure, then all the OAs on the path connecting OAs i
and t adds that cut to their local master problem by definition of GETCUT procedure.

Notice that the local master problem consists of only a subset of constraints initially.
Hence at any iteration, the optimal objective function value of the local master problem
is a lower bound on objective function value of (1). Also notice that the sum of objective
function values of the subproblems is an upper bound for objective function value of (1).
The advantage of this feature is allowing termination before reaching global optimality if
lower and upper bounds are close enough.

Proposition 1. Decentralized Benders Decomposition yields an optimal solution for BALP
(if one exists) within a finite number of iterations if communication network is strongly
connected.



12 TITLE WILL BE SET BY THE PUBLISHER

START 
Given (t, V, r;k) 

Is OA visited 

Update visited neighbours list, V 

YES 

Update objective function of Dual_Sp;(rn 

Is it Optimal? Is it Unbounded? 

Generate Optimality Cut Generate Feasibility Cut 

Add Cut to MP
1 

RETURN Cut 

RETURN 
Null 

For all 
Neighbours 

FIGURE 6. Flowchart of GETCUT procedure given in Algorithm 2.

Proof. See Appendix 7.1. �

4. DECENTRALIZED DANTZIG-WOLFE DECOMPOSITION

Dantzig-Wolfe Decomposition requires a center for coordinating the information ex-
change between master problem and subproblems. Hence it is not applicable for peer-to-
peer optimization problems. In this section, we describe Decentralized Dantzig-Wolfe
Decomposition algorithm that allows decision makers to solve BALP collaboratively
without need of a center. Decentralized Dantzig-Wolfe Decomposition algorithm (Al-
gorithm 3) utilizes Phase I algorithm as described in [13] to ensure the feasibility of local
master problem. If an initial local master problem is established, Algorithm 3 calls Phase
II algorithm (Algorithm 4). Otherwise, it terminates since BALP is infeasible.
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Algorithm 3: DECENTRALIZED DANTZIG-WOLFE DECOMPOSITION

1 IsFeasible←Phase I Algorithm
2 if IsFeasible then
3 Phase II Algorithm

4 else
5 BALP is infeasible.

4.1. DECENTRALIZED DANTZIG-WOLFE DECOMPOSITION ALGORITHM

We consider block angular linear programs given by (1). Without the complicating
constraints in (1b), the problem can be decomposed into N smaller subproblems each of
which is associated with a block of local constraints in (1c). By Minkowski’s Represen-
tation Theorem, any point xi j in the feasible region of subproblem i can be expressed as
sum of a convex combination of its extreme points and non-negative linear combination
of its extreme rays. For the sake of simplicity, we assume a bounded feasible region for
subproblems. Hence, we can formulate local master problem for OA i by using extreme
points, xp

i ∈ Pi, as the following:
MPi

Minimize
ni

∑
j=1

∑
p

ci jx
p
i jλ

p
i (8a)

subject to
ni

∑
j=1

∑
p

ak
i jx

p
i jλ

p
i ≥ rk ∀k = 1,2, . . . ,K (8b)

∑
p

λ
p
i = 1 (8c)

λ
p
i ≥ 0 ∀xp

i ∈ Pi. (8d)

Here Pi denotes the set of extreme points of the subproblem i’s feasible region. To ensure
feasibility of MPi, we use Phase I method. Once we initialize local master problem MPi,
we solve it by column generation method. We decide whether a variable can be added to
MPi with its corresponding column with respect to its reduced cost:

RC :
ni

∑
j=1

(ci j−
K

∑
k=1

πkak
i j)xi j−wi, (9)

where πk ∀k = 1,2, . . . ,K and wi are dual variables associated with complicating con-
straints and convexity constraint for (8), respectively. The most profitable variable to enter
the master problem is the one having the most negative reduced cost. Hence, we solve the
following pricing subproblem:
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SPi(πk,wi)

zSPi = Minimize
ni

∑
j=1

(ci j−
K

∑
k=1

πkak
i j)xi j−wi (10a)

subject to
ni

∑
j=1

bi jxi j ≥ li (10b)

xi j ≥ 0 ∀ j = 1,2, ...,ni. (10c)

Assume that an optimal solution of SPi(πk,wi) is x∗i j. The column generated with respect
to x∗i j is as the following:

C : [
ni

∑
j=1

ci jx∗i j

ni

∑
j=1

a1
i jx
∗
i j · · ·

ni

∑
j=1

aK
i jx
∗
i j 1]T (11)

where T is the transpose operator.
We describe Phase II algorithm in Algorithm 4. It starts with a pair of problems

SPi(πk,wi)−MPi for each OA i ∈ {1,2, ...,N} and a strongly connected communication
graph, G = (N,A). Here (πk,wi) denotes the dual variables of MPi, V denotes the visited
neighbours list for finding a new column from the neighbours and C denotes the column
generated. Algorithm 4 utilizes recursive GETCOLUMN procedure to find a new column.
It terminates when no new column is generated for any of the OAs. Note that, since a
center is lack in the system, each OA get the solution by its own after running the steps
(5)-(6).

Algorithm 4: PHASE II ALGORITHM(SPi(πk,wi),MPi,G = {N,A} )
Input: SPi(πk,wi) { Pricing Subproblem for OA i}
Input: MPi {Local master problem for OA i}
Input: G = {N,A} {Strongly connected digraph}

1 for i = 1 to N do
2 repeat
3 Solve MPi→ (πk,wi)

4 V ←∅
5 C← GetColumn(i,V,(πk,wi))

6 until C = Null

Algorithm 5 gives the details of recursive GETCOLUMN procedure. Here (πk,wi) de-
notes the dual variables of MPi, V denotes the visited neighbours list for finding a new
column from the neighbours and C denotes the column generated. First GETCOLUMN
procedure updates the visited neighbours list. Then it updates SPt(πk,wi) with dual vari-
ables of OA i to solve subproblem of OA t where i 6= t. If reduced cost is negative for a
variable, then a new column is generated. Otherwise, Algorithm 5 looks for a new col-
umn recursively from neighbours. Note that when a column is generated by OA t for OA
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i, then by definition of GETCOLUMN procedure, all the OAs on the path connecting the
OAs add that column. Algorithm 5 terminates when all neighbours are visited.

Algorithm 5: GETCOLUMN(t, V, (πk,wi))
Input: t {Identity of OA}
Input: V {Visited Neighbours List}
Input: (πk,wi) {Dual variables of MPi }
Output: C {New Column}

1 if t ∈V then
2 return Null

3 V ←V ∪{t}
4 Update objective function of SPt(πk,wi)

5 Solve SPt(πk,wi)→ z∗SPt

6 RC← z∗SPt
{RC denotes reduced cost in (9)}

7 if RC < 0 then
8 Generate C according to (11)

9 else
10 forall n ∈ Nt do
11 C← GETCOLUMN(n,V,(πk,wi))

12 if C 6= Null then
13 Break out of the For loop

14 Add C to MPt

15 return C

Note that local master problem of an OA is initially formulated as (8) and it consists
of a few columns. Then the local master problem grows gradually by the addition of new
columns including the ones coming from the neighbours and becomes as the following:

MPi

Minimize
N

∑
i=1

ni

∑
j=1

∑
p

ci jx
p
i λ

p
i (12a)

subject to
N

∑
i=1

ni

∑
j=1

∑
p

ak
i jx

p
i λ

p
i ≥ rk ∀k = 1,2, . . . ,K (12b)

∑
p

λ
p
i = 1 ∀i = 1,2, . . . ,N (12c)

λ
p
i ≥ 0 ∀xp

i ∈ Pi ∀i = 1,2, . . . ,N. (12d)

At termination, optimal objective function value of any local master problem gives the
optimal objective value for the global problem. In the worst case, local master problem
may eventually converge to the classical master problem of centralized approach. OA i



16 TITLE WILL BE SET BY THE PUBLISHER

FIGURE 7. Flowchart of GETCOLUMN procedure given in Algorithm 5.

can derive global optimal solution value of its own variables xopt
i j by using the following

equation:

(xopt
i j ) = ( ∑

p∈P̄i

xp
i jλ

p
i ), (13)
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where P̄i denotes the set of extreme points which are used to generate columns in OA
i’s local master problem. Then optimal solution of the global problem is obtained by
combining all OA’s individual global optimal solutions.

Proposition 2. Decentralized Dantzig-Wolfe Decomposition yields an optimal solution
for BALP (if one exists) within a finite number of iterations if communication network is
strongly connected.

Proof. See Appendix 7.2. �

5. NUMERICAL EXPERIMENTS

In this section, we apply Decentralized Benders Decomposition and Decentralized
Dantzig-Wolfe Decomposition to solve randomly generated block angular linear problems
and Multi-Commodity Network Flow problems. We present test results with a discussion.

5.1. TEST SETS

We use two groups of problems to test the correctness and performance of the proposed
methods. For the first one, we generate random block angular linear problems by using
the same strategy of the authors in [11]. According to this, the constraint matrix Ai of
the problems consists of non-negative random numbers in the range [0,10] with density
30%. The objective function coefficients ci are generated from the range [10, 20] while
right hand side values are selected from [100, 500]. Table 1 presents the dimensions of
randomly generated problems in three sets. In the first set, problems has fixed size of
500×1000 while the number of OAs varies. In the second set, each problem has twenty
OAs with varying size. In the third set, the problems has varying size with varying number
of OAs, however each block has same size of 20×30.

The second group is Multi-commodity network flow (MCNF) problems that are one of
the well-known problem types representing primal block angular structure. We use ran-
dom generator Mnetgen [3] for MCNF problems that can be retrieved from [1]. These set
of problems can be characterized by the number of nodes n and the number of commodi-
ties k where n ∈ {64,128,256} and k ∈ {4,8,16, ...,n}. For any pair of (n,k), Mnetgen
randomly generates twelve problems such that six of the problems are dense with m/n≈ 8
and the other six problems are sparse with m/n≈ 3. Within each group of six problems,
three problems are easy and the other three problems are hard.

5.2. RESULTS AND DISCUSSION

In this section, we present computational results performed on test instances. We im-
plemented proposed algorithms with C# utilizing CPLEX 12.5 running on a Windows 10
PC with a 3.6 GHz CPU and 32 GB RAM. We use Star, Ring and Mesh topologies in
Fig. 4 as strongly connected communication graph among OAs. For Decentralized Ben-
ders Decomposition and Decentralized Dantzig-Wolfe Decomposition we allow equal run
time for each OA that sum up to two hours for each problem. Also we report the results
of Classical Benders Decomposition and Classical Dantzig-Wolfe Decomposition of as a
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benchmark. We find lower and upper bounds on the objective function value if the algo-
rithm does not converge to optimal solution within the allowed time and report the gap
percent.

For the first group of problems in Table 1, we generate five instances randomly for
each problem type and report the average as the result. Table 3 presents results for these
problems on Decentralized Benders Decomposition. For the first set of problems, the size
of the overall problem is fixed. Thus, subproblem size becomes smaller as the number of
OAs increases. However, Gap% increases with the number of OAs because of allowing
less time for each OA in a problem having more OAs. For the second set, we can observe
the effect of the subproblem size on convergence. Harder subproblems results in higher
Gap%. For the third set, we can observe the effect of the number of OAs since the
subproblem size is fixed. Problem having more OAs need more time to converge. Ring
topology outperforms the others almost in all instances. Mesh topology results in smaller
Gap% than Star topology.

Table 2 presents results for first group of problems on Decentralized Dantzig-Wolfe
Decomposition. Results in the first set presents the effect of communication network.
Convergence time in Star topology increases first because time spent for communication
is more than time spent for solving the subproblems. Convergence time decreases when-
ever the subproblems becomes easy enough to solve. For Ring topology, convergence
time decreases because the subproblems are getting easier to solve. For Mesh topology,
convergence time decreases initially as the subproblems are getting easier to solve, how-
ever more OAs results in higher convergence time. There is an increase in convergence
time for the second set and the third set. However, the algorithm reacts more to size of

TABLE 1. Dimensions for randomly generated problems

Instance
No

Number
of Blocks

Number of variables
in each block

Number of rows
in each block

Number of
complicating
constraints

Percent of
complicating
constraints

1 2 500 200 100 20%
2 5 100 80 100 20%
3 10 50 40 100 20%
4 20 25 20 100 20%
5 50 10 8 100 20%
6 20 10 4 20 20%
7 20 20 8 40 20%
8 20 30 12 60 20%
9 20 40 16 80 20%
10 20 50 20 100 20%
11 5 30 20 25 20%
12 10 30 20 50 20%
13 20 30 20 100 20%
14 40 30 20 200 20%
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the subproblems than the number of agents for all topology types. While Ring topology
outperforms the others, Mesh topology converges faster than Star topology.

Table 4 and Table 5 present results for Mnetgen instances for Decentralized Benders
Decomposition. While eight out of twelve M64.4.* problems converge to optimal solu-
tion, six out of twelve M64.8.* problems converge. The results shows that there is not
a clear dominance of any topology to the others. However, in most of the problems Star
topology has longer convergence time than the others.

Table 6 presents results for Centralized Benders Decomposition. As expected, Cen-
tralized Benders Decomposition outperforms Decentralized Benders Decomposition in
all instences. The main reason for this is the existence of the center in Centralized Ben-
ders Decomposition while it lacks in Decentralized Dantzig-Wolfe Decomposition. The
center solves the problem only once and announce the results to the others in Central-
ized Benders Decomposition, but in Decentralized Benders Decomposition the problem
is solved many times since each OA solves the problem by itself. Also, M64.4.5 and
M64.8.7 converge to optimum within allowed time while the best reported Gap % for this
problems are %2 and %0.6, respectively for Decentralized Benders Decomposition. Cen-
tralized Benders Decomposition performs better because we allow same amount of time
for both methods to converge. While Decentralized Benders Decomposition allocates this
time to each OA to solve its own problem, in Centralized Benders Decomposition, the
center uses whole allowed time by itself only to solve the problem.

TABLE 2. Results for Decentralized Dantzig-Wolfe Decomposition on
random set of Table 1.

Instance
no

Optimal
Obj.Fn.
Value

STAR RING MESH

CPU Time(s) CPU Time(s) CPU Time(s)
1 292.73 36.29 36.47 37.02
2 776.96 37.02 19.98 21.65
3 1,535.00 39.63 17.21 20.06
4 3,066.16 30.42 11.86 16.58
5 7,416.69 28.55 3.65 18.63
6 2,170.44 1.58 0.38 1.06
7 2,257.37 7.88 2.84 4.81
8 2,406.45 38.84 15.62 19.67
9 2,510.25 222.02 40.48 74.78

10 2,498.82 611.71 38.91 142.01
11 732.75 0.49 0.22 0.30
12 1,397.83 5.69 0.97 2.16
13 2,950.30 61.75 4.84 18.49
14 5,642.89 666.40 24.64 185.32
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TABLE 3. Results for Decentralized Benders Decomposition on random set of Table 1.

In
st

an
ce

no

Optimal
Obj.Fn.
Value

STAR RING MESH

LB UB GAP% CPU
Time(s)

LB UB GAP% CPU
Time(s)

LB UB GAP% CPU
Time(s)

1 292.73 281.22 296.51 5.22 7,200 281.22 294.42 4.50 7,200 284.72 296.72 4.03 7,200
2 776.96 758.73 1,156.31 51.17 7,200 758.73 913.39 19.90 7,200 758.73 1,156.31 51.17 7,200
3 1,535.00 1,469.35 2,696.85 79.96 7,200 1,469.35 2,576.85 72.14 7,200 1,469.35 2,648.42 76.81 7,200
4 3,066.16 2,984.32 7,736.83 154.99 7,200 2,984.32 5,993.92 98.15 7,200 2,984.32 7,490.82 146.97 7,200
5 7,416.69 7,389.58 23,587.04 218.39 7,200 7,389.58 21,000.68 183.51 7,200 7,389.58 23,587.04 218.39 7,200
6 2,170.44 2,170.44 2,170.44 - 1,585 2,170.44 2,170.44 - 1,040 2,170.44 2,170.44 - 4,699
7 2,257.37 2,032.35 2,752.59 31.90 7,200 2,153.29 2,427.62 12.15 7,200 2,032.35 2,752.59 31.90 7,200
8 2,406.45 2,169.42 4,494.05 96.59 7,200 2,169.42 4,511.44 97.32 7,200 2,169.42 4,480.24 96.02 7,200
9 2,510.25 2,138.83 4,848.40 107.94 7,200 2,138.83 4,848.40 107.94 7,200 2,138.83 4,848.40 107.94 7,200

10 2,498.82 2,276.55 5,335.55 122.41 7,200 2,276.55 5,335.55 122.41 7,200 2,276.55 5,335.55 122.41 7,200
11 732.75 732.75 732.75 - 230 732.75 732.75 - 196 732.75 732.75 - 229
12 1,397.83 1,369.66 1,493.95 8.89 7,200 1,369.66 1,493.95 8.89 7,200 1,369.66 1,493.95 8.89 7,200
13 2,950.30 2,852.13 6,463.40 122.40 7,200 2,852.13 5,610.44 93.49 7,200 2,852.13 6,463.40 122.40 7,200
14 5,642.89 5,519.44 14,880.13 165.88 7,200 5,519.44 14,820.44 164.82 7,200 5,519.44 14,880.13 165.88 7,200
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TABLE 4. Results for Decentralized Benders Decomposition for M64.4.* Instances

Instance
no

Optimal
Obj.Fn.
Value

STAR RING MESH

LB UB G
A

P%

CPU
Time(s)

LB UB G
A

P%

CPU
Time(s)

LB UB G
A

P%

CPU
Time(s)

M64.4.1 290,806.3 290,806.3 290,806.3 - 176.1 290,806.3 290,806.3 - 118.3 290,806.3 290,806.3 - 97.8
M64.4.2 336,019.9 336,019.9 336,019.9 - 41.8 336,019.9 336,019.9 - 21.2 336,019.9 336,019.9 - 21.1
M64.4.3 348,966.6 348,966.6 348,966.6 - 1 348,966.6 348,966.6 - 0.8 348,966.6 348,966.6 - 0.8
M64.4.4 412,475.8 390,540.3 412,795 5.39 7,200 390,540.3 412,707.2 5.37 7,200 390,540.3 413,212 5.49 7,200
M64.4.5 390,578.5 378,690.2 390,605.1 3.05 7,200 382,769.2 390,612.6 2 7,200 382,204.2 390,594.3 2.1 7,200
M64.4.6 506,554.4 506,554.4 506,554.4 - 5.6 506,554.4 506,554.4 - 5.1 506,554.4 506,554.4 - 4.8
M64.4.7 147,862.1 147,862.1 147,862.1 - 71 147,862.1 147,862.1 - 50.8 147,862.1 147,862.1 - 40.9
M64.4.8 165,185.3 165,185.3 165,185.3 - 343 165,185.3 165,185.3 - 265.2 165,185.3 165,185.3 - 254.6
M64.4.9 192,119.4 192,119.4 192,119.4 - 2.4 192,119.4 192,119.4 - 1.6 192,119.4 192,119.4 - 1.7

M64.4.10 167,479.5 165,710.0 167,755.4 1.22 7,200 165,710.0 167,755.0 1.22 7,200 165,710.0 167,502.5 1.07 7,200
M64.4.11 193,238.4 192,338.7 193,562.6 0.63 7,200 192,338.7 194,410.8 1.07 7,200 192,338.7 197,863.5 0.78 7,200
M64.4.12 192,400.1 192,400.1 192,400.1 - 378.6 192,400.1 192,400.1 - 250.9 192,400.1 192,400.1 - 313.4
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TABLE 5. Results for Decentralized Benders Decomposition for M64.8.* Instances

Instance
no

Optimal
Obj.Fn.
Value

STAR RING MESH

LB UB G
A

P%

CPU
Time(s)

LB UB G
A

P%

CPU
Time(s)

LB UB G
A

P%

CPU
Time(s)

M64.8.1 622,280.4 622,280.4 622,280.4 - 607 622,280.4 622,280.4 - 247.8 622,280.4 622,280.4 - 292.2
M64.8.2 649,767.0 649,767.0 649,767.0 - 375.1 649,767.0 649,767.0 - 168.6 649,767.0 649,767.0 - 299.9
M64.8.3 750,938.0 750,938.0 750,938.0 - 44.6 750,938.0 750,938.0 - 19.3 750,938.0 750,938.0 - 29.9
M64.8.4 761,862.7 740,240.1 808,421.5 8.9 7,200 741,868 835,831.6 12.3 7,200 737,493.5 835,831.6 12.9 7,200
M64.8.5 753,927.6 728,256.5 808,359.9 10.6 7,200 729,050.5 808,360 10.5 7,200 728,744.3 808360 10.5 7,200
M64.8.6 929,066.8 929,066.8 929,066.8 - 3,221.3 929,066.8 929,066.8 - 1171 929,066.8 929,066.8 - 1,272.8
M64.8.7 304,045.0 298,939.3 306,481.5 2.4 7,200 302367.1 304,912.2 0.8 7,200 304045.5 304237 0.6 7,200
M64.8.8 355,699.7 355,699.7 355,699.7 - 1,096.4 355,699.7 355,699.7 - 1,605.4 355,699.7 355,699.7 - 555.9
M64.8.9 357,649.1 357,649.1 357,649.1 - 1,161.8 357,649.1 357,649.1 - 883.2 357,649.1 357,649.1 - 1,084.1

M64.8.10 361,802.0 357,717.8 511,124.9 42.4 7,200 357,717.8 542,878 51.1 7,200 357,717.8 451,518 25.9 7,200
M64.8.11 418,824.0 408,052.3 652,132.5 58.2 7,200 407,577.5 652,132.5 58.3 7,200 405,916.3 652,132.5 58.7 7,200
M64.8.12 394.051.0 383,193 522,198.5 35.2 7,200 382,840.1 558,636.9 44.6 7,200 383,193 569,272 47.2 7,200
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TABLE 6. Results for Centralized Benders Decomposition for MNet-
gen Instances

Instance
no

Optimal
Obj.Fn.
Value

LB UB GAP% CPU Time(s)

M64.4.1 290,806.3 290,806.3 290,806.3 - 20.7
M64.4.2 336,019.9 336,019.9 336,019.9 - 5.3
M64.4.3 348,966.6 348,966.6 348,966.6 - 0.3
M64.4.4 412,475.8 400,086 412,683.8 3.05 7200
M64.4.5 390,578.5 390,578.5 390,578.5 - 1,279.3
M64.4.6 506,554.4 506,554.4 506,554.4 - 1
M64.4.7 147,862.1 147,862.1 147,862.1 - 600.7
M64.4.8 165,185.3 165,185.3 165,185.3 - 8.4
M64.4.9 192,119.4 192,119.4 192,119.4 - 0.6

M64.4.10 167,479.5 165,710.0 167,668.6 1.16 7,200
M64.4.11 193,238.4 192,338.7 207,624.2 7.9 7,200
M64.4.12 192,400.1 192,400.1 192,400.1 - 24.5

M64.8.1 622,280.4 622,280.4 622,280.4 - 41
M64.8.2 649,767.0 649,767.0 649,767.0 - 22.2
M64.8.3 750,938.0 750,938.0 750,938.0 - 3.3
M64.8.4 761,862.7 737920.4 808,421.5 9.2 7200
M64.8.5 753,927.6 728,018.8 783,858.5 7.4 7200
M64.8.6 929,066.8 929,066.8 929,066.8 - 549.7
M64.8.7 304,045.0 304,045.0 304,045.0 - 1,829.2
M64.8.8 355,699.7 355,699.7 355,699.7 - 365.3
M64.8.9 357,649.1 357,649.1 357,649.1 - 4,440.4

M64.8.10 361,802.0 356,884.6 387,304.7 8.4 7,200
M64.8.11 418,824 407,130.6 534,460.3 30.4 7,200
M64.8.12 394,051 381,255.8 474,594.2 23.6 7,200

Table 7 shows the results for MNetgen Instances for Decentralized Dantzig-Wolfe De-
composition. Decentralized Dantzig-Wolfe Decomposition method converges to optimal
solution under one second for M64.4.* instances and within seconds for M64.8.* in-
stances. Ring topology has the smallest convergence time for most of the instances while
results for Ring topology and Mesh topology are very close to each other. Star topology
requires more computational time for convergence than the others. Table 7 also shows the
results for MNetgen Instances for Centralized Dantzig-Wolfe Decomposition as a bench-
mark. The results support our assumption that Centralized Dantzig-Wolfe Decomposition
outperforms Decentralized Dantzig-Wolfe Decomposition for similiar reasons that we ex-
plained for Centralized Benders Decomposition and Decentralized Benders Decomposi-
tion.

We conclude this section with a summary of observations under the following head-
ings:

Comparison of the Methods:
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TABLE 7. Results for Decentralized Dantzig-Wolfe Decomposition
and Centralized Dantzig-Wolfe Decomposition for MNetgen Instances.

Instance
no

Optimal
Obj.Fn.
Value

DECENTRALIZED DW CENTRALIZED DW

STAR RING MESH
M64.4.1 290,806.3 0.081 0.053 0.058 0.024
M64.4.2 336,019.9 0.082 0.071 0.071 0.021
M64.4.3 348,966.6 0.010 0.013 0.010 0.002
M64.4.4 412,475.8 0.429 0.227 0.308 0.100
M64.4.5 390,578.5 0.465 0.332 0.329 0.168
M64.4.6 506,554.4 0.036 0.028 0.039 0.011
M64.4.7 147,862.1 0.231 0.146 0.169 0.057
M64.4.8 165,185.3 0.182 0.098 0.105 0.060
M64.4.9 192,119.4 0.018 0.015 0.017 0.003

M64.4.10 167,479.5 0.619 0.433 0.446 0.162
M64.4.11 193,238.4 0.274 0.215 0.222 0.069
M64.4.12 192,400.1 0.123 0.074 0.085 0.032

M64.8.1 622,280.4 0.122 0.062 0.064 0.018
M64.8.2 649,767.0 0.021 0.017 0.015 0.003
M64.8.3 750,938.0 0.103 0.046 0.067 0.020
M64.8.4 761,862.7 1.020 0.345 0.538 0.134
M64.8.5 753,927.6 2.799 0.850 1.206 0.380
M64.8.6 929,066.8 0.323 0.120 0.196 0.048
M64.8.7 304,045.0 7.645 2.997 4.174 0.977
M64.8.8 355,699.7 0.585 0.226 0.330 0.074
M64.8.9 357,649.1 1.067 0.417 0.542 0.152

M64.8.10 361,802.0 11.785 4.946 7.426 1.339
M64.8.11 418,824.0 13.789 4.392 6.261 1.855
M64.8.12 394,051.0 10.213 3.436 4.860 1.434

M128.32.1 11,186,573.8 320.685 21.224 115.798 9.944
M128.32.2 118,663,936.6 342.258 22.965 115.491 9.980
M128.32.3 122,476,676.8 143.936 12.030 58.701 4.158
M128.32.4 12,715,040.2 7094.051 355.515 2,403.788 187.800
M128.32.5 13,582,810.6 5390.729 208.135 985.815 125.418
M128.32.6 14,617,437.1 337.414 27.348 127.854 9.513

In Linear Programming case, Benders Decomposition is defined as Dantzig-Wolfe De-
composition applied to the dual [9]. So, from theoretical point of view, Benders Decom-
position and Dantzig-Wolfe Decomposition are equivalent to each other. However, they
may differ when looking at the computational side. Generally, Benders decomposition is
appropriate for problems with complicating variables, while Dantzig-Wolfe Decomposi-
tion is suitable for problems with complicating constraints.
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We observe the similar properties for Decentralized Benders Decomposition and De-
centralized Dantzig-Wolfe Decomposition. Experimental results show that Decentralized
Dantzig-Wolfe Decomposition outperforms Decentralized Benders Decomposition in all
instances. The main reason for this is the problem structure. This work is mainly focused
on Linear Programming Problems with Primal Block Angular Structure. Recall that this
structure is characterized by complicating constraints linking the local constraints on the
diagonal. To apply Decentralized Benders Decomposition to this problem structure, we
introduce a variable for each OA for a single common resource. By this way, we convert
the primal BALP problem to a dual one. However, the complicating constraints in local
master problem and local constraint set in each subproblem gets larger and becomes com-
putationally harder to solve. This results in worse experimental results when compared to
the Decentralized Dantzig-Wolfe Decomposition.

Size of Blocks:
We observe that the size of the blocks influences the performance of the methods. Larger
block size results in larger and harder to solve subproblems.

Number of Blocks:
We observe that as the number of blocks increase, the time until termination gets longer.
This can be explained mainly with the fact that each block is associated with an OA. Both
methods solve the overall problem for each OA before termination. Hence as the number
of blocks increase, proposed methods solve the overall problem for more times.

Another reason is the increase in the amount of communication among OAs. As the
number of OAs increases, each OA can have more neighbours. This results in having
more communication rounds to get a cut or column.

Type of Communication Network:
We can observe the effect of communication network on performance of the proposed
methods while we solve problems having larger size. When the problem size gets larger,
Ring topology outperforms the other topologies for Decentralized Dantzig-Wolfe decom-
position. Mesh topology has quicker convergence than Star topology almost in all in-
stances. This result holds for Decentralized Benders Decomposition too. Although Mesh
topology outperforms Ring topology on small problems, for the larger problems Ring
topology converges faster. The reason for this is the cut or column exchange strategy of
the proposed methods. While OA i gets cut or column from a neighbour t, both agents
i and t adds that cut or column to its local master problem. Thus, while getting a cut
or column from a further neighbour, that cut or column is added to all OAs in the path
connecting two communicating OAs. In Ring topology, an OA i can reach any other OA t
indirectly. Since the length of the path can be largest in Ring topology, any cut or column
can be added to the local master of more OAs at a time. This results in fast convergence
rate.

Cut or column exchange strategy also affects the number of communication rounds
among OAs. To give an example, Fig. 8 illustrates the total number of cuts/columns
generated for solving Mnetgen M64.4.* instances by Decentralized Benders Decompo-
sition and Decentralized Dantzig-Wolfe Decomposition, respectively. We can observe
that the number of cuts or columns generated in Ring topology is less than the number
of cuts/columns generated in other topologies almost in all cases for both methods. The
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FIGURE 8. Communication Rounds for Mnetgen M64.4.* Instances

main reason for this is appending a cut or column to the local master of all OAs in the path
connecting two communicating OAs. In an iteration a cut or column may be added local
master problem of more OAs in Ring topology and this results in faster convergence. In
most of the problems, Mesh topology generates fewer cuts or columns than Star topology,
which confirms the speed of convergence of these methods.

6. CONCLUSIONS AND FUTURE WORK

In this work, we propose Decentralized Benders Decomposition and Decentralized
Dantzig-Wolfe Decomposition for large-scale linear block angular problems. We remark
that, our main goal is not competing with the computational speed of a centralized algo-
rithm. Instead, we primarily aim to propose decentralized solution approaches for deci-
sion makers that are unwilling to disclose their local data, but want to solve the global
problem collaboratively in a peer-to-peer fashion.

From an organizational point of view, in Decentralized Benders Decomposition, lo-
cal master problem shares common resources among OAs. In return, each subproblem
finds its best solution for given allocations and generates a cut which includes implicit
information of dual prices for common resources. On the other hand, in Decentralized
Dantzig-Wolfe Decomposition local master problem shares prices on common resources.
In return, each subproblem generates a column indicating explicit information that dis-
close optimal way of using common resources in terms of cost, profit or specific proposal.

We prove that the proposed methods can reach global optimal solution in a finite num-
ber of iterations. We confirm theoretical results with computational experiments on ran-
domly generated test instances and also on Multi-commodity Network Flow Problems.
We observe that Decentralized Dantzig-Wolfe Decomposition shows faster convergence
rate than Decentralized Benders decomposition.

There are three main alternatives for multiple decision makers to solve an overall block
angular linear optimization problem. The first one is the centralization approach, which
converges to optimal solution rapidly but requires a central coordination unit having full
access to managerial information of all decision makers. The second one is Decentralized
Benders Decomposition, which requires revealing dual information however has slower
convergence rate. Finally, the third one is Decentralized Dantzig-Wolfe Decomposition,
which has faster convergence rate but requires revealing primal information. Thus, we
propose two decentralized methods for decision makers to make a choice with a trade-off
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between the degree of the information that they want to disclose and the speed of the
convergence time.

Decentralized methods for optimization problems are inherently suited to parallel or
distributed computing opportunity. Thus, as a future research direction, parallelization
of proposed algorithms will be desirable. Moreover, we intend to explore decentraliza-
tion in integer programs since decentralized decision making is rarely applied to integer
programs in the literature.
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7. APPENDIX A

7.1. CONVERGENCE PROOF FOR DECENTRALIZED BENDERS DECOMPOSITION

We give a formal proof for convergence of Decentralized Benders Decomposition for
linear programs in three parts. In the first part we show that there are finitely many cuts
that can be generated. The second part shows that each cut can be generated at most once.
Finally, in the third part, we show that any violated cut is detected and added to the relaxed
local master problem. Then, convergence of Decentralized Benders Decomposition for
linear programs follows.

PART I: There is a finite number of Benders Cuts that can be generated.
Proof of the first part is based on projection theory which will be assumed to fulfill

conditions similar to those utilized in the convergence analysis of Classical Benders De-
composition in [4]. First we state the following theorem which defines the multipliers
obtained by projecting out the xi j variables in (3) and also the projection of the polyhe-
dron.

Theorem 1. If

Pi = {(x,r) ∈ℜ
ni ×ℜ

k|
ni

∑
j=1

ak
i jxi j ≥ rk

i ∀k = 1,2, . . . ,K,
ni

∑
j=1

bi jxi j ≥ li} (14)

then projecting out the xi j variables from the system generates the nonnegative multipliers
{(πk

i ,wi),∀k = 1,2, . . . ,K} such that

K

∑
k=1

ni

∑
j=1

ak
i jπ

k
i +

ni

∑
j=1

bi jwi = 0. (15)

Also the projection of the polyhedron is

pro jr(Pi) = {r ∈ℜ
k|πk

i rk
i ≥ 0 ∀k = 1,2, . . . ,K}. (16)
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Then we state two propositions which are adapted from [16] for BALP. One can relate
the multipliers obtained by projection and the extreme rays of the projection cone as a
result of these propositions.

Proposition 3. If Pi is given in (14) then pro jr(Pi) is given in (16), where {(πk
i ,wi),∀k =

1,2, . . . ,K} are the extreme rays of the projection cone

Cx(Pi) = {(π,w)|
K

∑
k=1

ni

∑
j=1

ak
i jπ

k
i +

ni

∑
j=1

bi jwi = 0,πk
i ≥ 0 ∀k = 1,2, . . . ,K, wi≥ 0}. (17)

Proposition 4. If Pi is given in (14) and {(πk
i ,wi),∀k = 1,2, . . . ,K} are the multipliers

that are generated using projection, then the extreme rays of the projection cone in (17)
are contained in this set of multipliers.

We omit the proofs of Proposition 3 and Proposition 4 here. Refer to [16] for proof of
generalized cases as Proposition 2.22 and Proposition 2.23, respectively.

Theorem 1 states that the inequalities πk
i rk

i ≥ 0 ∀k = 1,2, . . . ,K that results from pro-
jecting out the xi j variables from the system defines pro jr(Pi). By Proposition 3, pro jr(Pi)
can also be generated by the extreme rays of the projection cone Cx(Pi). Proposition 4 de-
fines the relationship between the multipliers {(πk

i ,wi),∀k = 1,2, . . . ,K} generated using
projection and the extreme rays of Cx(Pi). We use this relationship to conclude that finite
number of cuts are generated. Thus, we apply projection to BALP. The aggregate problem
(2) can be equivalently stated as the following:

Minimize z0 (18a)

subject to: z0−
N

∑
i=1

ni

∑
j=1

ci jxi j ≥ 0 (18b)

N

∑
i=1

rk
i − rk = 0 ∀k = 1,2, . . . ,K (18c)

ni

∑
j=1

ak
i jxi j ≥ rk

i ∀i = 1,2, . . . ,N ∀k = 1,2, . . . ,K (18d)

ni

∑
j=1

bi jxi j ≥ li ∀i = 1,2, . . . ,N (18e)

xi j ≥ 0 ∀i = 1,2, . . . ,N ∀ j = 1,2, ...,ni (18f)

rk
i unrestricted ∀i = 1,2, . . . ,N ∀k = 1,2, . . . ,K. (18g)

Let us assign the multiplier u0 to the constraint (18b) and the vector of multipliers π , w, u
to the constraints (18d), (18e) and (18f), respectively. Using these multipliers, we project
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out the xi j variables. This gives the following:

Minimize z0 (19a)

subject to:
N

∑
i=1

rk
i = rk ∀k = 1,2, . . . ,K (19b)

up
0z0 ≥ (πk

i )
prk

i +wi
pli ∀i ∀k ∀p (19c)

rk
i unrestricted ∀i = 1,2, . . . ,N ∀k = 1,2, . . . ,K. (19d)

Without loss of generality, multipliers (up
0 ,(π

k
i )

p,wi
p,(ui j)

p) can be re-scaled. Assume
up

0 = 1 for p = 1,2, . . . , t, and up
0 = 0 for p = t +1, . . . ,P. Hence the resulting problem is:

Minimize z0 (20a)

subject to:
N

∑
i=1

rk
i = rk ∀k = 1,2, . . . ,K (20b)

z0 ≥ (πk
i )

prk
i +wi

pli ∀i = 1,2, . . . ,N ∀k = 1,2, . . . ,K ∀p = 1,2, . . . , t
(20c)

0≥ (πk
i )

prk
i +wi

pli ∀i = 1,2, . . . ,N ∀k = 1,2, . . . ,K ∀p = t +1, . . . ,P
(20d)

rk
i unrestricted ∀i = 1,2, . . . ,N ∀k = 1,2, . . . ,K. (20e)

From theory of projection, r∗ is an optimal solution to (20) if and only if there is an x∗

such that (x∗,r∗) is an optimal solution to the aggregate problem. By Proposition 4, the
extreme rays of the projection cones

Cx(Pi)= {(u0,π,w,u)|
K

∑
k=1

ai jkπ
k
i +bi jwi+ui j−u0ci j = 0 ∀ j = 1,2, ...,ni,(u0,π,w,u)≥ 0}

(21)
are contained in the set of multipliers

{(up
0 ,(π

k
i )

p,wi
p,(ui j)

p)|∀ j = 1,2, ...,ni ∀k = 1,2, . . . ,K ∀p = 1,2, . . . ,P} (22)

generated by projection ∀i = 1,2, . . . ,N. By Proposition 3, only the extreme rays of the
projection cones Cx(Pi) ∀i = 1,2, . . . ,N are needed to generate constraints (20c)−(20d)
which characterize the projection into r space. Therefore, we can conclude that the con-
straints (20c)−(20d) are generated from the extreme rays of the projection cones.

Proposition 5. If the multipliers in (22) are the extreme rays of the projection cone in
(21) scaled so that up

0 = 1, for p = 1,2, . . . , t and up
0 = 0, for p = t + 1,2, . . . ,P, then

((πk
i )

p,(wi)
p), for p = 1,2, . . . , t are the extreme points of the polyhedron

{(πk
i ,wi)|

K

∑
k=1

ai jkπ
k
i +bi jwi ≤ ci j,(π

k
i ,wi)≥ 0 ∀ j = 1,2, . . . ,ni} (23)
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and ((πk
i )

p,(wi)
p), for p = t +1,2, . . . ,P are the extreme rays of the associated recession

cone

{(πk
i ,wi)|

K

∑
k=1

ai jkπ
k
i +bi jwi ≤ 0,(πk

i ,wi)≥ 0 ∀ j = 1,2, ...,ni}. (24)

If all the constraints associated with the extreme rays are generated, then (20) becomes
full master problem. Since solving full master problem is not practical, a relaxed master
problem having a subset of the constraints (20c)−(20d) is solved. If there is a constraint
that violates the relaxed master problem’s solution, then that constraint is added to the
relaxed master. By Proposition 5, one can find a constraint that violates the relaxed master
problem by solving the following subproblem:

Maximize
K

∑
k=1

r̂k
i π

k
i + liwi (25a)

subject to:
K

∑
k=1

ak
i jπ

k
i +bi jwi ≤ ci j ∀ j = 1,2, ...,ni (25b)

π
k
i ≥ 0 ∀i = 1,2, . . . ,N ∀k = 1,2, . . . ,K (25c)

wi ≥ 0 ∀i = 1,2, . . . ,N. (25d)

Assume r̄ is a feasible solution to the relaxed master problem with objective function
value z̄0. If (πk

i ,wi) is an optimal solution to the subproblem and z̄0 < r̂k
i πk

i + liwi then
add the constraint z̄0 ≥ r̂k

i πk
i + liwi to the relaxed master problem. If the subproblem is

unbounded, then there exists an extreme ray (π,w) in the recession cone such that r̂k
i πk

i +

liwi > 0. In this case, add the constraint r̂k
i πk

i + liwi ≤ 0 to the relaxed master problem.
Therefore, there is only one constraint associated with each extreme ray or extreme point.
Since number of extreme rays and extreme points is finite, one can conclude that the
number of cuts that can be generated is also finite.

PART II: A new cut is generated at each iteration.

Proposition 6. At each iteration, the constraint added to the relaxed master problem is
unique.

Proof. We proved that each cut generated by the subproblem is associated with either an
extreme ray or an extreme point. When a new cut is generated and added to the relaxed
master problem, then relaxed master problem excludes the associated extreme ray or ex-
treme point in the solution set for subsequent iterations. Hence each cut can be generated
and added to the relaxed master at most once. �

PART III: Any violated cut can be detected and added to any local master problem.

Proposition 7. Decentralized Benders Decomposition yields an optimal solution for BALP
(if one exists) within a finite number of iterations if communication network is strongly
connected.

Proof. Assume that the cut exchange network is strongly connected. Then, by definition
of strong connectivity, there exist a directed path between any pair of the nodes. Hence
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any cut generated by any node can reach all the nodes in the graph along the directed path
via recursive GETCUT procedure. In other words, Benders Cut generated by any one of
the OAs can be added to relaxed local master of any other OA. Decentralized Benders
Decomposition algorithm terminates when no new cut is generated for any one of OAs.
Hence the convergence of Decentralized Benders Decomposition to the global optimal
solution in a finite number of iterations follows from having finite number of cuts, each
of which is generated and added at most once to any OA’s local master problem. �

7.2. CONVERGENCE PROOF FOR DECENTRALIZED DANTZIG-WOLFE DECOMPOSI-
TION

We prove the finite convergence of Decentralized Dantzig-Wolfe decomposition in
three parts. In the first part we show that there are finitely many columns that can be gen-
erated. The second part shows that each column can be generated at most once. Finally,
in the third part, we show that when a new column is generated, it can be added to any re-
laxed local master problem. Then, convergence of Decentralized Benders Decomposition
for linear programs follows.

PART I: There are finitely many columns to be generated.

Proposition 8. The number of columns that can be generated in Decentralized Dantzig-
Wolfe Decomposition Algorithm is finite.

Proof. Let Si = {xi j|∑ni
j=1 bi jxi j ≥ li} denotes the feasible region of ith pricing subproblem

(SPi). Then Si has finitely many extreme points and extreme rays since it is a polyhedron
and any point can be expressed as sum of a convex combination of extreme points and
a non-negative linear combination of extreme rays by Minkowski’s Representation theo-
rem. For a (SPi) having bounded feasible region, optimal solution is at one of its extreme
points since it is an linear programming problem. A new column can be generated with
respect to any optimal solution is given by (11). Hence, each extreme point is associ-
ated with exactly one column. For a (SPi) having unbounded feasible region, the solution
attains at one of the extreme rays. Hence, similar results holds for an extreme ray. There-
fore, finiteness of the number of columns follows. �

PART II: A new column is generated at each iteration.

Proposition 9. Decentralized Dantzig-Wolfe Decomposition yields an unique column at
each iteration.

Proof. Local master problem for OA i given in (8) is a linear programming problem.
Thus, one can calculate reduced cost of any variable xi j by (9). Since MPi is a minimiza-
tion problem, at optimality, the reduced cost of any variable is non-negative. A variable
having negative reduced cost may improve the objective function value of MPi if it enters
the basis. Pricing subproblem (SPi) searches for the variable having most negative re-
duced cost and adds associated column to the MPi. Hence if a column has already added
to the MPi, pricing subproblem cannot generate the same column again since its reduced
cost is non-negative. Therefore, each column can be generated and added to the any local
relaxed master problem at most once. �
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PART III: If a new column is generated, then it can be added to any local master
problem.

Proposition 10. Decentralized Dantzig-Wolfe Decomposition yields an optimal solution
for BALP (if one exists) within a finite number of iterations if communication network is
strongly connected.

Proof. Assume a strongly connected communication network for exchanging columns
among OAs. Thus, any column generated by any OA can be added to relaxed local mas-
ter of any other OA in the network along the directed path via recursive GETCOLUMN
procedure. Decentralized Dantzig-Wolfe Decomposition algorithm terminates when there
is no variable having negative reduced cost for any one of OAs. Therefore, finite conver-
gence of Decentralized Dantzig-Wolfe Decomposition Algorithm for BALP follows from
Proposition 8 and Proposition 9. �
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