
November 3, 2017 International Journal of Production Research manuscript

To appear in the International Journal of Production Research
Vol. 00, No. 00, 00 Month 20XX, 1–18

A parallel machine lot-sizing and scheduling problem with

a secondary resource and cumulative demand

Murat Güngöra∗, Ali Tamer Ünala and Z. Caner Taşkına

aIndustrial Engineering Department, Boğaziçi University, 34342, Istanbul, Turkey

(Received 00 Month 20XX; accepted 00 Month 20XX)

We investigate a parallel machine multi-item lot-sizing and scheduling problem with a secondary resource,
in which demands are given for the entire planning horizon rather than for every single period. All-
or-nothing assumption of the discrete lot-sizing and scheduling problem is valid so that a machine is
either idle or works at full capacity in a period. The objective is to minimise the number of setups
and teardowns. We prove that the problem is NP-hard, and present two equivalent formulations. We
show some properties of the optimal objective value, give optimality conditions, and suggest a heuristic
algorithm. We discuss and formulate two possible extensions related to real-life applications. Finally, we
carry out computational experiments to compare the two formulations, to determine the effect of our
proposed modeling improvements on solution performance, and to test the quality of our heuristic.

Keywords: lot-sizing; scheduling; parallel machines; mixed integer linear programming; secondary
resource; cumulative demand

1. Introduction

Lot-sizing and scheduling is a practical problem arising in many production environments. Although
there are similarities between problems originating in different settings, each production process has
its own characteristics. Motivated by a real-life application, we address in this paper a novel parallel
machine multi-item lot-sizing and scheduling problem with a secondary resource. The novelty lies
in the assumption that demands are given for the entire planning horizon rather than for every
single period.

The problem can be described as follows: A number of items are to be produced on identical
parallel machines. In order to produce an item, a piece of equipment (secondary resource) specific
to that item must be installed in the machine. The planning horizon is divided into buckets for
which all-or-nothing assumption is valid; that is to say, a machine is either idle or works at full
capacity in a period. Total demand quantity of each item is known in advance. A constant cost is
incurred for every setup and teardown (mount and dismount) of equipments on machines, and the
objective is to minimise the total number of setups and teardowns.

Our motivation to study this problem comes from aluminum alloy wheel production, which
actually takes place in a flow shop consisting mainly of casting, heat treatment, painting, and
packaging stages. Planning of the foundry leads essentially to the problem described above. In
particular, items are the wheels to be cast, and equipments are the molds used together with casting
machines. Although planning time buckets are shifts, due to a common practice in automotive
industry, daily shipment quantities to the car manufacturers are managed based on maintaining a
weekly delivered quantity budget rather than fulfilling concrete day-based or shift-based due dates

∗Corresponding author. Email: murat.gungor@boun.edu.tr

November 3, 2017 International Journal of Production Research manuscript

and delivery quantities. In other words, demand information is cumulative. At the beginning of
each week, all molds are dismounted, and one shift is devoted to cleaning of machines for quality
assurance. Thus, different weeks are somewhat independent from each other and constitute natural
planning horizons by themselves.

As the demand to be fulfilled is cumulative, there is no need for inventory balance equations.
The main goals are to decrease the number of changeovers, and to increase thereby the utilisation
of resources. Therefore, inventory-related costs are not taken into account. In other words, excess
production is not penalised unlike most lot-sizing models in the literature. Number of molds is not
restricted. Setup and teardown times are ignored because they are more or less constant and do
not constitute a large portion of the bucket capacity. In spite of all these simplifying assumptions,
the problem turns out to be NP-hard, as we shall prove.

Lot-sizing and scheduling is a broad subject, which has been studied extensively in the literature.
Besides books addressing different aspects of the topic (Jordan 1996; Kimms 1997; Quadt 2004;
Suerie 2005; Pochet and Wolsey 2006; Seeanner 2013), there are several comprehensive surveys
(Drexl and Kimms 1997; Karimi, Fatemi Ghomi, and Wilson 2003; Zhu and Wilhelm 2006; Quadt
and Kuhn 2007; Jans and Degraeve 2008; Buschkühl et al. 2010; Copil et al. 2017).

Most models assume that the planning horizon is divided into buckets. We shall refer to them
as discrete-time formulations. These are usually derived from a few basic models, namely dis-
crete lot-sizing and scheduling problem (DLSP), continuous setup lot-sizing problem (CSLP), and
proportional lot-sizing and scheduling problem (PLSP). Purely continuous formulations are rarely
proposed. However, hybrid formulations, namely variants of general lot-sizing and scheduling prob-
lem (GLSP) and capacitated lot-sizing with sequence-dependent setups (CLSD), are quite popular.
See Drexl and Kimms (1997) and Copil et al. (2017) for a thorough discussion of the basic models
just mentioned.

Lasdon and Terjung (1971) investigate for a major tire manufacturer a problem closely related to
ours. They consider multiple products with dynamic demand to be produced on identical parallel
machines. In order to produce an item, a die must be installed in the machine, and the number
of dies available in each period is limited. Their model is based on DLSP. The main decision
variables are the numbers of machines to be used for production of an item in a period. For
the Lasdon-Terjung model, Eppen and Martin (1987) give an extended reformulation, whereas
Vanderbeck and Wolsey (1992) propose valid inequalities involving only the natural variables.
Gicquel, Minoux, and Dallery (2011) discuss exact solution approaches for DLSP with identical
parallel machines. Gicquel, Wolsey, and Minoux (2012) introduce a disaggregate formulation in
which the machines are indexed explicitly. In their terminology, the Lasdon-Terjung model is an
aggregate formulation. They prove that the two formulations are equivalent, and show how a family
of inequalities developed by van Eijl and van Hoesel (1997) can be adapted to give valid inequalities
for the aggregate formulation. Jans and Degraeve (2004) present an industrial extension of DLSP
for a tire manufacturer. Quadt and Kuhn (2009) make use of aggregate variables to solve a variant
of the capacitated lot-sizing problem with linked lot sizes. Kaczmarczyk (2011) applies the same
idea to PLSP with identical parallel machines. Fiorotto and de Araujo (2014) develop a Lagrangian
heuristic for unrelated parallel machines based on the strategy of Eppen and Martin (1987).

The problem we consider is essentially different from those studied in the articles cited above
because of its cumulative demand structure, and to the best of our knowledge, it has not been
addressed in the literature before. On the one hand, it can be classified within DLSP since all-or-
nothing assumption is valid. On the other hand, it can be seen as a GLSP model with only one
macroperiod made up of a number of fixed-length microperiods. Theoretical and empirical results
concerning this new problem make up the main contributions of our paper.

Outline of the paper is as follows: in §2 we prove that the problem is NP-hard, present two mixed-
integer programming formulations, and show their equivalence. Then we give some properties of
the optimal objective value in §3.2, and prove several optimality conditions in §3.3. Next, in §3.4
we suggest a heuristic algorithm. Afterwards, we discuss and formulate two possible extensions to

2

November 3, 2017 International Journal of Production Research manuscript

the problem in §4. Finally, we present a detailed computational study in §5.

2. Problem definition

Let I,M, T denote the number of secondary resource types, machines, and time periods, respec-
tively, and i, j, t the indices thereof. All machines are identical. Let xi be the demand as average
number of secondary resources of type i to be used in a period. In other words, if di is the total
demand for items of type i, and ci the number of items of type i a machine can produce in one
period, then xi = 1

T ×
di
ci

. One and only one type of secondary resource can be installed in a ma-
chine during a period. The problem is to find an assignment of secondary resources to machines
throughout the planning horizon such that all demands are satisfied and the total number of setups
and teardowns is minimised. By convention, setups in the first period and teardowns in the last
period are not counted. We shall see in §2.3 that one can assume T xi ∈ Z≥0 for all i without loss
of generality, and under this assumption the problem is feasible if and only if

∑
i xi ≤M .

2.1 Complexity

We prove that the lot-sizing and scheduling problem defined above is NP-hard by reduction from
the well-known Partition problem.

Theorem 1. The problem is NP-hard.

Proof. Let a1, . . . , am and b = 1
2

∑m
k=1 ak be positive integers. Partition is the following problem:

Can we divide the collection a1, . . . , am into two subsets such that the numbers in each subset sum
up to b? Now consider an instance of our problem where M = 2, I = m, T = b, and xi = ai

T . We
will show that Partition has a positive answer if and only if the optimal objective value z∗ is less
than or equal to 2I− 4 for this instance. Assume there exist S1, S2 such that S1∪S2 = {1, . . . ,m},
S1∩S2 = ∅ and b =

∑
k∈S1

ak =
∑

k∈S2
ak. Assign the secondary resources in Sj to machine j (j =

1, 2). Then total number of setups and teardowns is (2|S1| − 2) + (2|S2| − 2) = 2I − 4, whence
z∗ ≤ 2I−4. Conversely, suppose z∗ ≤ 2I−4, and consider an optimal schedule. Let wj be the number
of different secondary resource types that appear in machine j. At least 2wj−2 setups and teardowns
must take place in j. Moreover, w1 + w2 ≥ I. So 2I − 4 ≥ z∗ ≥ (2w1 − 2) + (2w2 − 2) ≥ 2I − 4.
Therefore z∗ = 2I − 4 and w1 + w2 = I, implying that Partition has an affirmative answer.

2.2 Disaggregate and aggregate formulations

It is natural to keep an explicit account of secondary resource–machine assignments when modeling
the problem at hand. This is the essential feature of the disaggregate formulation F1 to be given
below. Let yijt be a binary variable defined as 1 if in period t machine j is set up for a secondary
resource of type i, and as 0 otherwise. Define another binary variable z+

ijt as 1 if a setup for a
secondary resource of type i is performed on machine j in transition from period t− 1 to t, and as

3

November 3, 2017 International Journal of Production Research manuscript

0 otherwise; similarly define z−ijt for teardowns (t > 1).

F1: min
∑
i,j,t

(z+
ijt + z−ijt) (1a)

s.t.
∑
i

yijt ≤ 1 for all j, t (1b)

1

T

∑
j,t

yijt ≥ xi for all i (1c)

yijt − yij,t−1 = z+
ijt − z

−
ijt for all i, j, t (1d)

z+
ijt, z

−
ijt ≥ 0 for all i, j, t (1e)

yijt ∈ {0, 1} for all i, j, t (1f)

The first constraint (1b), together with (1f), states that a machine is either idle or works at
full capacity in a period (being set up for one and only one secondary resource). This is the so-
called all-or-nothing assumption. The next set of inequalities (1c) guarantees that enough items
are produced of each type. Constraint (1d) holds an account of setups and teardowns. Expressions
involving z+

ijt, z
−
ijt are subject to t > 1. Note that z+

ijt and z−ijt can be relaxed as continuous variables
in view of the objective since the yijt are binary.

The problem admits a simpler formulation – to be called F2 – since the machines in question
are identical. The idea, which goes back to Lasdon and Terjung (1971), is to keep track only of the
total number of secondary resources used for each type in a period. This determines the secondary
resource–machine assignments implicitly. Let xit be the total number of secondary resources of type
i used in period t. Let s+

it be the number of setups required for type i in transition from period
t − 1 to t; similarly define s−it for teardowns (t > 1). A complete list of indices, parameters, and
decision variables for F1 and F2 can be found in Table 1.

Table 1. Indices, parameters, and decision variables for the two formulations F1 and F2.
Symbol(s) Explanation
i, j, t indices for secondary resource types, machines, and time periods
M,T number of machines and time periods
xi demand as average number of secondary resources of type i to be used in a period
xit number of secondary resources of type i used in period t
yijt 1 if machine j is set up for a secondary resource of type i in period t, and 0 otherwise

s+it /s−it number of setups/teardowns required for secondary resources of type i in transition from
period t− 1 to t

z+ijt/z
−
ijt 1 if a setup/teardown for a secondary resource of type i is performed on machine j in transition

from period t− 1 to t, and 0 otherwise

The aggregate formulation F2 is given below. Expressions involving s+
it and s−it are subject to

t > 1. The set of nonnegative integers is designated by Z≥0.

F2: min
∑
i,t

(s+
it + s−it) (2a)

s.t.
∑
i

xit ≤M for all t (2b)

1

T

∑
t

xit ≥ xi for all i (2c)

xit − xi,t−1 = s+
it − s

−
it for all i, t (2d)

s+
it , s

−
it ≥ 0 for all i, t (2e)

xit ∈ Z≥0 for all i, t (2f)

4

November 3, 2017 International Journal of Production Research manuscript

The first constraint (2b) ensures that the total number of secondary resources used in a period
cannot exceed the number of machines. The second one (2c) is the demand fulfillment restriction.
It is appropriate to call (2d) as ‘setup balance equations’. Note that the continuous variables s+

it , s
−
it

assume integer values in an optimal solution by virtue of the objective since the xit are integer.
Note also that M is a natural upper bound for all decision variables.

2.3 Equivalence of the two formulations

Lemma 1. The inequalities
∑

j,t yijt ≥ dT xie and
∑

t xit ≥ dT xie are valid for F1 and F2,
respectively, for all i.

Proof. For any feasible solution of F1, the yijt will be integers, so the sums
∑

j,t yijt will be integers

greater than or equal to T xi. Consequently, the inequality
∑

j,t yijt ≥ dT xie is satisfied for all i.
The argument is similar for F2.

From this point on, we assume without loss of generality that T xi ∈ Z≥0 for all i.

Lemma 2. The following statements are equivalent:
(i) F1 is feasible.
(ii) F2 is feasible.
(iii)

∑
i xi ≤M .

Proof. If y = (yijt) is a feasible solution of F1, then x = (xit) defined as xit =
∑

j yijt is a

feasible solution of F2 (note that yijt and xit uniquely determine zijt and sit). Indeed, according
to this definition, constraints (1b) and (1c) imply (2b) and (2c), respectively. If F2 is feasible,
then xi ≤ 1

T

∑
t xit and

∑
i xit ≤ M , implying

∑
i xi ≤

1
T

∑
i

∑
t xit ≤

1
T

∑
tM = M . Finally, if∑

i xi ≤ M , then
∑

i T xi ≤ TM . Hence, the TM slots in the planning horizon are sufficient to
cover all demand (the assumption T xi ∈ Z is crucial here), implying that F1 is feasible.

Let S1 and S2 be the feasible solution spaces of F1 and F2, respectively. For each y ∈ S1, let
α(y) = x be defined by xit =

∑
j yijt. Then α(y) ∈ S2 as we have seen in the proof of Lemma 2. So

α is a many-to-one mapping from S1 to S2. It is not reasonable to perform a setup for a secondary
resource which has just been torn down from another machine in the immediately preceding period.
We designate by S′1 the schedules reasonable in this sense. Thus, S′1 consists of those y ∈ S1 for
which there exists no pair of machines j1 6= j2 such that z+

ij1t
= 1 and z−ij2t = 1. Let us denote by

z1(y) and z2(x) the objective function values of F1 and F2 evaluated at y ∈ S1 and x ∈ S2.

Lemma 3. (i) z1(y) ≥ z2(α(y)) for all y ∈ S1.
(ii) z1(y) = z2(α(y)) for all y ∈ S′1.
(iii) For all x ∈ S2, there exists y ∈ S′1 such that α(y) = x.

Proof. Let y ∈ S1 and x := α(y). Summing up (1d) over j, we get
∑

j yijt−
∑

j yij,t−1 =
∑

j z
+
ijt−∑

j z
−
ijt so that s+

it − s−it =
∑

j z
+
ijt −

∑
j z
−
ijt by (2d). In view of (1a) and (2a), the inequality

s+
it + s−it ≤

∑
j z

+
ijt +

∑
j z
−
ijt always holds, two sides being equal if and only if y ∈ S′1. This proves

(i) and (ii). Now let x ∈ S2. We define y ∈ S1 as follows: For the first period, make an arbitrary
assignment of secondary resources xi1 to machines. Then, for each subsequent period, first perform
teardowns for all i by choosing arbitrarily s−it -many machines in which i has been installed in the
previous period, and then perform setups for all i by choosing s+

it -many empty machines. Thus
y ∈ S′1 and α(y) = x.

Algorithm 1 outlines the disaggregation procedure described in the proof of Lemma 3.

5

November 3, 2017 International Journal of Production Research manuscript

Algorithm 1 Disaggregation.
1: assign the xi1 arbitrarily to machines

2: for t = 2 to T do
3: for all i do

4: choose arbitrarily s−it-many machines in which secondary resource i has

been installed in period t− 1, and perform a teardown
5: for all i do

6: choose arbitrarily s+it-many empty machines, perform a setup of secondary

resource i, and update the empty machine list

Theorem 2. Formulations F1 and F2 are equivalent in the sense that feasibility of one implies
that of the other, in which case the optimal objective values are the same.

Proof. We have already shown the assertion about feasibility in Lemma 2. Now let z∗1 and z∗2 be
the optimal objective values of F1 and F2. The first part of Lemma 3 implies z∗1 ≥ z∗2 , whereas
the other two parts imply z∗1 ≤ z∗2 . Therefore, z∗1 = z∗2 provided that the problem is feasible.

There is an equivalence between not only the mixed-integer programs but also the linear pro-
gramming relaxations of the two formulations. We prove this in the next lemma.

Lemma 4. Linear programming bounds of F1 and F2 are the same.

Proof. For any feasible instance of F2, if the integrality constraints are relaxed, setting xit := xi for
all i, t yields a solution with zero optimal value. Similarly, setting bxic-many yijt to 1 and one yijt
to xi − bxic for all i, t, avoiding possible conflicts on machines, gives a solution with zero optimal
value for the relaxation of F1.

In case some machines become temporarily unavailable within the planning horizon, F2 is no
longer a valid representation of the problem even if M is replaced by Mt in the formulation. The
simplest example demonstrating this fact consists of one secondary resource with xi = 1, two
periods, and two machines, where only machine j is available in period j. Then F2 yields 0 as
optimal value whereas it is actually 2. Let us note that an aggregate formulation is not possible
when the machines are nonidentical.

3. Algorithmic and modeling improvements

3.1 Symmetry-breaking constraints

The disaggregate formulation F1 has about M times as many variables and constraints as the
aggregate formulation F2, with many alternative symmetric solutions burdening the model (Sherali
and Smith 2001). For the lot-sizing problem on identical parallel machines, Jans (2009) proposes
eight families of symmetry-breaking constraints. The last three of these involve setup times or
costs, and are not applicable in our case, whereas the first five can be readily adapted to F1. In
our notation, the second family, denoted (SBC2) by Jans (2009), reads

I∑
i=1

2I−iyijt ≥
I∑
i=1

2I−iyi,j+1,t for all 1 ≤ j ≤M − 1 and t. (3)

For example, when I = 3, this can be written explicitly as 4y11t+2y21t+y31t ≤ 4y12t+2y22t+y32t ≤
4y13t + 2y23t + y33t ≤ · · · for all t. Thus, if item 1 is produced in period t, it must be on the first
machine(s), because y1jt = 1 implies y1j′t = 1 for all j′ < j; similarly for items 2 and 3. In general,

6

November 3, 2017 International Journal of Production Research manuscript

inequalities (3) impose a unique lexicographic ordering on machines in each period. This is also
true of (SBC1) that contains (3) as a subset. The families (SBC3–5) impose a partial ordering
only. The computational study in Jans (2009) shows that (SBC2) turns out to be one of the most
efficient families, so we use (3) as a means of improving F1.

3.2 Properties of optimal objective value

We denote the optimal objective value by z∗.

Lemma 5. z∗ is zero if and only if
∑

i dxie ≤M .

Proof. If
∑

i dxie ≤ M , setting xit := dxie yields a feasible solution with zero objective value.
Conversely, if z∗ = 0, the assignment in any period determines the schedule for the entire planning
horizon for each machine; more precisely, yijt = 1 implies yijt′ = 1 for all t′. It follows that
M ≥

∑
i dxie since in any feasible solution there must exist a period in which at least dxie-many

distinct machines are dedicated for secondary resource i.

Lemma 6. There exists an optimal schedule such that no machine is kept idle in any period.

Proof. Any idle periods on a machine can be filled up by prolonging the production in neighbouring
periods, which does not worsen the objective value because excess production is not penalised.

Let us denote by S the collection of feasible solutions y ∈ S1 such that
∑

i yijt = 1 for all j, t.
We shall refer to such solutions as full schedules. According to Lemma 6, there always exists a full
optimal schedule.

Corollary 1. z∗ must be an even integer.

Proof. The objective value associated with any full schedule must be an even integer since every
teardown is necessarily paired with a setup there. The result follows from Lemma 6.

Lemma 7. z∗ ≤ 2I − 2.

Proof. Write T xi = T bxic + ri, where ri is an integer such that 0 ≤ ri ≤ T − 1. Allocate,
for each i, T bxic-many secondary resources starting with the first machine. These allocations do
not contribute to the objective. Next, fill up the remaining machines with the ri-many secondary
resources one by one, in ascending order with respect to the machine and time indices. At this
stage, each secondary resource type increases the objective value by at most two except the first
and the last types for which the contribution is at most one. The result follows.

3.3 Optimality conditions

Due to Theorem 1 the problem is inherently difficult, and one cannot expect to solve it to optimality
for large instances in reasonable time. Still, its mixed-integer formulation can be improved by means
of linear constraints that do not change the optimal objective value when added to the formulation.
In this subsection, we prove several optimality conditions by means of which such constraints can
be obtained.

Given a solution, let b(j, t, l) represent the block of assignments on machine j in the l consecutive
periods t, t+ 1, . . . , t+ l− 1. For y ∈ S, consider the operation of exchanging two blocks b(j1, t1, l1)
and b(j2, t2, l2) to obtain a new solution y′. We assume that the blocks are of the same length
(l1 = l2) unless they are on the same machine (j1 = j2) and adjacent (t1 + l1 = t2 or t2 + l2 = t1).
So y′ is well-defined. It will be convenient to define zijt to be z+

ijt or −z−ijt according as z+
ijt ≥ 0 or

z−ijt > 0. Let cjt(y) be 1 if zijt 6= 0 for some i, and 0 otherwise. In other words, cjt(y) is 1 if there is

7

November 3, 2017 International Journal of Production Research manuscript

a changeover on machine j from period t−1 to t. Now we can express in a simple way the difference
d := z1(y′)− z1(y) in the objective function value (1a): the equality z1(y) = 2

∑
j,t cjt(y) holds for

all y ∈ S; consequently, d = 2
∑

j,t(cjt(y
′) − cjt(y)) = 2

∑
j,t djt where djt := cjt(y

′) − cjt(y). For

convenience, we define cj1(y) and cj,T+1(y) as 0, too.

Lemma 8. (i) If j1 6= j2 or the blocks are nonadjacent, then 1
2d = dj1t1 + dj1,t1+l + dj2t2 + dj2,t2+l

where l := l1 = l2.
(ii) If j1 = j2 =: j and t1 + l1 = t2, then 1

2d = djt1 + dj,t2+l2 + cj,t1+l2(y
′) − cj,t1+l1(y). An

analogous equation holds for the case t2 + l2 = t1.

Proof. When two blocks are exchanged, all djt are zero except those related to the borders. Writing
them out explicitly, the equalities follow.

Theorem 3. There exists an optimal schedule such that

xit ≥ bxic for all i, t. (4)

Proof. Fix a secondary resource type i arbitrarily. It is enough to find an optimal x ∈ S2 satisfying
xit ≥ bxic for all t. Indeed, rewriting the formulation in terms of xit−bxic instead of xit, we obtain
a problem of the same form with strictly smaller M , and the result follows by repeating the same
argument.

Let x ∈ S2 be an optimal solution, and suppose xit0 < bxic for some t0. Take a schedule y ∈ S′1
such that α(y) = x (Lemma 3). Since z∗ 6= 0, y must be full (Lemma 6). Let xmax

i := maxt{xit},
xmin
i := mint{xit}, and let ni be the number of periods t for which xit = xmax

i or xit = xmin
i .

Consider the ordered pair wi(x) := (xmax
i − xmin

i , ni). It is sufficient to show the following: as
long as the inequality xmax

i − xmin
i ≥ 2 is satisfied, one can obtain by exchanging suitable blocks

an alternative optimal y′ ∈ S1 such that wi(x
′) is lexicographically smaller than wi(x), where

x′ := α(y′).
Consider a list t1, t1 + 1, . . . , t1 + l1 − 1 =: t′1 of consecutive periods t for which xit = xmax

i ,
maximal in the sense that xi,t1−1 < xmax

i (unless t1 = 1) and xi,t′1+1 < xmax
i (unless t′1 = T).

Similarly, consider a list t2, t2 + 1, . . . , t2 + l2 − 1 =: t′2 of periods t for which xit = xmin
i , maximal

in the sense that xi,t2−1 > xmin
i (unless t2 = 1) and xi,t′2+1 > xmin

i (unless t′2 = T). We may assume
without loss of generality (see Algorithm 1) that there exists a machine j1 such that yij1t = 1 for
all t1 ≤ t ≤ t′1, yij1,t1−1 = 0, and yij1,t′1+1 = 0. Also, there exists a machine j2 such that yij2t = 0
for all t2 ≤ t ≤ t′2, and yij2,t2−1 = 1. In case t2 = 1, we may assume yij2,t′2+1 = 1 as well.

First, suppose that j1 6= j2 (Figure 1(a)) or that the lists are nonadjacent. Let l := min{l1, l2}.
If l1 ≤ l2, exchange the blocks b(j1, t1, l) and b(j2, t2, l) to obtain y′. The change d := z1(y′)− z1(y)
in the objective function value is given by 1

2d = dj1t1 + dj1,t1+l + dj2t2 + dj2,t2+l (Lemma 8). Since
dj1t1 ≤ 0, dj1,t1+l ≤ 0, and dj2t2 = −1, we have d ≤ 0. So y′ is still optimal, and wi(x

′) < wi(x). In
case t2 = 1, we shall take b(j2, t

′
2 − l + 1, l) as the second block. If l1 > l2, exchange b(j1, t1, l) and

b(j2, t2, l) as before; however, in this case, 1
2d may turn out to be 1 if yij2,t′2+1 = 0. Nevertheless, if

yij2,t′2+1 = 0 there must exist a distinct machine j3 such that yij3t′2 = 0 and yij3,t′2+1 = 1. Doing a
second exchange of blocks b(j2, t

′
2 + 1, T − t′2) and b(j3, t

′
2 + 1, T − t′2) guarantees that d ≤ 0.

Next, suppose that j1 = j2 =: j and the lists are adjacent. We exchange the two blocks b(j, t1, l1)
and b(j, t2, l2). If t′2 + 1 = t1, then 1

2d = djt2 + dj,t1+l1 + cj,t2+l1(y
′) − cj,t2+l2(y) (Lemma 8). Since

djt2 = −1, dj,t1+l1 ≤ 0, and cj,t2+l1(y
′) = cj,t2+l2(y) = 1, we have d < 0. This shows that t′2 + 1 = t1

cannot be true, so t′1 + 1 = t2. Then 1
2d may be 1, but after a second exchange as in the preceding

paragraph, we obtain a solution for which d ≤ 0. This completes the proof.

Corollary 2. Every instance (xi,M, T) of the problem is equivalent to (xi−bxic ,M−
∑

i bxic , T).

8

November 3, 2017 International Journal of Production Research manuscript

... i ic ... ic ...

... ic i ... i ic ...

j2

j1

t1 t′1

t2 t′2

(a) Machines, secondary resources, and time periods in

case j1 6= j2 (Theorem 3).

... i′ ... i′ i ...

... ic i ... i ...

j2

j1

t t1

t− 1t2

(b) Two blocks b(j1, t, l) and b(j2, t2, l)

in y to be exchanged (Theorem 4).

Figure 1. Gantt charts that help visualise the proofs of Theorems 3 and 4, where ic represents any secondary resources other

than i.

Proof. By Theorem 3, we can add the inequalities xit ≥ bxic to the formulation and still get the
same optimal value. Define new variables x′it := xit − bxic for all i, t. Rewriting constraints (2b)
and (2c) yields the result.

Theorem 4. (i) There exists an optimal schedule such that s+
it ≤ 1 for all i, t.

(ii) There exists an optimal schedule such that s−it ≤ 1 for all i, t.
(iii) There exists an optimal schedule such that s+

i2 ≤ 1, s−i2 ≤ 1, s+
iT ≤ 1, and s−iT ≤ 1 for all i.

Proof. (i) Fix a secondary resource type i arbitrarily. Let x ∈ S2 be an optimal solution, and
suppose s+

it > 1 for some t. Take a schedule y ∈ S′1 such that α(y) = x (Lemma 3). As z∗ 6= 0,
y must be full (Lemma 6). Since s+

it > 1 and y ∈ S′1, there are at least two machines j1, j2
such that z+

ij1t
= z+

ij2t
= 1. Let i′ be the secondary resource on machine j2 in period t − 1, let

t1 := max{τ ≥ t : yij1τ = 1}, t2 := min{τ ≤ t − 1 : yi′j2τ = 1}, and l := min{t1 − t + 1, t − t2}.
Exchange the two blocks b(j1, t, l) and b(j2, t2, l) to obtain a new schedule y′ (Figure 1(b)). Then
1
2d = dj1t+dj1,t1+1+dj2t2 +dj2t (Lemma 8). Here djt ≤ 0, dj2t = −1, and at most one of dj1,t1+1, dj2t2
is 1 so that d ≤ 0. Hence, y′ is still optimal.

Consider the ordered T -tuple wi(x) := (xi1, . . . , xiT). Clearly, wi(x
′) > wi(x) where x′ := α(y′).

Hence, repeating the same argument we can obtain in a finite number of steps an optimal solution
for which s+

it ≤ 1 for all t. Define sit to be s+
it or −s−it according as s+

it ≥ 0 or s−it > 0. Notice
that the exchange above increases si′τ only for τ = t, and si′t is increased by 2. However, as si′t is
initially negative, it cannot exceed 1 after the exchange. Therefore, all secondary resources can be
handled one by one until an optimal solution satisfying the assertion is found.

(ii) Analogous to (i).
(iii) The argument is essentially the same as in (i), and makes use of the fact that some terms

drop in the expression in Lemma 8 when the endpoints happen to be the first or the last period.

3.4 Heuristic algorithm

In this subsection, we introduce a heuristic with polynomial time complexity O((I3 +M)T), pro-
ducing high-quality feasible solutions (see §5 for details of computational results). The algorithm
starts with reducing the problem: for each secondary resource type i, as many as bxic resources are
assigned to machines right away. Thus it remains to consider the fractional demands xi−bxic only,
with a smaller number of machines. Notice that this reduced problem is equivalent to the original
one by Corollary 2. Next, the problem is compressed; that is to say, a machine is allotted for the
type with largest (fractional) demand as long as there is enough capacity. Although this step is
quite reasonable, we will shortly present an example where it leads to suboptimal solutions. What
is left after compression is a fairly tight scheduling problem. At this point, there will surely be at
least one setup or teardown for each of the remaining secondary resource types. Therefore, it makes
sense to find pairs (if any) whose demands complement each other, and further reduce the problem
by assigning every such pair to one of the available machines. Next, we repeat this once again,

9

November 3, 2017 International Journal of Production Research manuscript

taking this time also the slack capacity (if any) into account, and then perform a similar search
for possible triplets. Finally, in descending order with respect to demand, we do a straightforward
allocation. Algorithm 2 is a pseudocode that outlines the heuristic described. Notice that finding
triplets and reduction take O(I3T) and O(MT) steps, respectively, and these two dominate the
remaining parts of the algorithm. Hence, the overall complexity is O((I3 +M)T).

Algorithm 2 Heuristic.
1: // reduction

2: jcurrent ← 1

3: for all i do
4: for j = jcurrent to jcurrent + bxic do
5: yijt ← 1 for all t

6: xi ← xi − bxic
7: jcurrent ← jcurrent + bxic
8: // compression
9: slack ←M − jcurrent −

∑
xi

10: while jcurrent < M do

11: if slack ≥ 1−max {xi} then
12: i← arg max {xi}
13: yijt ← 1 for all t

14: xi ← 0
15: jcurrent ← jcurrent + 1

16: slack ←M − jcurrent −
∑
xi

17: // finding pairs
18: for i = 1 to I − 1 do

19: for i′ = i to I do

20: if xi + xi′ = 1 then

21: yijt ← 1 for all t ≤ T xi
22: yi′jt ← 1 for all t > T xi
23: xi ← 0

24: xi′ ← 0

25: jcurrent ← jcurrent + 1
26: // finding pairs utilising slack

27: repeat the previous step (lines 18-25) with the conditional in line 20 relaxed to
xi + xi′ ≥ 1− slack, updating slack after line 25

28: // finding triplets

29: perform a search for triplets analogous to the one for pairs (lines 18-25)

30: // straightforward allocation
31: tcurrent = 1

32: for all i do

33: if xi > 0 then

34: yijt ← 1 for all T xi-many periods

35: update tcurrent and (if need be) jcurrent
36: if slack > 0 then

37: prolong the production of the last secondary resource on the last machine

Let us demonstrate the algorithm for a specific instance. Say T = 10, I = 10, the xi are 1.9, 0.2,
5.8, 1.2, 3.0, 7.7, 3.2, 1.4, 0.4, 2.0, and M = 27. After reduction, we are left with eight secondary
resource types with demands 0.9, 0.2, 0.8, 0.2, 0.7, 0.2, 0.4, 0.4, and there are only four machines.
Note that the slack capacity is 4− (0.9 + 0.2 + . . .+ 0.4) = 0.2. Compression allots one machine to
0.9 in full. Thus, the numbers of types and machines are decreased by one, and the new slack is 0.1.
Demands 0.2 and 0.8 complement each other. So do 0.2 and 0.7 if slack capacity is utilised. Finally,
we detect a triplet 0.2, 0.4, 0.4. Then nothing is left, and the objective function value associated
with the resulting schedule is z = 8.

When the heuristic is applied to the instance where T = 10, I = 6, the xi are 0.7, 0.6, 0.6, 0.3,
0.3, 0.2 (so that the T xi are 7, 6, 6, 3, 3, 2), and M = 3, the compression step allots one machine
to the first secondary resource type for all ten periods, and it follows that z = 8 (see the Gantt
chart in Figure 2 – the numbers on the blocks represent secondary resource types in the order given
above). However, the optimal objective value is 6, which can be obtained by assigning the three

10

November 3, 2017 International Journal of Production Research manuscript

appropriate pairs to three machines. This shows that the compression step may lead to suboptimal
solutions.

0 5 10

1

2 3

3 4 5 6

Figure 2. Gantt chart associated with the heuristic solution of the instance for which the compression step in Algorithm 2

leads to suboptimality.

4. Model extensions

In this section we extend our models to take into account two sets of constraints that might be
important in real life, namely vertical constraints and minimum lot size constraints.

4.1 Vertical constraints

By vertical constraints, we mean, as in Lasdon and Terjung (1971), the following inequalities lim-
iting by a parameter s the number of setups and teardowns performed in between two consecutive
periods: ∑

i

(s+
it + s−it) ≤ s for all t > 1. (5)

Clearly, the problem is still NP-hard in general: for s large enough, it is equivalent to F2. Although
Lemma 6 no longer holds, z∗ must be an even integer in case of feasibility. Lemma 2 does not hold
either: consider for s ≤ 3 the instance where T = 2, I = 4, the xi are all 0.5, and M = 2; we
have

∑
i xi ≤M , but there exists no feasible solution. Also, the argument used to prove Lemma 7

is invalid for F2 with (5); nevertheless, it is not easy to find a counterexample because the upper
bound given there is rather loose. The proofs of Theorems 3 and 4 are invalid too, but computational
tests suggest that the assertions may still be true.

For the problem with vertical constraints, we modify the heuristic described in §3.4 slightly as fol-
lows: every step of Algorithm 2 is to be applied as is, except for finding pairs, finding pairs utilising
slack, and finding triplets. In these three steps, we first check whether inclusion of the pair/triplet
into the schedule would violate the vertical constraints. If inclusion is not possible without increas-
ing the number of changeovers, then we simply continue searching for other pairs/triplets. In the
modified heuristic, the complexity of finding pairs and triplets remain the same since there are two
and six possible sequences for a pair and triplet, respectively. However, the complexity of finding
pairs utilising slack is increased from O(I2T) to O(I2T 2) so that the overall complexity becomes
O((I3 + I2T +M)T).

4.2 Minimum lot size constraints

Minimum lot size constraints translate in our problem as a lower bound on the number of periods
a secondary resource should remain within a machine after being installed. Such a restriction
might stem from shop floor requirements (e.g., materials to be processed may only be stored and

11

November 3, 2017 International Journal of Production Research manuscript

retrieved in certain large batches), or a managerial decision based on the observation that scrap
rates gradually decrease as one produces more and more after a new setup.

Minimum lot size restriction can be incorporated into F2 as follows. The idea is to couple each
teardown with a setup, and make sure that every teardown is associated with a setup which is
performed at least m periods earlier, where m stands for the lower bound mentioned. This is
guaranteed by the inequalities

u+m∑
t=1+m

s−it ≤
u∑
t=1

s+
it for all i and 1 ≤ u ≤ T − (m− 1) (6)

together with s−i2 = . . . = s−im = 0 = s+
i,T−(m−2) = . . . = s+

iT , where s+
i1 := xi1 and s−i,T+1 := xiT

for all i. To see why, fix a secondary resource type i. Let us number consecutively each setup
(including the ones before the first period) and teardown (including the ones after the last period)
throughout the planning horizon. Thus, the number associated with a setup made in period t will be
strictly smaller than one made in period t′ if t < t′ (the numbering within a period is immaterial);
similarly for teardowns. Given a feasible solution of F2, instead of making the secondary resource
assignments in Algorithm 1 arbitrarily, if one adopts the policy of performing the nth teardown
(not on an arbitrary machine but) on the machine with the nth setup, then the best schedule with
respect to minimum lot size is obtained. That is to say, for the given solution, this policy leads
for i to a schedule with the largest possible minimum lot size – call it m′i. We can express m′i in
terms of our setup and teardown variables: for 2 ≤ k ≤ T + 1, let

tik := min{l ≥ 1 : s−i2 + . . .+ s−ik ≤ s
+
i1 + . . .+ s+

il }

and mik := k− tik. Then, for those k with s−ik > 0, the integer tik stands for the period containing
the setup of the last resource of type i torn down at period k. Consequently, mik denotes how many
periods ago this setup was performed. Hence

m′i = min{mik : 2 ≤ k ≤ T + 1, s−ik > 0}.

Let m′ := mini{m′i}. Now we can state the minimum lot size restriction as a simple inequality:
m′ ≥ m. Equivalently, s−ik > 0 implies mik ≥ m for all i and 2 ≤ k ≤ T + 1. Writing this out, we
get (6) and the equalities thereafter. Algorithm 3 outlines the assignment procedure just described.

Algorithm 3 Disaggregation under minimum lot size.
1: assign the xi1 arbitrarily to machines

2: number for each i every setup s+i1, . . . , s
+
iT and teardown s−i2, . . . , s

−
i,T+1 in order

3: for t = 2 to T do

4: for all i do
5: for n = 1 +

∑t−1
t′=2

sit′ to
∑t

t′=2 s
−
it′ do

6: perform teardown n on the machine with setup n

7: assign, by respecting the minimum lot size constraint,
∑

i s
+
it-many secondary

resources to those machines which have just been emptied

As is the case with the vertical constraints, F2 with (6) is NP-hard. Lemmas 5 and 6, hence
Corollary 1, hold true. We were unable to find a counterexample that disproves Theorem 3 or 4.
We adapt the heuristic in §3.4 to the problem with minimum lot size restriction as follows: after
line 7 in Algorithm 2, we enlarge the remaining fractional demands so as to satisfy the minimum
lot size constraint. The subsequent steps are applied as is. Complexity of the new algorithm is the
same as the original heuristic’s.

12

November 3, 2017 International Journal of Production Research manuscript

5. Computational study

We implemented the mixed-integer programs and the heuristic with C# programming language
using CPLEX 12.7 as solver, on a PC with Intel(R) Core(TM)2 Quad CPU (2.40GHz) processor
and 4 GB RAM, running a 64-bit Windows 7 operating system. We generated instances as follows:
Given I, T , a lower bound l, an upper bound u, and a seed, the xi are randomly generated as
fractions such that l ≤ xi < u and T xi ∈ Z. In other words, each xi is of the form ai + bi

T , where
ai is a random integer between l and u − 1 (inclusive), and bi is a random integer between 0 and
T − 1. Then we generated M as a random integer between d

∑
xie and

∑
dxie. Thus, M is greater

than or equal to the smallest integer for which the problem has a feasible solution, and less than
or equal to the smallest integer for which the objective value is zero (see Lemmas 2 and 5).

We shall take l = 0 and T ≥ 18 throughout. Then the xi are discrete uniform random variables
assuming Tu-many values. We have E(xi) = u−1

2 + 1
2
T−1
T ≈ u

2 and E(dxie) = u+1
2 . Consequently,

E(d
∑
xie) ≈ E(

∑
xi) ≈ Iu

2 and E(
∑
dxie) = I(u+1)

2 . Hence, expectation of M as a random

variable is approximately I(u+0.5)
2 . Let us designate this quantity by M . Therefore, for fixed u,

the average number M of machines in our instances is directly proportional to the number I of
secondary resource types. We shall assume u = 5 so that M = 2.75I.

By absolute optimality gap we mean the best (smallest) objective function value zf minus
the best (largest) lower bound zl, and by relative optimality gap the ratio of this difference to zf .
Absolute MIP gap tolerance is a positive number EpAGap such that the solver terminates processing
as soon as zf − zl ≤ EpAGap. Relative MIP gap tolerance EpGap is defined analogously. We know
that z∗ must be an even integer (Corollary 1), consequently EpAGap can be set to 2 − ε. We take
ε to be 10−6 (this is the default value for EpAGap). It is possible that zf be sometimes odd in the
course of solution process, so the optimal value in the output is to be understood as the largest
even integer less than or equal to zf . Making use of the evenness of z∗ together with the inequality
z∗ ≤ 2I − 2 (Lemma 7), one can also show that EpGap can be set to 1/I; after setting EpAGap as
2− ε, however, this is redundant.

In our first experiment, we compared F1, F1 with symmetry-breaking constraints (3), and F2
on six sets of 25 instances each, where I ∈ {4, 8, 16} and T ∈ {18, 36}. A time limit of 600 seconds
is chosen. Statistics summarizing the experiment results are given in Table 2. The column Solved
shows the number of instances solved to optimality, Gap the average percent (relative) optimality
gap, and Time the average CPU time in seconds.

Table 2. Comparison of formulations F1, F1 with symmetry-breaking constraints (3), and F2.

F1
F1 with symmetry-breaking

constraints (3)
F2

T I Solved Gap (%) Time (s) Solved Gap (%) Time (s) Solved Gap (%) Time (s)
4 25 0 2.5 25 0 2.1 25 0 0

18 8 21 6.91 162 17 25.13 353.5 25 0 0
16 9 57.09 416.7 6 76 468.1 25 0 9.1
4 25 0 17.2 25 0 16.9 25 0 0

36 8 17 18.96 255.3 7 71.2 459.8 25 0 0.1
16 4 80.02 525.5 0 100 600 25 0 20.1

Table 2 shows that F2 performs much better than F1. This can be explained by the fact that
F1 has about M times as many variables and constraints as F2, possessing many alternative
symmetric solutions. Inclusion of symmetry-breaking constraints (3) make the situation even worse.
Symmetry-breaking constraints reduce the extent of feasible region that must be explored, but also
make size of the linear programs to be solved at each node of the branch-and-bound tree larger,
which could be the reason behind the disappointing solution performance of F1 with (3). In view
of Table 2, it does not make sense to further consider F1 instead of F2 unless this is dictated by a
change of underlying assumptions. Therefore we focus on F2. Although CPU time is virtually zero
for small instances, this situation is bound to change for large ones as the problem is shown to be

13

November 3, 2017 International Journal of Production Research manuscript

NP-hard (Theorem 1).
In our second experiment, we investigated the effect of setting the absolute MIP gap tolerance

EpAGap to 2 − ε in F2. For this purpose, solution performances of F2 (with EpAGap assuming its
default value of 10−6) and F2 with EpAGap = 2− ε are compared in six sets of 25 instances each,
where I ∈ {100, 200, 400} and T ∈ {18, 36}. See Table 3 for the statistics thus obtained, which
shows that this parameter’s redefinition leads to a slight improvement in solution performance. As
the optimal objective z∗ is known to be an even integer for the model extensions as well, we shall
take absolute tolerance as 2− ε for all the experiments from this point on.

Table 3. Effect of changing the absolute MIP gap tolerance.
F2 F2 with EpAGap = 2− ε

T I Solved Gap (%) Time (s) Solved Gap (%) Time (s)
100 25 0 1.7 25 0 1.6

18 200 24 0.06 32.4 24 0.06 32.9
400 23 0.13 72.6 23 0.13 72
100 22 0.35 79.9 24 0.2 51.4

36 200 23 4.04 85.3 23 4.04 74
400 25 0 99.3 25 0 76.3

Solution performance of our heuristic algorithm is given in Table 4. Gap here is defined like
relative optimality gap above, with zf replaced by the objective value zh associated with the
heuristic solution. We use as lower bound the number zl provided for F2 by the solver in 600
seconds. The column Solved shows the number of instances for which the heuristic solution is
optimal (i.e., zh − zl < 2).

Table 4. Performance of the heuristic algorithm.
Small instances Large instances

T I Solved Gap (%) Time (s) I Solved Gap (%) Time (s)
4 21 16 0 100 7 10.2 0

18 8 24 4 0 200 10 8.36 0.3
16 25 0 0 400 4 5.26 1.9
4 22 12 0 100 8 4.35 0.1

36 8 23 1.8 0 200 11 5.02 0.4
16 22 1.31 0 400 6 5.81 2.2

According to Table 4, the heuristic algorithm has found an optimal solution in more than 30%
of the large instances in less than one second on average. The results are much better for the
small instances. Hence, it is reasonable to feed the solver with an initial heuristic solution. We
performed tests to see the effect of this on solution performance. We also ran the same experiments
by incorporating the cut (4) into the formulation. The results are tabulated in Table 5.

Table 5. Effect of providing an initial heuristic solution and adding the cut (4).
F2 with heuristic F2 with (4) F2 with heuristic and (4)

T I Solved Gap (%) Time (s) Solved Gap (%) Time (s) Solved Gap (%) Time (s)
100 25 0 1.5 25 0 3.9 25 0 3.9

18 200 24 0.06 31.6 24 0.06 33.6 24 0.06 33.5
400 23 0.12 81.3 23 0.08 71.7 23 0.08 75.4
100 23 0.19 62.2 24 0.12 34.4 24 0.08 32.6

36 200 23 0.37 72 23 0.13 78 23 0.15 73.3
400 25 0 73.9 25 0 90.1 25 0 76.6

When we compare the results in Table 5 with those for F2 with EpAGap = 2− ε in Table 3, we
see that the initial heuristic solution leads to a significant improvement in gap for the parameter
set (I, T) = (200, 36). However, for (I, T) = (100, 36), the number of instances solved to optimality
is one less. The results for F2 with (4) are even better except for the relatively larger solution time
for (I, T) = (400, 36). The most promising implementation is F2 with heuristic and constraints (4).
This combination yields generally the best statistics.

14

November 3, 2017 International Journal of Production Research manuscript

Next, we provide computational results for two realizations of the model extensions discussed
in §4. First, we implemented F2 with vertical constraints (5), limiting by s the total number of
setups and teardowns in between every two consecutive periods. We took s = 2, and carried out
tests for the same six sets of instances used in Table 2. Second, we ran F2 with minimum lot size
constraints (6), setting a lower bound m on the number of periods a secondary resource should
remain installed in a machine. We took m = 3. Statistics are summarised in Table 6. In comparison
to Table 2, we see how the additional constraints (5) and (6) worsen solution performance, especially
when I is large relative to T .

Table 6. Performance of the mixed-integer programs for the extended problems.
F2 with (5) where s = 2 F2 with (6) where m = 3

T I Solved Gap (%) Time (s) Solved Gap (%) Time (s)
4 25 0 0 25 0 0

18 8 25 0 0.3 25 0 0.3
16 24 0.96 26.8 24 0.95 26.5
4 25 0 0.1 25 0 0.1

36 8 25 0 0.3 25 0 0.5
16 22 3.05 134.5 21 3.77 158.7

Finally, in Table 7 we give statistics that show the performance of the heuristics described in §4.1
and §4.2 for the extended problems. Here the column Feasible shows the number of instances for
which the algorithms were able to find a feasible solution. Note that most of the time our heuristics
could come up with an optimal schedule. The average gaps are not very large as well, although
they were considerably smaller for the original problem as shown by Table 4.

Table 7. Performance of the heuristics for the extended problems.
Vertical constraints (s = 2) Minimum lot size constraints (m = 3)

T I Feasible Solved Gap (%) Time (s) Feasible Solved Gap (%) Time (s)
4 25 21 16 0 24 20 16.67 0

18 8 25 20 11.33 0 24 19 11.46 0
16 21 14 9.63 0 24 16 8.44 0
4 25 22 12 0 25 22 12 0

36 8 24 21 6.23 0 25 22 5.28 0
16 20 8 17.91 0 24 6 21.94 0

6. Conclusion and further research

We studied in this paper a parallel machine multi-item lot-sizing and scheduling problem with a
secondary resource, in which demands are given for the entire planning horizon rather than for every
single period. We proved that the problem is NP-hard, and presented two equivalent formulations
as mixed-integer linear programs. The second formulation, using aggregate integer variables instead
of individual binary variables for each machine, turned out to be more efficient. We showed some
properties the optimal objective value z∗ must satisfy, proposed optimality conditions, and gave a
heuristic algorithm. In particular, z∗ must be even so that the absolute MIP gap tolerance can be set
to 2− ε. This redefinition slightly improves the solution performance of the aggregate formulation,
which is also true of feeding the solver with an initial heuristic solution in general. Incorporation of
the cut (4) leads to better results, making up the best implementation together with the heuristic.

We discussed two possible extensions to the problem, namely vertical and minimum lot size
constraints. We showed how these can be formulated, and mentioned some properties of the new
problems arising thereby. Furthermore, we suggested two modifications of the heuristic. Computa-
tional tests indicate that it is significantly more time-consuming to solve these extended problems.

We conjecture for the original problem that there exist optimal schedules satisfying the following

15

November 3, 2017 International Journal of Production Research manuscript

two sets of inequalities:

bxic ≤ xit ≤ dxie for all i, t;∑
t

s+
it ≤ 1,

∑
t

s−it ≤ 1 for all i.

It can be interesting for further research to provide a proof or disproof of this claim, and investigate
other practical situations such as some machines being temporarily unavailable within the planning
horizon.

References

Buschkühl, L., F. Sahling, S. Helber, and H. Tempelmeier. 2010. “Dynamic capacitated lot-sizing problems:
a classification and review of solution approaches.” OR Spectrum 32 (2): 231–261.

Copil, K., M. Wörbelauer, H. Meyr, and H. Tempelmeier. 2017. “Simultaneous lotsizing and scheduling
problems: a classification and review of models.” OR Spectrum 39 (1): 1–64.

Drexl, A., and A. Kimms. 1997. “Lot sizing and scheduling — Survey and extensions.” European Journal
of Operational Research 99 (2): 221–235.

Eppen, G. D., and R. K. Martin. 1987. “Solving multi-item capacitated lot-sizing problems using variable
redefinition.” Operations Research 35 (6): 832–848.

Fiorotto, D. J., and S. A. de Araujo. 2014. “Reformulation and a Lagrangian heuristic for lot sizing problem
on parallel machines.” Annals of Operations Research 217 (1): 213–231.

Gicquel, C., M. Minoux, and Y. Dallery. 2011. “Exact solution approaches for the discrete lot-sizing and
scheduling problem with parallel resources.” International Journal of Production Research 49 (9): 2587–
2603.

Gicquel, C., L. A. Wolsey, and M. Minoux. 2012. “On discrete lot-sizing and scheduling on identical parallel
machines.” Optimization Letters 6 (3): 545–557.

Jans, R. 2009. “Solving lot-sizing problems on parallel identical machines using symmetry-breaking con-
straints.” INFORMS Journal on Computing 21 (1): 123–136.

Jans, R., and Z. Degraeve. 2004. “An industrial extension of the discrete lot-sizing and scheduling problem.”
IIE Transactions 36 (1): 47–58.

Jans, R., and Z. Degraeve. 2008. “Modeling industrial lot sizing problems: a review.” International Journal
of Production Research 46 (6): 1619–1643.

Jordan, C. 1996. Batching and Scheduling. Springer.
Kaczmarczyk, W. 2011. “Proportional lot-sizing and scheduling problem with identical parallel machines.”

International Journal of Production Research 49 (9): 2605–2623.
Karimi, B., S. M. T. Fatemi Ghomi, and J. M. Wilson. 2003. “The capacitated lot sizing problem: a review

of models and algorithms.” Omega 31 (5): 365–378.
Kimms, A. 1997. Multi-Level Lot Sizing and Scheduling. Physica-Verlag.
Lasdon, L. S., and R. C. Terjung. 1971. “An Efficient Algorithm for Multi-Item Scheduling.” Operations

Research 19 (4): 946–969.
Pochet, Y., and L. A. Wolsey. 2006. Production Planning by Mixed Integer Programming. Springer.
Quadt, D. 2004. Lot-Sizing and Scheduling for Flexible Flow Lines. Springer.
Quadt, D., and H. Kuhn. 2007. “A taxonomy of flexible flow line scheduling procedures.” European Journal

of Operational Research 178 (3): 686–698.
Quadt, D., and H. Kuhn. 2009. “Capacitated Lot-Sizing and Scheduling with Parallel Machines, Back-

Orders, and Setup Carry-Over.” Naval Research Logistics 56 (4): 366–384.
Seeanner, F. 2013. Multi-Stage Simultaneous Lot-Sizing and Scheduling. Springer Gabler.
Sherali, H. D., and J. C. Smith. 2001. “Improving Discrete Model Representations via Symmetry Consider-

ations.” Management Science 47 (10): 1396–1407.
Suerie, C. 2005. Time Continuity in Discrete Time Models. Springer.
van Eijl, C. A., and C. P. M. van Hoesel. 1997. “On the discrete lot-sizing and scheduling problem with

Wagner-Whitin costs.” Operations Research Letters 20 (1): 7–13.

16

November 3, 2017 International Journal of Production Research manuscript

Vanderbeck, F., and L. A. Wolsey. 1992. “Valid Inequalities for the Lasdon-Terjung Production Model.”
The Journal of the Operational Research Society 43 (5): 435–441.

Zhu, X., and W. E. Wilhelm. 2006. “Scheduling and lot sizing with sequence-dependent setup: A literature
review.” IIE Transactions 38 (11): 987–1007.

17

