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Abstract

We consider an uncapacitated lot sizing problem in co-production systems, in which it is possible
to produce multiple items simultaneously in a single production run. Each product has a
deterministic demand to be satisfied on time. The decision is to choose which items to co-
produce and the amount of production throughout a predetermined planning horizon. We
show that the lot sizing problem with co-production is strongly NP-Hard. Then, we develop
various mixed-integer linear programming (MILP) formulation of the problem and show that
LP relaxations of all MILPs are equal. We develop a separation algorithm based on a set of
valid inequalities, lower bounds based on a dynamic lot-sizing relaxation of our problem and
a constructive heuristic that is used to obtain an initial solution for the solver, which form
the basis of our proposed Branch & Cut algorithm for the problem. We test our models and
algorithms on different data sets and provide the results.

Keywords: Co-production; Lot-Sizing; MILP; Branch & Cut

1 Introduction

Co-production is a process where several different products are produced simultaneously in the

same production run. Co-production either occurs because of physical or chemical nature of the

production system, or because the system is designed to produce multiple products simultaneously

in order to effectively use scarce resources. Co-produced units may only differ in quality as in semi-

conductor production (Bitran and Gilbert, 1994; Bitran and Dasu, 1992) or may be completely
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different products as in float glass production (Öner and Bilgiç, 2008; Taşkın and Ünal, 2009).

As a development strategy, concept of circular economy aims to maintain rapid economic growth

while considering scarcity of raw materials (Yuan et al., 2006). There is a strong relation between

circular economy and co-production as circular economy aims to minimize the waste (or use) of raw

materials while producing goods or services (Brahimi et al., 2017; Suzanne et al., 2020). In this

sense co-production serves to achieve this goal and it is very important in today’s manufacturing

industry.

We can analyze co-production in different categories based on the nature of the production:

(i) deliberated or non-deliberated; (ii) controlled or uncontrolled (Suzanne et al., 2020). If it is

possible to control the parameters of the production, such as the products that can be produced

as co-products and their quantities, then the system has controlled co-production. On the other

hand, if it is not possible to control the types or quantities of products when the production run

starts or it is prohibitively expensive to control the system, then the system has uncontrolled co-

production. Moreover, if it is possible to manufacture each product either by itself or by means of

co-production, and co-production is desirable in terms of cost and production, then the system has

deliberated co-production. For example, in metal press shops often multiple products are produced

simultaneously from a single metal sheet, and hence the co-production is deliberated and controlled.

In contrast, semi-conductor and float glass production are neither deliberated nor controlled (Bitran

and Gilbert, 1994; Taşkın and Ünal, 2009). In this study, we focus on lot-sizing problems occurring

in deliberated and controlled co-production systems.

As an example, we may consider a case that occurs in the plastics industry. Figure 1 depicts

a plastic mould that can simultaneously produce different plastics products. As seen from the

figure, the fixtures are changeable, and with a new fixture, the set of co-produced products can be

adjusted. Since it is possible to produce different shapes of plastics by changing the fixtures and

with each fixture we know the quantities and types of products that are co-produced, the system

is controlled. Furthermore, since it is possible to use the mould to either produce a single product

type or to co-produce different products, the system is deliberated.

From an applications point of view, our problem can be found at production systems in which
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Figure 1: Co-production in plastic mould industry with different fixtures (Euromak, 2020)

multiple products, often small parts, can be produced by fitting multiple parts into a single die or

machine slot. Although we focus on co-production, one may encounter a similar problem in supply

chain systems (Stern, 2006): Consider a company that needs to buy a certain amount of supplies

(material A, B and C), and there exist suppliers (supplier 1 and 2) that offer a set of deals for

different combinations of materials. For example supplier 1 provides (500 kg of material A) + (500

units of material B) for $X while supplier 2 offers (1000 kg of material A) + (100 units of material

B) + (100 kg of material C) for $Y. This results in deciding on the suppliers to work with and

the amount of each bundle to buy from these selected suppliers, which is similar to a production

planning problem in a co-production system.

Lot sizing problems are well studied in the literature. Since Wagner and Whitin (1958) published

their seminal paper, substantial research has been done in the area. Hence, various lot sizing

problems have been studied. For an extensive review, we refer the reader to Brahimi et al. (2006)

and its updated version (Brahimi et al., 2017). Since the focus of our study is lot-sizing in co-

production systems, we discuss the corresponding literature rather than general lot-sizing literature.

A type of lot-sizing problem appears as coordinated lot sizing problem, where the products

are produced as families. In coordinated lot sizing problems, a family of products shares a fixed

setup cost (Robinson et al., 2009). In addition to the fixed cost, a minor setup cost also exists for

individual products inside a product family if they are decided to be produced. Variable production
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cost is similar to that of dynamic lot sizing problems. Despite having a shared fixed cost for multiple

products as families, it does not capture the notion of co-production since every product inside the

same family is not necessarily produced simultaneously. In co-production it is usually not possible

to group products as families and co-produced items are produced simultaneously without having

minor set up costs.

Bitran and Dasu (1992) and Bitran and Gilbert (1994) focus on co-production with random

yields in semiconductor production. In their context, it is possible to substitute a lower tier product

with a higher tier one. This is called serially nested co-production. The problem is divided into

two sub-problems as “morning problem,” in which production decisions are made, and “afternoon

problem,” in which products are allocated to customers after yields are known. In Bitran and Dasu

(1992), the objective is to maximize expected profit whereas in Bitran and Gilbert (1994) it is the

minimization of expected cost comprised of production, inventory holding, and shortage costs.

Öner and Bilgiç (2008) study uncontrolled co-production in float glass manufacturing with

constant holding cost rate and fixed sequence independent setup costs where the substitution of

products is not allowed. They develop a continuous time economic lot scheduling model to find

a common cycle schedule. Taşkın and Ünal (2009) also study co-production in float glass manu-

facturing focusing on tactical level planning. They develop a mathematical model that is highly

specialized for that purpose. Vidal-Carreras et al. (2012) study deliberated and controlled co-

production with non-substitutable demand. Similar to Öner and Bilgiç (2008), their model is a

continuous economic lot scheduling problem with the aim of finding a common cycle time. Costs are

constant, fixed and sequence independent, and only two products are considered. Rafiei et al. (2015)

consider co-production with sequence dependent setup times and demand uncertainty. There are

production families, and recipes in the same production family require no changeover cost. They

provide a case study on demand driven wood re-manufacturing mills, and propose a three step

methodology to solve wood re-manufacturing industrial problem.

To the best of our knowledge there is a single lot-sizing paper, Ağralı (2012), that considers a

setting where co-production exists. In that study co-production is controlled but not deliberated,

i.e., there is only a single set of products to be co-produced as a single co-production unit. The
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problem is to decide on when and how much to produce that specific set of products. It is shown that

well-known zero-inventory policy holds for at least one of the products, and a dynamic programming

(DP) recursion is given that runs in polynomial time. Although Ağralı (2012)’s paper is the closest

work to our paper, there are some major differences between the two studies. In particular, we

consider deliberated co-production where the decision maker has the option of co-produce or not to

co-produce. Moreover, there is no single set of products, and the products may appear in different

co-production units to be produced as co-products. In our case, zero inventory property does not

hold, and hence, none of the solution methods proposed in the literature is directly applicable to

our problem.

Our contribution to the lot sizing literature can be summarized as follows:

i) We formally define a deliberated co-production problem for the first time in the dynamic

deterministic lot sizing literature.

ii) We investigate the computational complexity of the problem, and prove that it is NP-Hard

in the strong sense.

iii) We develop alternative mixed-integer programming formulations for the problem and inves-

tigate their strengths in terms of the tightness of their linear programming relaxations.

iv) We propose a valid inequality, an efficient separation algorithm and a series of lower bounds,

which we combine in a Branch & Cut algorithm. We also design a heuristic method to find

high-quality feasible solutions to the problem.

Our experiments show that our proposed methods are individually very effective, and they signifi-

cantly increase the number of best solutions obtained when CPLEX cuts are on.

The remainder of the paper is as follows: Section 2 gives the formal problem definition and

the proposed mathematical model with NP-Hardness proof. Section 3 provides alternative mixed-

integer linear programs that we developed for our problem and the equivalence of all formulations

in terms of LP relaxations. We provide a separation algorithm based on valid inequalities that

we propose, a heuristic method that is used as an initial solution for the solver and improvement

procedures that are based on a DLSP relaxation to be used in our Branch & Cut algorithm in
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Section 4. We give our computational experiments in Section 5, and finally conclude the paper

with a brief summary and future work in Section 6.

2 Problem Description and Mathematical Model

We consider a dynamic uncapacitated lot-sizing problem (DLSP) in a production system where

co-production exists. There is a set of products, J , where products can be co-produced in different

combinations. We call a possible combination of products that can be co-produced together a

“co-production unit (CU),” and denote these CUs as set I. We model time as a finite sequence of

discrete time points, indexed as t ∈ T , as in DLSP.

There are finitely many CUs indexed by i ∈ I, and each produces a finite set of predefined

products, J(i). When one CU of type i is to be produced, all products included in set J(i) are

co-produced with certain production ratios, αj
i , i.e., when one CU i is produced, then αj

i units of

product j are produced. Producing a CU requires a deterministic time-dependent fixed cost, f it ,

and a variable cost, cit. Each product j ∈ J has dynamic deterministic demand, djt , and incurs a

holding cost, hjt , for each item carried in inventory. Backlogging is not allowed. The aim is to find

a production plan with minimum possible cost that satisfies all demand on time. We provide a list

of symbols that we use in modeling in Table 1.

Table 1: Notation and Definitions.

T : Set of time periods, indexed by t
J : Set of products, indexed by j
I : Set of co-production units (CUs), indexed by i
J(i) : Set of products produced by CU i
I(j) : Set of CUs that produce product j

αj
i : Co-produced amount of product j, when one unit of CU i is produced
f it : Fixed cost of CU i at period t
cit : Variable cost of CU i at period t

hjt : Holding cost of product j at period t

hjtk : Cumulative holding cost of product j between periods t and k

djt : Demand of product j at period t

djtk : Cumulative demand of product j between periods t and k
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There may be several ways to produce each product, i.e., a product may appear in multiple

CUs. It is also possible for a CU to include only one product, which allows us to model deliberated

co-production. Figure 2 depicts a production system that produces products A, B and C from a

metal sheet, where there are six possible CUs defined. CU1 produces A and C with αA
1 = αC

1 = 2.

CU2, CU4 and CU6 produce single products where αC
2 = 4, αB

4 = 2, and αA
6 = 4. CU3 produces

C and B with αB
3 = 1 and αC

3 = 2. Finally, CU5 produces B and A with αA
5 = 2 and αB

5 = 1.
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Figure 2: An Example for Deliberated and Controlled Co-production

Note that, by definition of αj
i , CUs include physical production restrictions if there are any. For

example, CUs given in Figure 2 include a restriction of not producing A, B and C together. We

refer to this type of system as Deliberated and Controlled Co-Production (DCCP).

Let decision variable xit denote production amount of CU i in period t, and let binary variable

yit take value 1 if and only if production of CU i takes place in period t. Moreover, let sjt variable

denote the inventory of product j at the end of period t. Then, a mixed-integer linear programming

model (MILP) for DCCP can be written as follows:
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IP1 : Minimize
∑
t∈T

(∑
i∈I

(
f ity

i
t + citx

i
t

)
+
∑
j∈J

hjts
j
t

)
(1)

Subject to sjt−1 +
∑
i∈I

αj
ix

i
t − s

j
t = djt , ∀t ∈ T, j ∈ J ; (2)

xit ≤ max
j∈J(i)

{
dtT

αj
i

}
yit, ∀t ∈ T, i ∈ I; (3)

xit ≥ 0, ∀t ∈ T, i ∈ I; (4)

sjt ≥ 0, ∀t ∈ T, j ∈ J ; (5)

yit ∈ {0, 1}, ∀t ∈ T, i ∈ I. (6)

Objective function (1) minimizes the total fixed and variable costs of production and holding cost

of products over the planning horizon. Constraints (2) are the inventory flow balance constraints.

Constraints (3) enforce that if a production occurs, i.e., xit > 0, then binary set up variables take the

value of 1, i.e., yit = 1. Constraints (4)–(6) are non-negativity and binary restrictions, respectively.

We first show that the optimization problem given as IP1 is strongly NP-Hard. In order to

prove this, we first define the decision version of our optimization problem, D-DCCP.

D-DCCP. Given a set of CUs I, each with fixed cost, f it , and variable cost, cit; a set of products,

J , each with demand, djt , and holding cost, hjt ; production ratios, αj
i ; and a positive integer, K,

does there exist a feasible production plan (such that all demands are satisfied on time), having

total cost no more than K?

Proposition 1 D-DCCP is strongly NP-Complete.

Proof. Given an instance of sets I, J , T and data αj
i , f

i
t , c

i
t, d

j
t , h

j
t , a positive number K, and

a “guess” xit; computing yit = 1 if xit > 0 and yit = 0 otherwise; sjt =
∑

k≤t
∑

i∈I(xikα
j
i − d

j
k) and

computing if
∑

t∈T

(∑
i∈I(f ity

i
t + citx

i
t) +

∑
j∈J h

j
ts

j
t

)
≤ K can be done in polynomial time. Hence,

DCCP is in NP.

To show that D-DCCP is NP-complete, consider the following strongly NP-complete problem

(Garey and Johnson, 1979).
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MINIMUM COVER PROBLEM (MCP). Given a collection C of subsets of a finite set S, positive integer

K ≤ |C|, does C contain a cover for S of size K or less, i.e., a subset C ′ ⊆ C with |C ′| ≤ K such

that every element of S belongs to at least one member of C ′?

An arbitrary instance of MCP can be reduced to a particular instance of D-DCCP as follows: Let

S in MCP correspond to set J in D-DCCP instance, and every subset in set C be indexed by i such

that C = {Ci}. Let |T | = 1, f i1 = 1, ci1 = 0, dj1 = 1, ∀j ∈ J and ∀i ∈ I. Now for each i ∈ I and

j ∈ J define subsets Ji ∈ J for each i ∈ I as Ji = {j|j : αj
i = 1}, and define αj

i to be equal to 1 if

j ∈ Ci, and 0, otherwise. Observe that this transformation can easily be performed in polynomial

time and the size of the transformed data is polynomially bounded.

In order to complete the proof, we need to show that an arbitrary instance of MCP is a yes-

instance if and only if the transformed D-DCCP instance is a yes-instance.

Suppose that MCP instance is a yes-instance. Then, there exists a subset C ′ ⊆ C such that

|C ′| ≤ K and
⋃
C ′ = S. Since selecting C ′ ⊆ C in MCP corresponds to selecting I ′ ⊆ I in D-DCCP,∑

i∈I y
i
t = |I ′| = |C ′| ≤ K.

Selecting αj
i ∈ {0, 1} and corresponding subsets Ji as described previously will ensure

⋃
i∈I′ Ji =

J since
⋃
C ′ = S,

which means each product j ∈ J will be produced at least once by selecting I ′ ⊆ I for produc-

tion. Since dj1 = 1 for all j ∈ J , production plan feasibility is ensured by
⋃

i∈I′ Ji = J . Thus, the

D-DCCP instance is a yes-instance.

Now, suppose that MCP instance is a no-instance. Then, it is not possible to select I ′ ⊆ I such

that |I ′| ≤ K and
⋃

i∈I′ Ji = J . The only way to satisfy production feasibility is to select a subset

of I as I ′ such that all products j ∈ J is included in these subsets at least once, i.e.,
⋃

i∈I′ Ji = J ,

where |I ′| ≤ K. However, this is not possible by the assumption that MCP instance is a no-instance.

Hence, the D-DCCP instance is a no-instance. �

3 Alternative MIP Formulations and Their Properties

In this section, we develop three alternative formulations to IP1 and show the equivalence of these

in terms of their LP relaxations.
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3.1 Alternative Formulations

We can reduce the number of variables of IP1 by representing inventory variables, sjt , in terms of

production variables, xit, and demand, djt , i.e., sjt =
∑t

k=1

(∑
i∈I(j) x

i
kα

j
i−d

j
k

)
. We call the resulting

formulation as IP2.

IP2: minimize
∑
t∈T

∑
i∈I

(
f ity

i
t + aitx

i
t

)
−H (7)

subject to

t∑
k=1

∑
i∈I(j)

αj
ix

i
k ≥ d

j
1t, ∀t ∈ T, j ∈ J (8)

xit ≤ max
j∈J(i)

{
dtT

αj
i

}
yit, ∀t ∈ T, i ∈ I (9)

xit ≥ 0, ∀t ∈ T, i ∈ I (10)

yit ∈ {0, 1}, ∀t ∈ T, i ∈ I. (11)

where ait = cit +
∑

j∈J(i) α
j
ih

j
tT and H =

∑
t∈T
∑

j∈J h
j
td

j
1t.

We note that IP2 formulation may improve solution times since it has fewer number of variables

compared to IP1 formulation. However, the constraint matrix is denser than IP1, which may create

computational difficulties.

The simple plant location formulation of DLSP is given by Wagelmans et al.. They show that

this formulation gives the convex hull of DLSP based on the results in Krarup and Bilde (1977). We

develop another MIP formulation based on the simple plant location formulation of DLSP, in which

production variables are disaggregated in terms of periods where produced items are consumed by

demand. Let Θj
tt′ continuous variables represent the production amount of product j ∈ J , that is

produced in period t ∈ T to be consumed in period t′ ∈ T, t′ ≥ t. However, unlike the simple plant

location formulation, eliminating xit variables does not appear to be possible since production costs

depend on the amount of CUs produced, not products. Therefore, constraints (14) are needed to

relate Θj
tt′ variables to xit variables, and the demand satisfaction constraint is revised as in Equation
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(13). Other constraints and the objective function remain the same as those of IP2:

IP3: minimize
∑
t∈T

∑
i∈I

(
f ity

i
t + aitx

i
t

)
−H (12)

subject to
∑
t≤t′

Θj
tt′ = djt′ , ∀t′ ∈ T, j ∈ J (13)

∑
t′≥t

Θj
tt′ ≤

∑
i∈I(j)

αj
ix

i
t, ∀t ∈ T, j ∈ J (14)

xit ≤ max
j∈J(i)

{
dtT

αj
i

}
yit, ∀t ∈ T, i ∈ I (15)

xit ≥ 0, ∀t ∈ T, i ∈ I (16)

Θj
tt′ ≥ 0, ∀t, t′ ∈ T, j ∈ J (17)

yit ∈ {0, 1}, ∀t ∈ T, i ∈ I. (18)

We propose another formulation that is based on the simple plant location formulation of DLSP,

called IP4. In IP4 formulation, production variables are disaggregated not only in terms of periods

in which produced items are consumed by demand, but also in terms of the CUs that they are

produced by. Θj
tt′ variables of IP3 are replaced by Φij

tt′ , which gives the amount of product j

produced using CU i in period t to be consumed in period t′, and necessary changes are applied to
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constraints (20)–(22):

IP4: minimize
∑
t∈T

∑
i∈I

(
f ity

i
t + aitx

i
t

)
−H (19)

subject to
∑
i∈I(j)

∑
t≤t′

Φij
tt′ = djt′ , ∀t′ ∈ T, j ∈ J (20)

∑
t′≥t

Φij
tt′ ≤ α

j
ix

i
t, ∀i ∈ I, t ∈ T, j ∈ J(i) (21)

xit ≤ max
j∈J(i)

{
dtT

αj
i

}
yit, ∀t ∈ T, i ∈ I (22)

xit ≥ 0, ∀t ∈ T, i ∈ I (23)

Φij
tt′ ≥ 0, ∀t, t′ ∈ T, j ∈ J, i ∈ I (24)

yit ∈ {0, 1}, ∀t ∈ T, i ∈ I. (25)

Note that IP4 formulation has higher number of constraints and variables than IP3 formulation

due to Equation (21), and the disaggregation of Θj
tt′ into Φij

tt′ , respectively.

3.2 Equivalence of Alternative Model Formulations

In order to show the equivalence of two linear mathematical models one can show any feasible

solution of one model corresponds to some, also feasible, solution of the other model having the

same objective value. This way one can conclude that feasible region of the first model is included

in the feasible region of the second model. If the reverse also holds, then the models are said to

be equivalent (Taşkın and Ekim, 2012). In this section, the equivalence will be shown explicitly

between the linear relaxations of IP1 and IP2, IP2 and IP3, and IP3 and IP4. For convenience we

name the linear relaxation of formulations as LP1, LP2, LP3 and LP4.

The only difference between IP1 and IP2’s constraints is the structure of demand satisfaction

constraints, i.e. Constraints (2) and (8) for IP1 and IP2, respectively. Since initial inventories are

zero, sj0 = 0, and we represent the inventory variables of IP1 in terms of production variables and

demand in IP2, the equivalance of LP1 and LP2 is straightforward.

Let us show the equivalence between LP2 and LP3. Consider constraints (9) and (15). For a
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given feasible solution (x, y) of any of the models, the other model is also feasible with respect to

(9) and (15). Let (x̂it, ŷ
i
t, Θ̂

j
tt′) be a feasible solution of LP3 formulation. Then, constraints (13)

should hold for Θ̂j
tt′ . Constraints (26) are summed up versions of constraints (13) from 1 to t. We

obtain Equation (27) when indices of two summations are swapped:

t∑
z=1

z∑
k=1

Θ̂j
kz =

t∑
z=1

djz, ∀t ∈ T, j ∈ J ; (26)

t∑
k=1

t∑
z=k

Θ̂j
kz = dj1t, ∀t ∈ T, j ∈ J . (27)

Constraints (14) should also hold for any feasible solution. We obtain Equation (28) when

Constraints (14) are summed up from 1 to t. The combination of Equations (27) and (28) gives

Equation (29). Using Equation (29) we can conclude that x̂ satisfies constraints (8); and hence,

(x̂it, ŷ
i
t) is feasible with respect to LP2.

t∑
k=1

T∑
z=k

Θ̂j
kz ≤

t∑
k=1

∑
i∈I(j)

αj
i x̂

i
k, ∀t ∈ T, j ∈ J ; (28)

dj1t =
t∑

k=1

t∑
z=k

Θ̂j
kz ≤

t∑
k=1

T∑
z=k

Θ̂j
kz ≤

t∑
k=1

∑
i∈I(j)

αj
i x̂

i
k, ∀t ∈ T, j ∈ J . (29)

The objective values of LP2 and LP3 are the same since both formulations share the same

objective function.

Now, let (x̂it, ŷ
i
t) be a solution of LP2 formulation. Unfortunately, reverse mapping of xit variables

of LP2 formulation into Θj
tt′ variables of LP3 formulation is not unique. This is due to the fact

that some production is done not to satisfy demand but occurs mandatorily due to co-production

nature of the production environment. Since Θj
tt′ variables only represent consumed production

and there may be excess production, it is possible to shift production-consumption assignment in

terms of Θj
tt′ variables around. Therefore, using a simple first-in-first-out (FIFO) rule, it is possible

to map any (x̂it, ŷ
i
t) solution of LP2 formulation to a (x̂it, ŷ

i
t, Θ̂

j
tt′) solution of LP3 formulation. The

proposed algorithm is shown in Figure 3.
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for Each product j ∈ J do
Make copy of demand vector djt into Dt for all t ∈ T
Make copy of production vector

∑
i∈I(j) x

i
tα

j
i into Pt for all t ∈ T

for Each period t ∈ T do
for p ∈ {1, ..., T} do

if Pp > Dt then

Θj
pt = Dt

Pp = Pp −Dt

break
else

Θj
pt = Pp

Dt = Dt − Pp

end if
end for

end for
end for

Figure 3: Algorithm for mapping Θ̂jtt′ from x̂it using FIFO.

Equivalence between LP3 and LP4 follows from the relationship between Θj
tt′ and Φij

tt′ variables.

Φij
tt′ variables are CU disaggregated version of Θj

tt′ variables. Let (x̂it, ŷ
i
t, Φ̂

ij
tt′) be a solution to LP4

formulation. Then by setting Θ̂j
tt′ =

∑
i∈I Φ̂ij

tt′ , (x̂it, ŷ
i
t, Θ̂

j
tt′) will be a solution to LP3 formulation.

Let (x̄it, ȳ
i
t, Θ̄

j
tt′) be a solution to LP3 formulation. We need to map Φ̄ij

tt′ arbitrarily from Θ̄j
tt′

variables, and this mapping is not unique. This mapping can be done with an algorithm similar to

the one given in Figure 3.

We have shown that the feasible regions of LP1 and LP2 formulations, LP2 and LP3 formu-

lations, and LP3 and LP4 formulations are equal. Therefore, the feasible regions of all proposed

models’ linear relaxations are equal. We note that this result is in contrast to the DLSP, where

the linear programming relaxation of simple plant location formulation is tighter than the basic

formulation.

4 Algorithmic Improvements

Our preliminary computational tests reveal that none of the IP formulations can solve medium-

size instances to optimality within a reasonable amount of time. Therefore, we propose some
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improvements over the formulations in order to decrease the solution times. In this section, we

discuss a separation algorithm that we propose for IP1, and then introduce similar algorithms for

alternative formulations. We then provide a constructive heuristic that we propose to find an initial

feasible solution to our problem. Finally, we propose an increasingly tighter set of lower bounds

for the problem.

4.1 Valid Inequalities and Separation Algorithms

Valid inequalities, in general, improve the solution time required to solve integer programming

formulations by narrowing the solution space. Although valid inequalities are not necessary to

define the problem, they are satisfied by any feasible solution. Therefore, they could be violated by

some fractional solutions of a branch and bound (B&B) tree but they never eliminate any integer

feasible solution. However, in some cases there exists exponential number of valid inequalities

with respect to the problem size. This makes it inefficient to include all valid inequalities in the

formulation. Hence, it is computationally more efficient to add valid inequalities that are violated

by the fractional solution of the node relaxation during the B&B search in order to improve the

lower bound.

We propose valid inequalities, which are inspired by (l, S) inequalities given by Pochet and

Wolsey (2006), in Proposition 2.

Proposition 2 Let XLP1 represent the feasible region of LP1. Also, let l ∈ T , L = {1, ..., l},

S ⊆ L,and j ∈ J then the (l, S, j) inequality

∑
i∈I(j)

∑
q∈S

xiqα
j
i ≤

∑
q∈S

djql

∑
i∈I(j)

yiq

+ sjl (30)

is valid for XIP1.

Proof. Consider a point (s, y) ∈ XLP1. If
∑

q∈S
∑

i∈I(j) y
i
q = 0, then as

∑
i∈I(j)

∑
q∈S x

i
q = 0,

sjl ≥ 0, the equality is satisfied. Otherwise let t = min{q ∈ S :
∑

i∈I(j) y
i
q > 0}. Then consider the
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following:

∑
i∈I(j)

∑
q∈S

xiqα
j
i ≤

∑
i∈I(j)

l∑
q=t

xiqα
j
i ≤ d

j
tl + sjl ≤

∑
q∈S

djql

∑
i∈I(j)

yiq

+ sjl (31)

First part of inequality (31) follows from non-negativity of xiqα
j
i terms, the definition of subset

S and the time index t. The second part follows from flow conservation equations. Finally, the last

part holds using
∑

i∈I(j) y
i
t ≥ 1 and the non-negativity of yit.

Remark. Inequalities of the form (30), do not give complete description of convex hull of IP1.

Moreover, the inventory variables in Equation (30) can be replaced by Equation (32), where

l ∈ T , L = {1, ..., l}, S ⊆ L.

∑
i∈I(j)

∑
q∈L

xiqα
j
i = dj1l + sjl (32)

By using Equation (32) and Inequality (30), we obtain Inequality (33).

∑
i∈I(j)

∑
q∈L\S

xiqα
j
i +

∑
q∈S

djql

∑
i∈I(j)

yiq

 ≥ dj1l (33)

Note that valid inequalities of the form (33) are exponentially many. However, they can be

separated by inspection using the algorithm given in Figure 4. A straightforward application of the

algorithm leads to O(n2) complexity whereas O(nlog(n)) is doable by adapting the improvement

proposed in Pochet and Wolsey (2006). Assume a fractional solution (xi∗q , y
i∗
q ) to apply separation

algorithm given in Figure 4. Note that this separation is exact, i.e., the algorithm finds all violated

valid inequalities for a given solution.

Valid inequalities described in this section can be applied to IP3 and IP4 formulations using a
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for Each product j ∈ J do
for l = 1, ..., T do

Calculate Dj
l =

∑l
q=1min

{∑
i∈I(j) x

i∗
q α

j
i , d

j
ql

(∑
i∈I(j) y

i∗
q

)}
if Dj

l < dj1l then

return j, L = {1, ..., l}, S =

{
q ∈ L :

∑
i∈I(j) x

i∗
q α

j
i > djql

(∑
i∈I(j) y

i∗
q

)}
end if

end for
end for

Figure 4: Algorithm for (l, S, j) Separation.

similar logic as follows:

∑
q∈L\S

∑
t′≥q

Θj
qt′ +

∑
q∈S

djql

∑
i∈I(j)

yiq

 ≥ dj1l, (34)

∑
q∈L\S

∑
t′≥q

∑
i∈I(j)

Φij
qt′ +

∑
q∈S

djql

∑
i∈I(j)

yiq

 ≥ dj1l. (35)

4.2 Pattern Fitting Heuristics

In this section we propose a heuristic to find a feasible solution of the problem, which we pass as

an initial solution to the solver. Since the products can be produced by using different CUs, for

a given CU, some of the demand of products that are produced within this CU may already be

covered by the production of other CUs in previous time periods. For a given period t, we define

the product coverage of a CU as the number of products whose demand for the same period is not

covered yet by some previous production. Our heuristic works as follows: starting from the first

period, the algorithm tries to cover all demand. The CU having the lowest cost to product coverage

ratio is selected, and that CU is produced at an amount that covers all demand of products that

CU is producing. Those products are marked as covered, and the algorithm selects the next CU

with minimum cost to product coverage ratio until all products are covered for first period. Then,

the excess production is reduced from demand for the next period and the algorithm continues for

period 2, and so on to the last period. This pseudocode of our algorithm is given in Figure 5.
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Initialize Rj , Cj , Xit, Yit, Sjt = 0, minratio =∞
for Period t ∈ T do

for Product j ∈ J do
Rj = Rj + djt

end for
if Rj ≤ 0 then
Cj = 1

else
Cj = 0

end if
while Cj = 0 ∃j ∈ J do

for CU i ∈ I do
for Product j ∈ J(i) do
ratio = Rj/α

j
i

if ratio > Xit then
Xit = ratio

end if
end for
for Product j ∈ J(i) do
Sjt = Xit ∗ αj

i −Rj

end for
Define J ′(i) = {j | Rj > 0, j ∈ J(i)}
if J ′(i) 6= ∅ then
CTCR =

{
f ti +Xit ∗ pti +

∑
j∈J(i) h

t
j ∗ Sjt

}
/|J ′(i)|

end if
if CTCR < minratio then
minratio = CTCR
CUindex = i

end if
end for
if CUindex ≥ 0 then
Yit = 1
for Product j ∈ J(i) do
Cj = 1

Rj = Rj −XCUindex,t ∗ αj
CUindex

end for
end if

end while
end for
return Xit, Yit, Sjt

Figure 5: Pattern Fitting Heuristic.
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4.3 Lower Bound Calculation

In this section we derive a series of increasingly tighter lower bounds based on relaxations of our

problem, and discuss how these can be incorporated within our Branch & Cut algorithm.

4.3.1 Dynamic Lot Sizing Relaxation

We first observe that the demand of each product must be satisfied, and we focus on calculating the

cost of satisfying each product’s demand independent of other products. Let us consider a DLSP

relaxation of the problem for product j. Since demand (djt ) and holding cost (hjt ) are given per

product in our problem, these parameters can be used directly in the DLSP relaxation of product

j. However, in our problem the fixed and variable costs of production (f it and cit, respectively) are

specified per CU. Therefore, we need to calculate valid lower bounds for fixed and variable costs of

product j.

Let us denote the fixed cost of product j in our DLSP relaxation by f
(j)
t . We define:

f
(j)
t = min

i∈I(j)
f it . (36)

Similarly, let c
(j)
t denote the variable cost of production of product j in our DLSP relaxation:

c
(j)
t = min

i∈I(j)

cit

αj
i

(37)

After this transformation, a lower bound on the cost of satisfying demand of product j can be

calculated by solving DLSP for product j by using any DP algorithm for DLSP. Let LB
(1)
j denote

the lower bound obtained for product j. Then, a valid lower bound for our problem, LB(1), can be

calculated as:

LB(1) = max
j∈J

LB
(1)
j (38)
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4.3.2 Co-Production Lot Sizing (CPLS) Relaxation

We note that the calculation of LB
(1)
j can be interpreted as defining a dummy CU for each product

j whose fixed and variable costs are the minimum fixed and variable costs of the underlying CUs

that can produce j. Since we calculate f
(j)
t and c

(j)
t independently, the cost structure of the dummy

CU may not correspond to an existing CU, hence underestimating the total cost. In this section,

we consider an extension of DLSP in which a single product can be produced via a number of CUs

having different fixed and variable costs (CPLS). Formally, we define CPLS as follows:

CPLS. Given a set of CUs I, each with fixed cost, f it , and variable cost, cit; a single product j,

with demand, djt , and holding cost, hjt ; production ratios, αj
i ; find a feasible production plan (such

that all demands are satisfied on time) that has minimum total cost.

We observe that CPLS can be solved by a dynamic programming approach. In particular, let

Cj
l,t be the total cost of satisfying the demand for product j from period l to t from the production

occured in period l.

Cj
l,t = min

i∈I(j)

{
f il + cild

j
lt

}
+

t−1∑
k=l

hjkd
j
k+1,t (39)

Furthermore, let F j
t be the minimum total cost when considering periods from 1 to t. Then,

the following recursive function gives the current total minimum cost for product j.

F j
t = min

k=1,...,t

{
F j
k−1 + Cj

k,t

}
(40)

We can find a lower bound for the problem by calculating LB
(2)
j for each product by solving the

recursive equation (40) in a DP-based algorithm and calculating the maximum among all products.

LB(2) = max
j∈J

LB
(2)
j (41)
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4.3.3 Incorporating CPLS Lower Bounds in Branch & Cut

We observe that LB(1) and LB(2) can be used to calculate initial lower bounds on the problem. In

this section, we discuss how we can incorporate an extension of LB(2) within our Branch & Cut

(B&C) algorithm. Let us add a binary variable wi for each i ∈ I into our model, which take on

value 1 if and only if CU i is ever used for production in any period. We add constraints (42)–(43)

to IP1.

yti ≤ wi ∀t ∈ T, i ∈ I (42)

wi ≤
∑
t∈T

yti ∀i ∈ I. (43)

At any node of B&C tree, we check the current upper bounds of wi variables. If the upper

bound of wi has been set to zero due to branching, then CU i cannot be used in the current B&C

node or any of its children. Therefore, we can omit this CU while calculating LB(2), thus increasing

the lower bound. Furthermore, removal of a CU from the problem may lead to a disconnected set

of products that are produced by disjoint CUs. We use this observation to further tighten the lower

bound.

In particular, we construct a bipartite graph at each B&C node. The set of CUs whose w-

variables have nonzero upper bound constitutes one part of the graph and products constitute the

other part. We add an edge (i, j) if αj
i > 0. We then find connected components of this bipartite

graph. We then calculate LB(2) for each connected component, and add the lower bound obtained

by each connected component to calculate a lower bound for the current B&C node. We add a local

user cut that enforces the objective function value to be greater than or equal to the calculated

lower bound. This local cut may increase the linear programming relaxation value at the current

B&C node, and may be used by the solver to generate further cuts.

We note that the lower bound calculated by this approach gets tighter as more wi variables’

upper bounds are set to zero during branching. Therefore, we use branching priorities to force the

solver to branch on wi variables to obtain better lower bounds earlier in the B&C algorithm.
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5 Computational Analysis

In this section we first give the data generation process for the test instances that we use. Then,

we compare the efficacy of different MILP models using a commercial solver. Finally, we test

effectiveness of the algorithmic improvements that we propose in Section 4.

We use ten different data sets that have different parameter settings as shown in Table 4. For

each data set given in Table 4, we generate 10 random instances, resulting in 100 test instances in

total. We set the time limit to 60 minutes per instance for all tests. We implement the models and

algorithms in C++ programming language and use IBM CPLEX 12.9 in 64 bit mode for MILP

solutions. Benchmark tests are performed on an Intel Core i7-3820 3.6 GHz machine with 32 GB

RAM and 10 MB cache, running on Windows 10 operating system.

5.1 Data Generation Process

There is no available data library that we can directly use for the lot sizing problems in deliberated

co-production literature. Therefore, we generate random data sets for experimentation. We use the

data generation process used by Graves (1982) to generate a production planning problem where

applicable. The procedure described in Graves (1982) has 20 products across three product families

as shown in Table 2. Each product has a lower (djt ) and an upper (d
j
t ) bound on demand for each

period to be determined using uniform distribution. When more than 20 products are present in

an instance, mod operation is used to determine the family of a product. For example, product 21

belongs to the first family whereas product 26 belongs to the second product family.

Table 2: Product Families and Demand Data Used in Experimentation.

Family 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

Product (j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

djt 20 40 15 25 80 80 15 40 40 55 20 20 30 30 20 30 30 50 60 40

d
j
t 40 60 25 65 120 120 25 60 60 85 40 40 50 50 40 70 50 100 90 80

We use holding costs (hjt ) and bounds on fixed costs of products (fcj and fc
j
) as given by
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Graves (1982). The variable costs do not directly match with the ones given in Graves (1982), so

we take variable costs of products, vcj as 10, 15, and 20 for product families 1, 2, and 3, respectively.

All these settings are provided in Table 3.

Table 3: Holding Cost, Fixed Cost, and Variable Cost Used in Experimentation.

Family hj fcj fc
j

vcj

1 1 50 150 10
2 1.75 100 200 15
3 1.5 100 200 20

We create co-production units randomly while ensuring that each product is a part of at least

one CU to ensure feasibility. A parameter named density (represented by δ) is used to determine

the number of products inside each CU. Each CU can produce at least one and at most δ many

products.

The fixed cost of a CU, f it , is determined by taking %75 of the sum of the fixed costs of

products that CU includes, i.e., f it = 0.75
∑

j∈J(i) fc
j , where fcj is randomly generated in the

interval [fcj , fc
j
]. Similarly, the variable cost of a CU, cit, is taken as %90 of the sum of the

variable costs of its products, i.e., cit = 0.9
∑

j∈J(i) vc
j . We create data sets with different sizes in

terms of the time period, the number of products, the number of CUs and the density (δ) of CUs.

The properties of these problem sets are summarized in Table 4.

Table 4: Problem Set Descriptions.

Problem Set |T | |J | |I| δ

PS 1 12 10 20 3

PS 2 12 10 20 4

PS 3 24 40 120 3

PS 4 24 40 120 4

PS 5 24 40 200 3

PS 6 24 40 200 4

PS 7 36 40 120 3

PS 8 36 40 120 4

PS 9 36 40 200 3

PS 10 36 40 200 4
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5.2 Comparison of Alternative Model Formulations

We first implement MILP formulations directly without our proposed improvements. We solve all

instances using CPLEX that uses 4 threads and has an MIPGap of 0. We give our computational

results in Table 5. For each problem set and formulation we provide the number of test instances,

out of 10, that give the best solution across different formulations and the average optimality gap at

the end of time limit under the columns named ‘# of Best Sol.’ and ‘% Gap’ columns, respectively.

For example, for PS 6, IP1 gives best solution for 9 and IP3 gives best solution for 1 of the 10 test

instances. For some problem sets, the summation of best solutions across different formulations

exceeds the total number of test instances as multiple formulations give equal solutions, which are

also best solution, as in PS 1 and PS 2. We provide the total number of best solutions (T ) and the

average optimality gap (A) over all problem sets in the last row of Table 5.

Table 5: Summary of Results for Alternative Model Formulations

# of Best Sol. Gap

PS IP1 IP2 IP3 IP4 IP1 IP2 IP3 IP4

PS1 8 8 8 9 0.17 0.51 0.17 0.29

PS2 10 10 10 10 0.03 0.19 0.00 0.12

PS3 0 6 2 2 4.72 5.71 5.00 5.08

PS4 1 6 1 2 4.73 6.61 5.31 5.74

PS5 7 2 1 0 4.88 7.48 5.36 12.47

PS6 9 0 1 0 4.52 8.52 5.28 16.64

PS7 4 6 0 0 4.67 7.72 6.04 12.38

PS8 5 4 1 0 4.78 8.55 5.74 14.17

PS9 10 0 0 0 5.55 12.41 6.92 26.08

PS10 10 0 0 0 5.64 15.01 9.40 41.27

64 42 24 23 3.97 7.27 4.92 13.42

As the number of time periods, the number of products and CUs increase, it becomes harder to

solve the instances. As a result, the average gap increases as the problem sizes increase. Moreover,

as the density of CUs increase, the average gap also increases except from PS 1 to PS 2 for which

the average gap decreases for all formulations. Since the problem size is small in these two sets, we

conclude that density does not significantly affect solution performance for small instances.

24



In terms of number of best solutions, IP1 gives the highest number of instances for five of the

problem sets, IP2 gives the highest number of best solutions for three sets, IP4 gives the highest

number for one set and for the remaining one all formulations are equal in terms of number of

best solutions. When we analyze the average gap across different formulations, IP1 gives the best

average gap for 8 out of 10 problem sets. Only for PS2, IP3 gives the best gap, and for PS1 both

IP1 and IP3 give the best gap.

IP4 formulation performs the worst in terms of average gap values for medium and large problem

sets (PS4 to PS10). Notice that IP4 formulation has the highest number of constraints for any given

problem instance due to the constraints of the form (21). As density parameter increases from 3 to

4, only the number of constraints for IP4 increases due to constraint (21), which in turn significantly

increases the problem size for IP4 formulation resulting in the worst performance.

We can conclude that IP1 dominates the other formulations in terms of both the average gap

and the number of best solutions. Therefore, we continue our computational experiments by using

IP1 as the MILP formulation.

5.3 Effectiveness of Proposed Algorithmic Improvements

In this section, we test the effect of adding valid inequalities by using the separation algorithm

given in Section 4.1 to IP1 formulation. These experiments are based on the LP relaxation of IP1

formulation. We repeatedly solve LP relaxation of a model and add violated valid inequalities as

needed. The algorithm for separating valid inequalities from a given fractional solution is given in

Figure 4. Implementing this algorithm directly caused some numerical problems. For example, if a

valid inequality that is violated by only a small amount is added to the formulation, CPLEX may

not register it as a violated constraint due to numerical tolerances of CPLEX. This results in an

infinite loop in some problem instances. Therefore, we restrict ourself to add valid inequalities that

are violated by a specified value, called epsilon, to register as violated valid inequalities. Upon

preliminary experimentation it is observed that the value of epsilon does not matter as long as it

is not close to zero. Hence the value of epsilon is set to 20.

Another difficulty that we experienced while adding valid inequalities is that there is no standard
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mechanism to stop generating valid inequalities when these inequalities no longer improve current

lower bound. In order to remedy this problem, we stop searching for valid inequalities when the

percentage increase in the lower bound as a result of adding valid inequalities is less than 0.2%.

We set the root algorithm parameter of CPLEX to dual simplex for this experiment.

Table 6: Summary of Results for Separation Algorithm for IP1 Formulation

% Inc. in LB % Gap-BS # of VI

PS 1 15.83 4.95 690

PS 2 17.79 5.43 634

PS 3 15.14 6.68 11573

PS 4 19.71 7.64 11820

PS 5 14.46 6.49 11704

PS 6 20.58 6.68 11992

PS 7 15.06 6.87 24688

PS 8 19.32 7.41 25607

PS 9 15.39 7.18 25737

PS 10 20.84 7.63 26615

Avg. 17.41 6.70 15106

We provide a summary of results in Table 6. Columns of Table 6 from left to right gives the

average increase in the lower bound compared to LP relaxation (% Inc. in LB), the average gap

between the LP relaxation solution and the best found feasible solution (% Gap–BS), and the

average number of added valid inequalities (# of VI). As we see in Table 6, the valid inequalities

and the separation algorithm proposed in Section 4.1 significantly improve the linear programming

relaxation. In this experiment we do not see the effect of the size of the problem in terms of average

increase in LB. On the other hand, as δ parameter increases, which makes the CUs denser, the

average increase in LB becomes higher. The average percentage gap of the LP relaxation solution

with valid inequalities and the best known solution is promising as it might be as low as 4.95%

with an average of 6.70%.

We also test IP1 formulation using three different settings and compare the results with the

original MILP implementation. In the first setting we implement IP1 formulation without any

improvements. In the second setting, separation algorithm is implemented for IP1 using callback
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structure of CPLEX. In the third setting, we apply the pattern fitting heuristic to generate an

initial solution and implement separation algorithm. Finally, in the last setting we also implement

CPLS procedure to find lower bounds at the fractional nodes. In these set of problems, we first turn

off CPLEX cuts in order to see the net effect of our separation algorithm similar to the approaches

given in Küçükyavuz and Pochet (2009) and Atamtürk and Küçükyavuz (2005). We provide the

results in Table 7. Then, we turn on CPLEX cuts and run all experiments using CPLEX’s default

settings and provide the results in Table 8. For this experiment we set the epsilon value to 300 and

400 for δ values equal to 3 and 4, respectively.

In Tables 7 and 8 , column blocks ‘IP’, ‘Branch & Cut’, ‘Branch & Cut + PF’, and ‘Branch

& Cut + PF + CPLS’ give the results of MILP implementation, separation algorithm implemen-

tation, heuristics solution to be used as an initial solution, and finally all algorithms and heuristic

implementations discussed in Section 4, respectively. For each problem set, ‘% Gap’, ‘Nnodes’, ‘#

Best Sol.’ and ‘Ncuts’ columns provide the average optimality gap, the average number of B&B

nodes considered, the number of best solutions found per problem set and the average number of

valid inequalities generated, respectively. At the end of each column, we provide some aggregate

results. For % Gap, Nnodes and Ncuts, we provide the average results over ten instances in each

problem sets, and we give the total number for the # Best Sol. column.

We observe that when the CPLEX cuts are off, none of the problem instances can be solved to

optimality within the time limit by all different settings. The third setting, where we use pattern

fitting heuristic to provide an initial solution and then implement Branch & Cut algorithm (Branch

& Cut + PF), gives the best average percentage gap calculated over all instances. However, when

we check the optimality gaps for individual problem sets, we observe that in five of the ten problem

sets, namely in PS4, PS6, PS7, PS8 and PS9, last setting, where we also use CPLS relaxation in

fractional nodes to find a lower bound (Branch & Cut + PF + CPLS), gives the best gap.

In terms of number of best solutions found, direct implementation of the integer program (IP)

is the best one with a total number of best solutions of 47 out of 100 instances. When we analyze

the details for large instances, we observe that for PS9 and PS10 last setting dominates the other

settings, while for PS8 and PS7 IP is better than the others. Although IP seems to give higher
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Table 7: Summary of Results for IP1 in Different Settings where CPLEX cuts are off.

IP Branch & Cut

PS Gap (%) Nnodes # Best Sol. Ncuts Gap (%) Nnodes # Best Sol. Ncuts

PS1 10.31 11862973 3 - 1.49 1776741 7 5806

PS2 5.87 24238609 7 - 0.22 336158 10 4223

PS3 18.13 2138837 9 - 7.59 2936 0 35544

PS4 20.95 2178332 8 - 8.15 2614 0 39565

PS5 17.54 1992753 6 - 6.66 1419 0 27285

PS6 21.73 2044701 1 - 6.76 921 0 30297

PS7 18.18 1725201 6 - 6.74 530 1 49844

PS8 20.85 2067092 7 - 7.14 391 0 61926

PS9 20.14 1908900 0 - 7.04 7 2 41405

PS10 23.70 1631485 0 - 7.17 41 0 52042

A: 17.74 A: 5178888 T: 47 A: - A: 5.89 A: 212176 T: 20 A: 34794

Branch & Cut + PF Branch & Cut + PF + CPLS

PS Gap (%) Nnodes # Best Sol. Ncuts Gap (%) Nnodes # Best Sol. Ncuts

PS1 1.45 1885518 8 5927 4.80 1932068 6 4955

PS2 0.24 325875 9 4276 3.53 600523 9 4014

PS3 7.29 3095 1 36645 7.77 4462 0 29256

PS4 8.26 2450 0 39606 7.63 3858 2 33161

PS5 6.22 1364 3 27312 6.25 1140 1 23379

PS6 6.14 989 3 31577 5.69 1252 6 29849

PS7 6.72 475 2 48268 6.70 128 1 44320

PS8 7.20 394 1 61109 6.64 199 2 58262

PS9 6.72 83 2 42130 6.62 0 6 40801

PS10 6.49 26 5 52112 6.72 21 5 51703

A: 5.67 A: 222027 T: 34 A: 34896 A: 6.23 A: 254365 T: 38 A: 31970
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number of best solutions, the optimality gaps that it provides are very high compared to other

settings. The reason for this high percentage is while IP’s upper bounds are better than the others,

the lower bounds found by IP are very loose.

When we analyze the results where CPLEX cuts are on, as it is expected, all solutions are

improved accross all settings with IP being the most positively affected one. However, on the

contrary of the previous table, IP provides the least number of best solutions for this setting.

Moreover, PS2’s all instances are solved to optimality within the time limit by all settings while

8 instances out of 10 are solved to optimality for PS1. We add a column for Table 8 called “#

opt/Time” to provide the number of instances solved to optimality and the average CPU time the

algorithms take to find an optimal solution for those instances. For PS1, Branch & Cut algorithm

provides the minimum CPU time for the instances solved to optimality and it is followed by IP.

For PS2, where all instances are solved to optimality, the average CPU time is the smallest for the

third setting in which we use pattern fitting heuristic to provide an initial solution that we provide

as an initial solution for the Branch & Cut algorithm. This setting is followed by the Branch &

Cut algorithm without the heuristic, and IP yields the largest CPU time. For all other problem

sets, none of the instances are solved to optimality within the time limit.

For the case where CPLEX cuts are on, last setting appears to be the best in terms of both

the average optimality gap, 3.37% over all instances, and the total number of best solutions, 64

out of 100. When we analyze the problem sets indivdually in terms of gaps and number of best

solutions, we observe that the last setting is better than the other settings for the sets with high

density parameter.

6 Conclusion

In this paper we introduce a class of lot-sizing problem that appears in co-production systems.

We define the problem in a controlled and deliberated co-production system, and show that the

lot sizing problem in this type of system is NP-Hard in the strong sense. We develop four mixed-

integer programming formulations. Then, we show that the LP relaxation of all four formulations

are equal. We propose a separation algorithm based on a set of valid inequalities as a solution
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Table 8: Summary of Results for IP1 in Different Settings.

IP Branch & Cut

PS Gap (%) Nnodes # Best

Sol.

# opt/

Time

Ncuts Gap (%) Nnodes # Best

Sol.

# opt/

Time

Ncuts

PS1 0.10 633444 9 8/473.3 - 0.11 625484 10 8/442.7 36.4

PS2 0.00 115255 10 10/260.9 - 0.00 90614 10 10/199.8 9.8

PS3 4.52 10816 0 - - 4.22 10704 1 - 2034.9

PS4 4.41 21653 0 - - 4.13 20959 2 - 1293.2

PS5 4.68 1765 0 - - 4.55 1850 0 - 1488.4

PS6 4.35 3871 0 - - 4.30 3612 0 - 1132.1

PS7 4.52 2636 3 - - 4.57 2524 1 - 4636.4

PS8 4.59 4742 0 - - 4.47 4587 1 - 4010.1

PS9 5.19 11 2 - - 5.33 0 2 - 3084.3

PS10 5.37 94 0 - - 5.13 135 0 - 2765.8

A: 3.77 A: 79429 T: 24 A: - A: - A: 3.68 A: 76047 T: 27 A: - A: 2049

Branch & Cut + PF Branch & Cut + PF + CPLS

PS Gap (%) Nnodes # Best

Sol.

# opt/

Time

Ncuts Gap (%) Nnodes # Best

Sol.

# opt/

Time

Ncuts

PS 1 0.12 650897 9 8/518.9 34.2 0.67 899873 8 8/1065.6 34.0

PS 2 0.00 93763 10 10/185.6 9.8 0.00 137233 10 10/220.1 10.1

PS 3 4.18 10848 1 - 1866.2 3.61 82762 8 - 2110.5

PS 4 4.32 18472 1 - 1333.0 3.72 138274 7 - 1195.8

PS 5 4.07 1605 8 - 1482.8 4.32 8182 2 - 1201.2

PS 6 3.63 3420 1 - 1138.7 3.32 15538 9 - 1078.9

PS 7 4.37 2883 3 - 4278.8 4.53 8765 3 - 6432.7

PS 8 4.54 5751 0 - 4379.4 3.83 18390 9 - 11652.3

PS 9 5.04 0 5 - 3169.5 5.30 0 1 - 2178.7

PS 10 4.46 136 3 - 2779.5 4.45 8 7 - 2067.1

A: 3.47 A: 947032 T: 41 A: - A: 2047 A: 3.37 A: 944579 T: 64 A: - A: 2796
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method, a heuristic that aims to provide an initial solution to be given to a solver and another

heuristic that is used to obtain fast upper bounds for fractioanl solutions.

There is no benchmark data set available for lot sizing problems in a co-production environment;

therefore, we generate ten different data sets to be used for computational analysis. We test the

efficacy of the proposed MILP formulations, the separation algorithm and the heuristics on this data

set. Based on our computational experiments, we conclude that, among all four formulations, the

MILP formulation that includes the inventory variables explicitly is the best one in terms of average

gap provided at the end of a time limit. Moreover, the setting where the separation algorithm, the

initial solution heuristic and the CPLS relaxation to calculate lower bounds are used improves the

solution quality in terms of the average optimality gap and the number of best solutions found over

all test instances.

Future avenues for research include using polyhedral analysis to find the convex hull of the

problem, strengthening the mixed-integer program by developing some valid inequalities that will

tighten the solution space and developing heuristics based on dynamic programming approaches

applicable to regular lot-sizing algorithms.
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