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Abstract. Chordal graphs form one of the most studied graph classes. Several graph prob-
lems that are NP-hard in general become solvable in polynomial time on chordal graphs,
whereas many others remain NP-hard. For a large group of problems among the latter,
approximation algorithms, parameterized algorithms, and algorithms with moderately expo-
nential or sub-exponential running time have been designed. Chordal graphs have also gained
increasing interest during the recent years in the area of enumeration algorithms. Being able to
test these algorithms on instances of chordal graphs is crucial for understanding the concepts
of tractability of hard problems on graph classes. Unfortunately, only few published papers
give algorithms for generating chordal graphs. Even in these papers, only very few methods
aim for generating a large variety of chordal graphs. Surprisingly, none of these methods is
directly based on the “intersection of subtrees of a tree” characterization of chordal graphs. In
this paper, we give an algorithm for generating chordal graphs, based on the characterization
that a graph is chordal if and only if it is the intersection graph of subtrees of a tree. Upon
generating a random host tree, we give and test various methods that generate subtrees of the
host tree. We compare our methods to one another and to existing ones for generating chordal
graphs. Our experiments show that one of our methods is able to generate the largest variety
of chordal graphs in terms of maximal clique sizes. Moreover, two of our subtree generation
methods result in an overall complexity of our generation algorithm that is the best possible
time complexity for a method generating the entire node set of subtrees in an “intersection
of subtrees of a tree” representation. The instances corresponding to the results presented in
this paper, and also a set of relatively small-sized instances are made available online.
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1 Introduction

Algorithms particularly tailored to exploit properties of various graph classes have formed an in-
creasingly important area of graph algorithms during the last five decades. With the introduction
of relatively new theories for coping with NP-hard problems, like parameterized algorithms, al-
gorithmic research on graph classes has become even more popular recently, and the number of
results in this area appearing at international conferences and journals is now higher than ever.
One of the most studied graph classes in this context is the class of chordal graphs, i.e., graphs
that contain no induced cycle of length 4 or more. Chordal graphs arise in practical applications
from a wide variety of unrelated fields, like sparse matrix computations, database management,
perfect phylogeny, VLSI, computer vision, knowledge based systems, and Bayesian networks [6, 14,
24, 27, 30]. This graph class that first appeared in the literature as early as 1958 [15], has steadily
increased its popularity, and there are now more than 20 thousand publications on chordal graphs
according to Google Scholar.

With a large number of existing algorithms specially tailored for chordal graphs, it is interesting
to note that not much has been done to test these algorithms in practice. Very few such tests
are available as published articles [2, 21, 25]. In particular, there seems to be no efficient chordal
graph generator available that is capable of producing every chordal graph. Most of the work in
this direction involves generating chordal graphs tailored to test a particular algorithm or result
[2, 25]. This is a clear shortcoming for the field, and it was even mentioned as an important open
task at a Dagstuhl Seminar [19]. Until some years ago, most of the algorithms tailored for chordal

? A preliminary version of this paper has appeared in the Proceedings of the 10th International Conference
on Algorithms and Complexity, CIAC 2017 [31].



graphs had polynomial running time, and testing was perhaps not crucial. Now, however, many
parameterized and exponential-time algorithms exist for chordal graphs, for problems that remain
hard on this graph class, see e.g., [4, 13, 22, 23]. The proven running times of such algorithms might
often be too high compared to the practical running time. Just to give some examples from the
field of enumeration, there are now several algorithms and upper bounds on the maximum number
of various objects in chordal graphs [1, 12, 13]. However, the lower bound examples at hand usually
do not match these upper bounds. Tests on random chordal graphs is a good way of getting better
insight about whether the known upper bounds are too high or tight.

In this paper, we present an algorithm for generating random chordal graphs. Our algorithm
is based on the characterization that a graph is chordal if and only if it is the intersection graph
of subtrees of a tree. Surprisingly, this characterization does not seem to have been directly used
for random chordal graph generation earlier. Starting from a random host tree, we propose three
different methods for generating subtrees of the host tree to give different neighborhood and density
properties. Our algorithm, with two of these methods, can be implemented in such a way that the
overall running time is best possible for an algorithm producing the entire node set of subtrees
in an “intersection of subtrees” representation of a chordal graph. One of the three fast subtree
generation methods, which we call GrowingSubtree, is also the method that turns out to generate
the largest variety of chordal graphs. We measure the variety using the characteristics of the max-
imal cliques of the generated graph, as it has been done in previous work [25]. After proving the
correctness,we give extensive computational tests to demonstrate the kind of chordal graphs that
our algorithm generates using each of the different subtree generation methods. Compared to our
preliminary version [31], we propose more algorithms, provide implementation details and compre-
hensive experiments which confirm our findings. We compare our methods with one another and
with existing test results; we also implement one of the earlier proposed methods and include this in
our tests. Note that Graph Isomorphism is as hard on chordal graphs as on general graphs [20],
which adds to the difficulty of producing chordal graphs uniformly at random. Our algorithm is able
to generate every chordal graph with positive probability. Since chordal graphs are widely studied
in various contexts, we believe that publishing online our large set of chordal graph instances will
contribute to further research.

Our work gives rise to a question about chordal graphs which has not been addressed to date
to the best of our knowledge: what is the worst case time complexity of a chordal graph generation
algorithm which produces the entire set of nodes of all subtrees in a subtree intersection model?
On the other hand, whether or not there exists a linear time chordal graph generation algorithm
which uses the subtree intersection model shows up as a natural research direction. Both questions
have been answered in a recent paper [8]. It turns out that a linear time chordal graph generation
algorithm can be devised if a “minimal” subtree intersection model is used. The current paper
establishes the basis for further studies in this direction. In particular, it follows from our studies
that the answers to the above questions require a deeper understanding of the properties of subtree
intersection models and more evolved complexity analyses, as the ones conducted in [8].

2 Background, terminology and existing algorithms

In this section we give the necessary background on chordal graphs, as well as a short review of
the existing algorithms for chordal graph generation. We work with simple and undirected graphs,
and we use standard graph terminology. In particular, for a given graph G, we denote its vertex
set by V (G), and edge set by E(G). We let n = |V (G)| and m = |E(G)|. The set of neighbors, or
the neighborhood, of a vertex is the set of vertices adjacent to it. The size of the neighborhood of a
vertex x is the degree of x, denoted by d(x). The neighborhood of a set X of vertices is the union
of the neighborhoods of the vertices in X, excluding X itself.

Let F = {S1, S2, . . . , Sn} be a family of sets from the same universe. A graph G is called an
intersection graph of F if there is a bijection between the set of vertices {v1, v2, . . . , vn} of G and
the sets in F such that vi and vj are adjacent if and only if Si ∩ Sj 6= ∅, for 1 ≤ i, j ≤ n. In
the special case where there is a tree T such that each set in F corresponds to the vertex set of a
subtree of T , then G is called the intersection graph of subtrees of a tree.

A clique is a set of vertices that are pairwise adjacent. An ordering (v1, v2, . . . , vn) of the vertices
of a graph is a perfect elimination order (peo) if the set of higher numbered neighbors of each vertex
forms a clique. A maximal clique is a clique C such that no set of vertices properly containing C
is a clique. Let K be the set of maximal cliques of a graph G. A tree T with a bijection between
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its vertex set and the cliques in K is called a clique tree of G if for every vertex v of G, the set of
vertices of T that correspond to the cliques containing v induce a connected subtree of T .

A graph is chordal if it contains no induced cycle of length 4 or more. A chordal graph on n
vertices has at most n maximal cliques [7]. Chordal graphs have many different characterizations.
For our purposes, the following will be sufficient.

Theorem 1 ([5, 9–11]). Let G be a graph. The following are equivalent.

– G is chordal.
– G has a perfect elimination order.
– G is the intersection graph of subtrees of a tree.
– G has a clique tree.

Especially the last two points of Theorem 1 are crucial for our algorithm and its implementation.
To make sure that there is no confusion between the vertices of G and the vertices of a tree or a
clique tree, we will from now on refer to vertices of a tree as nodes.

Rose, Tarjan, and Lueker [28] gave an algorithm called Maximal Cardinality Search (MSC) that
creates a perfect elimination order of a chordal graph in time O(n+m). Blair and Peyton [3] gave
a modification of MCS to list all the maximal cliques of a chordal graph in time O(n+m). Implicit
in their proofs is the following well-known fact, which can be characterized as folklore.

Lemma 1 ([3, 28]). The sum of the sizes of the maximal cliques of a chordal graph is O(n+m).

Next, we briefly mention the algorithms for generating chordal graphs from the works of An-
dreou, Papadopoulou, Spirakis, Theodorides, and Xeros [2]; Pemmaraju, Penumatcha, and Raman
[25]; and Markenzon, Vernet, and Araujo [21]. Some of these algorithms create very limited chordal
graphs, which is either mentioned by the authors or clear from the algorithm. Thus, in the following
we only mention the algorithms that are general enough to be interesting in our context.

It should also be noted that the purpose of Andreou et al. [2] is not to obtain general chordal
graphs, but rather chordal graphs with a known bound on some parameter. One of the algorithms
that they propose starts from an arbitrary graph and adds edges to obtain a chordal graph. How the
edges are added is not given in detail, however it should be noted that there are many algorithms
for generating a chordal graph from a given graph by adding a minimal set of edges and their
running time is usually O(nm) [17]. Andreou et al. [2] do not report on the quality of chordal
graphs obtained by this method.

We highlight below the algorithms that are the most promising with respect to generating
random chordal graphs. In addition to these, there is an O(n2)-time algorithm by Markenzon et
al. [21] that generates a random tree and adds edges to this tree until a chordal graph with desired
edge density is obtained. However, no test results about the quality of the generated graphs is given.

Alg 1 [2]. The algorithm constructs a chordal graph by using a peo. At every iteration, a new vertex
is added and made adjacent to a random selection of already existing vertices. Then necessary edges
are added to turn the neighborhood of the new vertex into a clique such that a given maximum
degree is not exceeded. No test results are given in the paper about the quality of the chordal
graphs this algorithm produces. As we found the algorithm interesting, we have implemented it,
and compared the resulting graphs to those generated by our algorithm in Section 4.

Alg 2 [21, 25]. The algorithm starts from a single vertex. At each subsequent step, a clique C in
the existing graph is chosen at random, and a new vertex is added adjacent to exactly the vertices of
C. The inverse of the order in which the vertices are added is a peo of the final graph. It is observed
by the authors of both papers that this procedure results in chordal graphs with approximately 2n
edges experimentally. They propose the following changes:

Alg 2a [21] modifies the above generated graph by randomly choosing maximal cliques that
are adjacent according to the clique tree and merging these until desired edge density is obtained.
Some test results about graphs generated by Alg 2a are provided in [21]. Although these tests are
not as comprehensive as the ones we give on our algorithms in Section 4, we compare our results
to those of [21] as best we can. The running time of Alg 2a is O(m+ nα(2n, n)) where α function
is defined in [29].

Alg 2b [25] is a modification of Alg 2 in a different way: instead of randomly choosing a clique,
a maximum clique is chosen and a random subset of it is made adjacent to the new vertex. Although
test results for Alg 2b are provided in [25], the authors acknowledge that the produced graphs are
still very particular with very few large maximal cliques and many very small maximal cliques. For
this reason, we do not include Alg 2b in our comparisons.
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3 Generating chordal graphs using subtrees of a tree

We find it surprising that the intersection graph of subtrees of a tree characterization of chordal
graphs has not been used directly for their generation. Of course, since all characterizations of a
chordal graph are equivalent, even the existing algorithms mentioned above could be interpreted as
based on any of these characterization. Especially the algorithms based on clique trees can easily
be translated to generate subtrees of a tree. However, none of these algorithms generate random
subtrees of a randomly generated tree to produce the resulting chordal graph. One reason could be
that this does not give a direct way to decide the number of edges in the generated graph. We will
see that edge density can be regulated by adjusting the sizes of the generated subtrees. Let us first
observe the following.

Lemma 2. For every chordal graph G on n vertices, there is a tree T on n nodes, and a set of n
subtrees of T , such that G is the intersection graph of these subtrees.

Proof. Let G be a chordal graph on n vertices and let T ′ be a clique tree of G. Let us call the
vertices of G: v1, v2, . . . , vn. Define subtree T ′i to be the subtree of T ′ that corresponds to the nodes
(maximal cliques) that contain vertex vi, for 1 ≤ i ≤ n. By the definition of a clique tree, T ′ has at
most n nodes and each T ′i is a connected subgraph of T ′. If T ′ has fewer than n nodes, we can add
new nodes adjacent to arbitrary nodes of T ′ until we get a new tree T with n nodes. The subtrees
stay the same. As two vertices are adjacent in G if and only if they appear together in a clique, G
is the intersection graph of subtrees T ′1, . . . , T

′
n of T . ut

Based on Lemma 2, we are ready to present our main algorithm for generating chordal graphs
on n vertices:

Algorithm ChordalGen

Input: n and one or two other numbers to guide the number of resulting edges.
Output: A chordal graph G on n vertices and m edges.

1. Generate a tree T on n nodes uniformly at random.
2. Generate n non-empty subtrees of T : {T1, . . . , Tn}.
3. Output as G the intersection graph of {V (T1), . . . , V (Tn)}.

By Theorem 1, the graph generated by Algorithm ChordalGen is chordal. By Lemma 2, our
algorithm can create any chordal graph. Later in this section we will describe three different methods
for generating the n subtrees in Step 2. Each method will take one or two parameters to guide the
average size of the generated subtrees, with the purpose of controlling the resulting number of edges
in G. Our algorithm is flexible in the sense that additional ways to generate the subtrees can be
suggested and tested later.

We need to evaluate the order of
∑n

i=1 |V (Ti)| to analyze the running time of Algorithm Chordal-
Gen. Let us mention at this point that in the preliminary version of this paper [31],

∑n
i=1 |V (Ti)|

was mistakenly claimed to be linear in the size of the generated chordal graph, that is O(n + m).
In Theorem 3 of [8], this complexity is corrected as follows:

Theorem 2. [8] Let T1, . . . , Tn be n subtrees of a tree T on n nodes and let G be the chordal
graph on n vertices and m edges obtained as the intersection graph of these subtrees. Then we have∑n

i=1 |V (Ti)| = Θ(m
√
n).

We are now ready to state our main result about Algorithm ChordalGen.

Theorem 3. Algorithm ChordalGen generates a chordal graph with n vertices in time O(S +∑n
i=1 |V (Ti)|), where O(S) is the time required to generate n subtrees of a host tree on n nodes.

Proof. By Theorem 1, graph G generated by Algorithm ChordalGen is chordal. Clearly, G has n
vertices. Let m be the number of edges of G. Let us go through the steps of the algorithm about
the running time.

Step 1. For the generation of a random host tree T on n vertices, we use the following method
by Rodionov and Choo [26], which can easily be implemented in O(n) time: start with a tree T
that contains only one node. Then repeat n − 1 times the following: pick a random vertex x of T
and add a new vertex adjacent to it.
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Step 2. We generate n subtrees T1, . . . , Tn of T using a subtree generator. According to the
premises of the theorem, this adds O(S) to the overall time.

Step 3. The sum of the sizes of the generated subtrees is
∑n

i=1 |V (Ti)|. Let us now explain how
we can obtain in time O(

∑n
i=1 |V (Ti)|+ n+m) the chordal graph which is the intersection graph

of these subtrees. For every node x of T , let us define the following list: Cx = {vj | Tj contains x},
i.e., vertices of G whose corresponding subtrees contain node x of T . Let C = {Cx | x ∈ V (T )}.
Clearly, C can be obtained in time

∑n
i=1 |V (Ti)|. Observe that every set in C is a clique of G, and C

contains all maximal cliques of G. However, some of the cliques in C may not be maximal. As every
node x of T represents the clique Cx of G, the tree T is almost a clique-tree of G; non-maximal
cliques simply need to be deleted or merged into the maximal ones. By the methods described by
Blair and Peyton [3] it is possible to turn T into a proper clique tree for G in time O(n+m). Thus,
in total O(

∑n
i=1 |V (Ti)|+ n+m) time we both have a clique-tree of our output graph G and a list

of maximal cliques of it. It could, however, be desirable to output an adjacency list representation
for G. Markenzon et al. [21], using the methods of Blair and Peyton [3], explain how this can be
done in O(n+m) time. Since

∑n
i=1 |V (Ti)| is O(m

√
n) by Theorem 2, the overall running time of

this step is dominated by O(
∑n

i=1 |V (Ti)|). ut

Now we are ready to give the details of how the subtrees of Step 2 are generated. In the
subsections below, we present three methods for generating n subtrees of T . Then, in Section 4, we
will test our algorithm with each of these methods and compare the results with each other, as well
as with Alg 1 and Alg 2a.

3.1 Algorithm GrowingSubtree

This algorithm takes as input a tree T on n nodes, and an integer k, and generates n subtrees of T
of expected size k+1

2 . In our test results, we give both k and the resulting number of edges, m, to
give an indication of how k affects the density of the generated graph.

For each subtree Ti, the algorithm picks a size ki randomly from [1, k]. Then a random node of
T is chosen as the single node of Ti to start with. In each of the subsequent ki − 1 iterations, we
pick a random node of T in the neighborhood of Ti and add it to Ti.

Algorithm GrowingSubtree

Input: A tree T on n nodes and a positive integer k ≤ n
Output: A set of n non-empty subtrees of T of average size k+1

2

for i = 1 to n do
Select a random node x of T and set Ti = {x}
Select a random integer ki between 1 and k
for j = 1 to ki − 1 do

Select a random node y of Ti that has neighbors in T outside of Ti
Select a random neighbor z of y outside of Ti and add z to Ti

Output {T1, T2, . . . , Tn}

Lemma 3. The running time of Algorithm GrowingSubtree is O(
∑n

i=1 |V (Ti)|).

Proof. Observe first that each subtree Ti can be represented simply a list of nodes of T . We show
that after an initial O(n) preprocessing time, each subtree Ti can be generated in time O(|V (Ti)|).
For this, we need to be able to add a new node to Ti in constant time, at each of the ki − 1 steps.

As selecting random elements in constant time is easier when accessing the elements of an array
directly by indices, we start with copying the nodes of T into an array A of size n, and copying the
adjacency list of each node x into an array Ax of size d(x). This can clearly be done in total time
O(n) since T is a tree.

In general, selecting an unselected element of a set at random can be done easily in constant
time if the set is represented with an array. Let us say we have an array S of t elements. We keep a
separation index s that separates the selected elements from the not selected ones. At the beginning
s is 1. At each step, we generate a random integer r between s and t. S[r] is our randomly selected
element. Then we swap the elements S[s] and S[r] and increase s by 1.

We can use this method both for selecting a node y of Ti that still has neighbors outside and
for selecting a neighbor z of y that has not yet been selected. For the latter, whenever we select a
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neighbor z of y, we move z to the first part of the array Ax using swap. When the separation index
reaches the degree of y then we know that y should not be selected to grow the subtree Ti at later
steps. Representing Ti with an array of size ki, we can use the same trick to move y to a part of
the array that we will not select from. Also, when z is added, we can check whether it is a leaf in
T in constant time, and immediately move it to the irrelevant part of the array for Ti if so, since
z can then not be used for growing Ti at later steps. It is sufficient to check that z is a leaf of T ,
because otherwise it must have neighbors outside of Ti, since T is a tree and we cannot have cycles.
When the generation of Ti is finished, the separation indices of each of its nodes should be reset
before we start generating Ti+1. The adjacency arrays need not be reorganized, as we will anyway
be selecting neighbors at random.

Note that we do not need this trick to select an initial node x of each subtree Ti, because we
should indeed be able to select the same node several times (and grow another subtree from it
perhaps in a different way).

With the described method, each step of Algorithm GrowingSubtree takes O(1) time, in addition
to initial O(n) time to copy the information into appropriate arrays. Thus the total running time
is O(

∑n
i=1 |V (Ti)|). ut

Lemma 3 together with Theorems 2 and 3 gives the following.

Corollary 1. Algorithm ChordalGen, using the GrowingSubtree method, runs in time O(m
√
n).

We will see in Section 4 that this method generates chordal graphs with the most even distri-
bution of maximal clique sizes.

3.2 Algorithm ConnectingNodes

This algorithm takes as input a tree T on n nodes, and a positive real number λ. The purpose of
the parameter λ is to guide the desired number of resulting edges in the graph. To generate each
subtree Ti, we first select ki nodes of T , where ki is a random integer generated by making use of
λ. Ti is then generated to be the minimal subtree that contains the selected ki nodes. This implies
that a subtree will most likely have many more nodes than those selected initially, and this must
be taken into consideration when choosing λ. In our test results, we give both λ and the resulting
number of edges, m, to give an indication of how λ affects the density of the generated graph.

In the following algorithm, we will make use of the standard Breadth First Search (BFS) algo-
rithm from an arbitrary node r of T . We will then treat T as a tree rooted at r, and speak about
parent-child relation in the standard way, with respect to root r. The BFS level of a vertex is simply
the distance of that vertex from r.

Algorithm ConnectingNodes

Input: A tree T on n nodes and a positive real number λ
Output: A set of n subtrees of T

r ← an arbitrary node of T
Perform BFS from r, and identify the parent P (x) and the BFS level l(x) of each node x
L← ∅
for i = 1 to n do
Ti ← ∅
Select a random integer ki from Poisson distribution with mean λ
if ki = 0 then ki ← 1
else if ki > n then ki ← n
Select ki random nodes from T to form Ti = {x1, . . . , xki

} and L = {x1, . . . , xki
}

d← maxx∈Ti
l(x)

while |L| > 1
for all x ∈ L such that l(x) = d do
Ti ← Ti ∪ P (x), L← (L \ {x}) ∪ P (x)

d← d− 1

Output {T1, T2, . . . , Tn}

For each subtree Ti, we first generate a random integer ki by making use of Poisson distribution
with mean λ. Poisson distribution is a discrete probability distribution widely used to model number
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of occurrences of an event over a specified domain such as time, space etc. In our case, the domain
is the host tree, and an event is selection of a node from the host tree. The parameter of this
distribution is λ and it is the average rate of event occurrences, which implies that the initial ki
values will tend to increase on the average as λ increases. The set of possible values a Poisson random
variable can take is nonnegative integers, regardless of the value of λ. However, the minimum and
maximum number of nodes that a subtree of an n-node host tree can contain are 1 and n respectively.
Therefore, we equate ki to 1 if it is zero, and to n if it is greater than n. In this method, the only
reason why we use Poisson distribution is that we were not able to achieve a good precision for
edge density by picking a random integer uniformly at random from a given interval. To generate
the minimal subtree that contains the ki selected nodes, we make use of the nodes’ parent and level
information retrieved during BFS. Our key observation is that the minimal subtree must contain
the parents of all selected nodes at some level d if there are other selected nodes at levels less than
or equal to d. Using this idea, we add a node to Ti only when an edge incident to it has to be
in Ti to join a node to the others. We start from the highest level (highest distance from r) and
proceed by moving toward the root until all nodes in the selection become connected. The set L
keeps the unprocessed nodes yet to be connected to form the subtree Ti. At each step, we consider
the nodes in L that are at the same level, which are going to be joined as we move through the
levels. Once the parents of those nodes are identified, we are done with level d and there is no need
to reconsider nodes at level d any further. Therefore, we replace those nodes with their parents in
L, which are to be considered at the next step. Parent nodes are also added to Ti because they lie
on the paths that connect the node selection. Afterwards, we move to the next level and apply the
same procedure. This process continues until a single node is left in L, which simply means that
we have a node set that has been linked at a single node already and that Ti includes all nodes of
the subtree that minimally connects the randomly selected node set.

Lemma 4. The running time of Algorithm ConnectingNodes is O(
∑n

i=1 |V (Ti)|).

Proof. Rooting T from an arbitrary node, and determining the parent P (x) of each node x in T as
well as its level l(x) with respect to the root node, takes O(n) time in total for all nodes using BFS.
The set L is represented by an array of lists with length equal to maxx∈T l(x). Each index d of L
represents a list of unprocessed nodes having l(x) = d. The lists in L will be empty initially. If a
node x at level d is selected, we add x to the list at index d of L in constant time. We also need to
keep an n-dimensional boolean array B, which will be comprised of zeros at first, in order to check
whether a node already exists in L. If a node x is chosen, the element at index x of B will be set
to one in constant time. Note that B is a different representation of the set of nodes in L. Both L
and B are initialized only once at the start of the algorithm after performing the BFS. Since the
number of levels is at most n, initialization of L and B can be done in time O(n). We represent Ti
as a list of nodes, which can be initialized in O(1). For each subtree, we generate a random integer
ki by making use of Poisson distribution with mean λ. Generation of some random integer x from
Poisson distribution takes O(x) time; starting from zero, the value of x is incremented one by one
until the stopping condition is met [18]. So, we spend O(ki) time to generate ki. Since we need ki,
which is the number of nodes to be selected, to lie between 1 and n, we terminate the process if
we reach n before stopping condition is met, and we set ki to 1 if the process returns a zero value.
Then, at each iteration, ki random nodes are chosen. To do this in time O(ki), we can copy the
nodes of T into an array, which is done at the beginning only once and hence takes O(n) time in
total, and keep a separation index s that separates the selected elements from the ones that have
not been selected yet, as explained in the proof of Lemma 3. Adding a chosen node to Ti, L and B
can be done in O(1). At the end of n such iterations, a total of

∑n
i=1 ki random choices are made

and this is clearly less than or equal to
∑n

i=1 |V (Ti)|.
Now, it remains to show that generation of n subtrees can also be done in time O(

∑n
i=1 |V (Ti)|)

once Ti, L and B are populated with initial randomly selected nodes. Our aim is to construct the
minimal subtree of T connecting all the nodes in {x1, . . . , xki}. To this end, at every iteration, we
add the parents of all nodes of highest level to subtree Ti and replace these nodes by their parents
in L. The way we store the nodes in L enables us to access unprocessed nodes at a given level in
constant time. However, to be able to start with the highest level in constant time initially, we need
to know the highest level of the randomly selected ki nodes, which can be found in O(ki). While
processing some node x at level d, we first investigate whether its parent node P (x) has already
been included in L by checking index P (x) of B in constant time. If it is one, it means that the
parent node has already been included in L and Ti, and we do not do anything. Otherwise, we
append P (x) to the list at index (d − 1) of L and set the corresponding index of B to one. When
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done with x, we remove it from L in O(1) since x is an element of a list, and set index x of B to
zero, which is again O(1). Recall that since Ti is represented as a list, adding an element to Ti can
be done in O(1). Thus, we perform constant-time operations for each node under consideration in
the inner for loop.

At the beginning of the while loop L has ki isolated nodes. Whenever two nodes in L have a
common parent, the cardinality of L decreases by one at the next step. Noting that |L| indicates
the number of currently existing connected components, which are to be attached together to reveal
the subtree, the while loop to add new nodes to Ti terminates when |L| = 1; that is, as soon as
the minimal subtree has been found. Now, it is enough to notice that during the generation of
each subtree Ti using this method, we only consider and add the nodes of T which are in Ti, and
iterate only through the levels that are contained in Ti. In other words, |L| becomes 1 and the while
loop stops after exactly when |V (Ti)| nodes are considered. Because we spend constant time for
each of the |V (Ti)| nodes, the overall complexity of the operations within the while loop becomes
O(|V (Ti)|) for each subtree Ti. In order to obtain O(|V (Ti)|) for the entire loop, we need to ensure
that termination condition of the while loop can be checked in constant time. For this purpose,
we keep the number of nodes in L as a variable, incrementing whenever a new node is added and
decrementing upon removal of a node, which takes at most O(|V (Ti)|) time. Finally, the arrays L
and B should be reset before being passed to the next subtree. We know that L will contain a single
node at the end of the while loop, and equivalently a single nonzero element will exist in B. When
the loop terminates, we will know at which index (level) of L we were finally at. So, we can simply
access the final node, set the element in B corresponding to that node to zero, and delete it from L,
all in constant time. This way, the algorithm from while loop on to the next subtree completes in
time O(|V (Ti)|). In total, these operations add to the running time of Algorithm ConnectingNodes
a term of O(

∑n
i=1 |V (Ti)|). ut

Lemma 4, together with Theorems 2 and 3, gives the following:

Corollary 2. Algorithm ChordalGen, using the ConnectingNode method, runs in time O(m
√
n)).

We have thus presented two different methods for generating subtrees of a given tree, both
of which result in an algorithm for generating random chordal graphs in time O(

∑n
i=1 |V (Ti)|).

In the next subsection we present yet another subtree generation method, having running time
O(n2+

∑n
i=1 |V (Ti)|). We include this algorithm for the sake of completeness and better comparison

basis in our tests in the next section. This algorithm can for example be used when one is interested
in generating chordal graphs with predominantly large maximal cliques as the density grows.

3.3 Algorithm PrunedTree

The input to this algorithm consists of a tree T on n nodes, an edge deletion fraction f , which is a
rational number between 0 and 1, and a selection barrier s, which is a real number between 0 and 1.
To generate subtree Ti, we randomly select a fraction f of the edges on the tree and remove them.
The number of edges to delete, say l, is calculated as b(n − 1)fc, which will leave l + 1 subtrees
in total. We then compute the sizes of the l + 1 subtrees and store the distinct values. We pick a
random size ki from the set of largest 100(1−s)% of distinct values, and randomly choose a subtree
with size ki. We repeat this n times to generate all the subtrees. One should note that we could
simply select one connected component (subtree) at random without any preferential treatment;
however, parameter s makes it easier to increase the density of the chordal graph by favoring larger
components as the value of s advises. So, parameter s is an additional means to tune the edge
density of the chordal graph; as its value increases, the size of the subtree to be selected tends to
increase too. Increasing the edge deletion fraction f , however, tends to decrease the average size of
subtrees emerging from deletion of edges.

Algorithm PrunedTree

Input: A tree T on n nodes, edge deletion fraction f , and selection barrier s
Output: A set of n non-empty subtrees of T

for i = 1 to n do
Create a copy T ′ of T
Select randomly b(n− 1)fc edges of T ′ and delete them from T ′

Determine connected components of T ′ and their sizes
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Select randomly a subtree size ki from the highest 100(1− s)% of distinct values.
Select a random component of size ki and choose it as Ti

Output {T1, T2, . . . , Tn}

Lemma 5. The running time of Algorithm PrunedTree is O(n2).

Proof. Creating a copy of T , deleting a subset of its edges, and computing the resulting connected
components takes O(n) time by standard BFS. Now, we create an array A of size n, where each
element in A is a linked list. For each connected component of T ′ of size t, we add this component
at the end of the list in A[t]. Clearly, initializing A, and adding all subtrees to appropriate lists
takes O(n) time. We also make an additional array B which simply stores the sizes of all subtrees,
in sorted order. B can be created in time O(n), using A. We use B to find the highest 100(1− s)%
subtree sizes, by simply using the corresponding last portion of B. Random selection of a subtree
of size ki is simply done by picking a subtree from the list A[ki] in O(1) time. Thus every subtree
requires O(n) time to generate.

Repeating this n times, the overall complexity of PrunedTree algorithm amounts to O(n2). ut

We now obtain the following result using Theorems 2 and 3 together with Lemma 5.

Corollary 3. Algorithm ChordalGen, using the PrunedTree method, runs in time O(n2 +m
√
n).

Let us conclude this section with a remark which applies to all of the three subtree generation
methods. Algorithm ChordalGen does not guarantee the connectedness of its output graphs, as also
revealed by our experimental results in Section 4. If connectedness is of particular importance and
must be achieved, a possible modification to our algorithms can guarantee it without increasing the
overall time complexity. To this end, we randomly choose one vertex from each connected component
of the resulting graph. From each subtree corresponding to the set of vertices selected from the
components, we pick one arbitrary node, and we form the last subtree with the union of paths on
the host tree that connect these nodes. This way, lastly added vertex v is guaranteed to be linked to
at least one vertex from each connected component of G−v, and so we ensure the connectedness of
the output graph. This process is very similar to a single iteration of ConnectingNodes subroutine,
thus by the proof of Lemma 4, it takes O(

∑n
i=1 |V (Ti)|) time and does not affect the overall

complexity of Algorithm ChordalGen.

4 Experimental Results

In this section, we give extensive test results to show what kind of chordal graphs are generated by
Algorithm ChordalGen. In Tables 1-3 we give the experimental results of our presented methods
GrowingSubtree, ConnectingNodes and PrunedTree, respectively. We show how the selection of the
input parameters affects the number of resulting edges m and connected components (“# conn.
comp.s”). We also present the number of maximal cliques (“# maximal cliques”), and the minimum,
maximum, and mean size for the maximal cliques (“min clique size”, “max clique size”, “mean clique
size”), along with their standard deviation (“sd of clique sizes”). For each parameter combination,
we performed ten independent runs and report the average values across those ten runs. For each n,
we tuned the parameter values in order to approximately achieve some selected average edge density
values of 0.01, 0.1, 0.5, and 0.8, where edge density is defined as m

n(n−1)/2 . We made all instances

that we present here available at http://www.ie.boun.edu.tr/∼taskin/data/chordal/ where we also
offer a broad collection of relatively small-sized chordal graphs on 50 to 500 vertices with varying
edge densities.

Algorithm ChordalGen together with GrowingSubtree is able to output connected chordal
graphs unless density is too low, as the results in Table 1 show. In fact, for average edge den-
sity of 0.01, as n increases, the average number of connected components converge to one. If we
examine the “min clique size” column, we see that it is usually one for cases where the average
number of connected components is greater than one, suggesting that the reason for obtaining
disconnected chordal graphs is largely due to a few isolated vertices and that the dominating rest
of the graph is comprised of a connected body. The fact that the starting point of the subtrees is
selected uniformly at random and we can directly control the maximum size of them leaves little
chance for a set of subtrees not to intersect with any other and so lead to a separate connected
component, unless the maximum subtree size k is very small.
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Table 1: Experimental results of Algorithm ChordalGen with GrowingSubtree method

n max
subtree
size (k)

density m #
conn.
comp.s

#
maximal
cliques

min
clique
size

max
clique
size

mean
clique
size

sd of
clique
sizes

1000

7 0.011 5551.4 16.7 357.1 1.0 21.6 6.1 3.4
33 0.104 51768.5 1.0 173.0 4.8 141.5 30.7 20.4
139 0.497 248033.5 1.0 81.3 30.6 474.3 137.9 89.2
324 0.803 400918.7 1.0 47.5 66.8 717.4 312.2 159.5

2500

13 0.011 34605.4 2.7 678.3 1.2 54.5 11.5 6.8
63 0.104 326287.0 1.0 300.4 9.7 349.9 61.7 45.0
269 0.505 1577474.1 1.0 134.3 50.2 1177.4 292.8 207.7
635 0.806 2518595.5 1.0 83.3 132.6 1861.8 673.1 397.4

5000

20 0.010 129763.8 1.6 1104.6 1.6 96.5 18.1 11.4
100 0.104 1296493.4 1.0 474.0 15.9 695.0 103.0 80.0
450 0.498 6226843.9 1.0 205.7 74.8 2390.8 501.6 374.2
1097 0.804 10053952.1 1.0 124.1 202.0 3656.7 1220.6 741.9

10000

31 0.010 502155.4 1.0 1754.4 3.4 199.2 29.1 19.8
169 0.107 5362219.2 1.0 709.8 22.2 1376.0 181.6 149.6
751 0.506 25298684.2 1.0 304.9 104.9 4687.5 894.0 711.5
1855 0.802 40103196.8 1.0 184.1 278.3 7445.0 2141.8 1459.7

Table 2 reports the outputs of Algorithm ChordalGen using ConnectingNodes for generating
subtrees. As the experimental results given in Table 2 reveal, Algorithm ConnectingNodes should
be input very small λ values in order to achieve even quite dense graphs. Since even few number of
selected nodes may result in large subtrees, which increases the chances of potential intersections
with other subtrees and hence the number of edges in the output graph, the number of selected nodes
has to be restricted via low values for λ, which is the main ingredient in setting the cardinality of
node selection. Because of this, the selected node set, and hence the subtree, commonly be comprised
of a single node, especially in graphs with low density. Therefore, when there are many single-node
subtrees, intersections are not very likely. Thus, we observe many isolated vertices in the generated
chordal graphs, as implied by the high number of connected components and minimum size of one
in maximal cliques (see “min clique size” column) in ConnectingNodes method.

Table 2: Experimental results of Algorithm ChordalGen with ConnectingNodes method

n λ density m #
conn.
comp.s

#
maximal
cliques

min
clique
size

max
clique
size

mean
clique
size

sd of
clique
sizes

1000

0.5 0.011 5455.4 349.0 597.0 1.0 75.8 3.0 5.5
1.2 0.100 49805.1 121.4 495.3 1.0 266.5 8.0 23.1
2.7 0.507 253074.6 8.6 238.7 1.0 627.0 30.7 87.4
4.1 0.804 401708.6 1.8 96.3 1.6 835.4 81.5 183.9

2500

0.6 0.010 31559.8 849.2 1475.8 1.0 194.6 3.5 10.1
1.2 0.101 314818.0 298.5 1215.3 1.0 657.5 9.6 40.7
2.7 0.503 1571946.8 27.9 594.0 1.0 1620.6 36.0 142.1
4.1 0.800 2498034.2 3.1 226.5 1.2 2074.8 102.8 315.3

5000

0.6 0.010 127700.5 1693.5 2960.1 1.0 395.8 3.8 15.2
1.2 0.103 1290089.2 578.3 2409.8 1.0 1396.8 10.6 57.9
2.7 0.505 6308093.4 44.4 1148.6 1.0 3217.5 41.0 211.0
4.1 0.805 10060406.5 4.7 435.7 1.0 4261.4 119.4 460.6

10000

0.6 0.010 501760.2 3365.6 5901.9 1.0 806.2 4.0 21.8
1.2 0.100 5022899.1 1180.4 4794.0 1.0 2703.4 11.7 83.8
2.7 0.502 25114409.8 97.3 2300.6 1.0 6355.1 44.0 291.5
4.1 0.803 40154270.6 9.3 852.9 1.0 8484.9 136.2 682.4

Table 3 presents the experimental results of Algorithm ChordalGen when used with PrunedTree
method. The two columns “edge del. fr. (f)” and “selection barrier (s)” correspond to input pa-
rameters that PrunedTree takes as input, whose role are explained in Section 3.3. Here, we observe
that for density values of 0.1, 0.5, and 0.8, the output graphs are predominantly connected. As in
the previous two methods, minimum size of maximal cliques in case of 0.01 density is one, implying
that the main cause of the number of connected components is probably a small group of isolated
vertices.
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Table 3: Experimental results of Algorithm ChordalGen with PrunedTree method

n edge
del. fr.
(f)

selection
barrier
(s)

density m #
conn.
comp.s

#
maximal
cliques

min
clique
size

max
clique
size

mean
clique
size

sd of
clique
sizes

1000

0.950 0.35 0.011 5619.3 45.8 324.5 1.0 30.4 5.5 4.1
0.700 0.60 0.104 51765.9 1.0 99.9 4.2 133.6 35.9 25.2
0.140 0.85 0.497 248172.1 1.0 50.2 193.0 337.1 278.3 35.2
0.100 0.93 0.806 402349.8 1.0 36.5 397.7 621.6 530.8 53.6

2500

0.950 0.70 0.011 34013.9 28.3 542.5 1.0 72.3 9.5 8.8
0.700 0.70 0.101 316270.6 1.0 150.4 5.5 335.0 70.8 58.0
0.120 0.90 0.507 1584225.2 1.0 66.2 492.0 844.4 703.2 84.4
0.077 0.95 0.801 2500840.1 1.0 56.5 996.2 1530.1 1304.7 123.0

5000

0.950 0.77 0.010 130970.2 21.7 833.8 1.0 177.7 14.0 15.2
0.700 0.75 0.097 1216527.9 1.0 202.6 4.8 655.2 117.0 106.5
0.080 0.91 0.495 6182739.6 1.0 101.0 1083.4 1571.7 1395.7 109.0
0.045 0.96 0.801 10004264.5 1.0 99.9 2269.3 2955.8 2672.9 146.1

10000

0.900 0.50 0.010 479501.2 22.5 1394.8 1.0 286.6 20.6 24.5
0.700 0.81 0.102 5076707.1 1.0 260.0 7.2 1415.8 204.5 206.0
0.060 0.93 0.507 25357868.2 1.0 143.5 2359.9 3176.8 2882.4 177.7
0.031 0.96 0.793 39653114.8 1.0 157.7 4705.0 5709.5 5319.0 198.9

We want to compare our results to the results showing the kind of chordal graphs that are
generated by Alg 2a [21]. Note, however that, the results given by [21] only contain graphs on
10000 vertices, with varying number of edges. Most metrics presented in [21] are about the number
of edges. When it comes to the maximal cliques, they present only the average maximum clique
size over the generated graphs for each edge density. Comparing these to our numbers we see that
graphs corresponding to edge densities 0.01, 0.1, 0.5, and 0.8 of Alg 2a have average maximum clique
sizes 727, 2847, 6875, and 8760, respectively. As can be seen from Tables 1-3, these numbers are
quite higher than the corresponding numbers for the graphs generated by Algorithm ChordalGen.
In fact, studying the numbers more carefully, we can conclude that the maximum clique of a graph
generated by Alg 2a contains almost all the edges of the graph. In the case of density 0.01, such
a clique contains more than half of the edges, whereas in the case of higher densities, the largest
clique contains more than 80, 94, and 95 percent of the edges, respectively. Thus, there does not
seem to be an even distribution of the sizes of maximal cliques of graphs generated by Alg 2a.

As we mentioned in Section 2, we also implemented Alg 1 [2], but without imposing a limit
on the maximum degree of the output graph, because no detail was given about how the method
avoids exceeding a given maximum degree in [2]. In Table 4 we give results of Alg 1 analogous to
Tables 1–3 for 1000, 2500, and 5000 vertices. In order to obtain results for Table 4 comparable
to those given in Tables 1-3, we aimed to have approximately the same edge density values. For
this purpose, when determining the number of new neighbors of a vertex at each step in Alg 1,
we multiplied the total number of candidate vertices with a coefficient between 0 and 1, which we
call upper bound coefficient. A running time analysis for this algorithm has not been given in [2].
With our implementation, this algorithm turned out to be too slow to allow testing graphs on 10000
vertices in a reasonable amount of time. However, already from the obtained numbers, we can reach
a conclusion for Alg 1 similar to that on Alg 2a. Observe that the maximum clique sizes obtained
for 5000 vertices by Alg 1, are comparable to the maximum clique sizes obtained for 10000 vertices
by Algorithm ChordalGen. Hence, like Alg 2a, also Alg 1 seems to generate graphs with few big
maximal cliques.

As can be seen in Table 4, Alg 1 outputs connected chordal graphs for the selected set of
average edge density values and number of vertices. The minimum size of the maximal cliques did
not show much variation throughout our experiments and almost always turned out to be two. The
consistency in this measure may be an indication of the lack of potential to produce a diverse range
of maximal clique sizes.
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Table 4: Experimental results of our implementation of Alg 1 [2]

n upper
bound
coef.

density m #
conn.
comp.s

#
maximal
cliques

min
clique
size

max
clique
size

mean
clique
size

sd of
clique
sizes

1000

0.00130 0.011 5659.3 1.0 933.3 2.0 58.0 4.9 9.4
0.00300 0.100 49717.1 1.0 753.3 2.0 219.3 28.4 60.0
0.01100 0.506 252864.4 1.0 401.5 2.0 562.5 190.1 233.6
0.03500 0.805 401945.6 1.0 191.6 2.4 788.6 399.4 342.6

2500

0.00053 0.011 33201.8 1.0 2320.8 2.0 154.5 8.8 26.1
0.00120 0.100 313001.8 1.0 1882.3 2.0 548.8 69.3 159.3
0.00440 0.502 1568857.4 1.0 1006.5 2.0 1400.6 462.7 593.3
0.01400 0.799 2495447.1 1.0 469.8 2.0 1975.9 936.8 888.2

5000

0.00027 0.011 133829.0 1.0 4629.0 2.0 313.9 15.9 56.2
0.00062 0.107 1339169.7 1.0 3717.9 2.0 1136.5 147.0 342.7
0.00220 0.494 6179872.9 1.0 2032.5 2.0 2774.2 897.7 1180.8
0.00700 0.801 10011146.3 1.0 939.0 2.0 3950.0 1901.6 1794.5

In our next set of experimental results we investigate how the sizes of the maximal cliques
are distributed. Figures 1-4 show the average number of maximal cliques across ten independent
runs in intervals of width five, for 1000, 2500, 5000, and 10000 vertices and varying edge densities.
These figures consist of four subfigures, except Figure 4 which contains only the first three, and
each subfigure is comprised of four histograms corresponding to four different average edge density
values. The first three sub-figures on the top row show the results from Algorithm ChordalGen
combined with each one of the three subtree generation methods presented, and the bottom row
shows results of our implementation of Alg 1 [2]. For a given n and average density value, the ranges
of x-axes are kept the same in order to render the histograms comparable. The y-axes, however,
have different ranges because maximum frequencies in histograms may vary drastically.

(a) Results from Algorithm ChordalGen with GrowingSubtree method

(b) Results from Algorithm ChordalGen with ConnectingNodes method

(c) Results from Algorithm ChordalGen with PrunedTree method

(d) Results from our implementation of Alg 1 [2]

Fig. 1: Histograms of maximal clique sizes for n = 1000 and average edge densities 0.01, 0.1, 0.5,
and 0.8 (from left to right)
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The sizes of maximal cliques of graphs produced by GrowingSubtree method are dispersed fairly
over the range, which becomes more noticeable with the increase in edge densities (as we proceed to
the right). Frequencies do not show any obvious bias toward some portion of its domain, which may
be considered as an indicator of the diversity of the chordal graphs produced, which is a desired
characteristic of a random chordal graph generator. In ConnectingNodes method, however, the vast
majority of cliques have size ten or less. The frequencies of larger cliques are barely noticeable
compared to the dominant small-sized set. As the graphs become denser, frequencies of relatively
larger cliques start to become visible too, but general behaviour remains the same. So, if chordal
graphs with predominantly very small clique sizes are sought, ConnectingNodes method can be
preferred. In PrunedTree method, the mode of the distribution shifts with the increase in edge
densities and the sizes of cliques become clustered around some moderate value over the given
range. As for Alg 1, the vast majority of maximal cliques of its output graphs have sizes of 2 to
15 for graphs with low densities of 0.01 and 0.1. With the increase in edge densities, frequencies of
large-size maximal cliques become visible relative to the dominant small clique frequencies; however,
all but the extremes of the range is barely used regardless of selection of n and edge density.

(a) Results from Algorithm ChordalGen with GrowingSubtree method

(b) Results from Algorithm ChordalGen with ConnectingNodes method

(c) Results from Algorithm ChordalGen with PrunedTree method

(d) Results from our implementation of Alg 1 [2]

Fig. 2: Histograms of maximal clique sizes for n = 2500 and average edge densities 0.01, 0.1, 0.5,
and 0.8 (from left to right)
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(a) Results from Algorithm ChordalGen with GrowingSubtree method

(b) Results from Algorithm ChordalGen with ConnectingNodes method

(c) Results from Algorithm ChordalGen with PrunedTree method

(d) Results from our implementation of Alg 1 [2]

Fig. 3: Histograms of maximal clique sizes for n = 5000 and average edge densities 0.01, 0.1, 0.5,
and 0.8 (from left to right)

(a) Results from Algorithm ChordalGen with GrowingSubtree method

(b) Results from Algorithm ChordalGen with ConnectingNodes method

(c) Results from Algorithm ChordalGen with PrunedTree method

Fig. 4: Histograms of maximal clique sizes for n = 10000 and average edge densities 0.01, 0.1, 0.5,
and 0.8 (from left to right)
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5 Conclusion

To the best of our knowledge, Algorithm ChordalGen is the first algorithm for random chordal
graph generation based directly on subtree intersection characterization. It is very general and
flexible in the sense that many different methods for subtree generation can be plugged in.

The three different subtree generation methods presented here each offer output graphs of dif-
ferent structures. As far as the distribution of maximal clique sizes are concerned, ConnectingNodes
and PrunedTree methods yield graphs of somewhat more specific structure in the sense that the
sizes of maximal cliques are always clustered in the very initial portion in ConnectingNodes method,
and in PrunedTree method in the initial part of the range for low densities, in middle portions for
moderate to high densities. GrowingSubtree method, though, in addition to its advantageous time
complexity, generates the most varied chordal graphs compared to both existing methods and to
other two of our suggested methods. Depending on the context and structural needs for the output
graph, Algorithm ChordalGen can be used with one of the three subroutines chosen suitably in
order to produce chordal graphs of varying size and density. For those who prefer to test various
algorithms on chordal graphs without focusing on the generation procedure, we offer all instances
used in this paper as well as a broad collection of relatively small-sized chordal graphs on 50 to 500
vertices with varying edge densities at http://www.ie.boun.edu.tr/∼taskin/data/chordal/.
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