
Linear-time generation of
random chordal graphs?

Oylum Şeker1, Pinar Heggernes2, Tınaz Ekim1, and Z. Caner Taşkın1

1 Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey.
{oylum.seker,tinaz.ekim,caner.taskin}@boun.edu.tr

2 Department of Informatics, University of Bergen, Norway.
pinar.heggernes@uib.no

Abstract. Chordal graphs form one of the most well studied graph
classes. Several graph problems that are NP-hard in general become solv-
able in polynomial time on chordal graphs, whereas many others remain
NP-hard. For a large group of problems among the latter, approxima-
tion algorithms, parameterized algorithms, and algorithms with moder-
ately exponential or sub-exponential running time have been designed.
Chordal graphs have also gained increasing interest during the recent
years in the area of enumeration algorithms. Being able to test these al-
gorithms on instances of chordal graphs is crucial for understanding the
concepts of tractability of hard problems on graph classes. Unfortunately,
only few published papers give algorithms for generating chordal graphs.
Even in these papers, only very few methods aim for generating a large
variety of chordal graphs. Surprisingly, none of these methods is based on
the “intersection of subtrees of a tree” characterization of chordal graphs.
In this paper, we give an algorithm for generating chordal graphs, based
on the characterization that a graph is chordal if and only if it is the
intersection graph of subtrees of a tree. The complexity of our algorithm
is linear in the size of the produced graph. We give test results to show
the variety of chordal graphs that are produced, and we compare these
results to existing results.

1 Introduction

Algorithms particularly tailored to exploit properties of various graph classes
have formed an increasingly important area of graph algorithms during the last
five decades. With the introduction of relatively new theories for coping with
NP-hard problems, like parameterized algorithms, algorithmic research on graph
classes has become even more popular recently, and the number of results in this
area appearing at international conferences and journals is now higher than
ever. One of the most studied graph classes in this context is the class of chordal
graphs, i.e., graphs that contain no induced cycle of length 4 or more. Chordal
graphs arise in practical applications from a wide variety of unrelated fields, like

? This work is supported by the Research Council of Norway, Bogazici University
Research Fund (grant 11765), and Turkish Academy of Sciences GEBIP award.

sparse matrix computations, database management, perfect phylogeny, VLSI,
computer vision, knowledge based systems, and Bayesian networks [6, 13, 21, 24,
26]. This graph class that first appeared in the literature as early as 1958 [14],
has steadily increased its popularity, and there are now more than 20 thousand
references on chordal graphs according to Google Scholar.

With a large number of existing algorithms specially tailored for chordal
graphs, it is interesting to note that not much has been done to test these
algorithms in practice. Very few such tests are available as published articles
[2, 18, 22]. In particular, there seems to be no efficient and all-purpose chordal
graph generator available. Most of the work in this direction involves generating
chordal graphs tailored to test a particular algorithm or result [2, 22]. This is a
clear shortcoming for the field, and it was even mentioned as an important open
task at a Dagstuhl Seminar [16]. Until some years ago, most of the algorithms
tailored for chordal graphs had polynomial running time, and testing was perhaps
not crucial. Now, however, many parameterized and exponential-time algorithms
exist for chordal graphs, for problems that remain hard on this graph class, see
e.g., [4, 12, 19, 20]. The proven running times of such algorithms might often be
too high compared to the practical running time. Just to give some examples
from the field of enumeration, there are now several algorithms and upper bounds
on the maximum number of various objects in chordal graphs [1, 11, 12]. However,
the lower bound examples at hand usually do not match these upper bounds.
Tests on random chordal graphs is a good way of getting better insight about
whether the known upper bounds are too high or tight.

In this paper we present an algorithm for generating random chordal graphs.
The algorithm is based on the characterization that a graph is chordal if and
only if it is the intersection graph of subtrees of a tree. Surprisingly, this char-
acterization does not seem to have been exploited for chordal graph generation
earlier. The running time of our algorithm is linear in the size of the generated
graph, and it generates a large variety of chordal graphs, where the variety is
measured using the characteristics of maximal cliques as already used in [22].
After proving the correctness and the time complexity, we give extensive tests
to demonstrate the kind of chordal graphs that our algorithm generates. We
compare our tests with existing test results, and we implement one of the ear-
lier proposed methods and include this in our tests. According to these tests,
our algorithm outperforms previous algorithms both with respect to complexity
and with respect to the richness of the family of the generated chordal graphs.
Observe that graph isomorphism is as hard on chordal graphs as on general
graphs [17], which adds to the difficulty of producing chordal graphs uniformly
random. Still our algorithm is able to generate every chordal graph with positive
probability.

2 Background, terminology and existing algorithms

In this section we give the necessary background on chordal graphs, as well as
a short review of the existing algorithms for chordal graph generation. We work

2

with simple and undirected graphs, and we use standard graph terminology. We
let n denote the number of vertices and m denote the number of edges of a
graph. A maximal clique is an inclusion-wise maximal set of vertices that are
pairwise adjacent. An ordering (v1, v2, . . . , vn) of the vertices of a graph is a
perfect elimination order (peo) if the set of higher numbered neighbors of each
vertex forms a clique.

Let F = {S1, S2, . . . , Sn} be a family of sets from the same universe. A graph
G is called an intersection graph of F if there is a bijection between the set of
vertices {v1, v2, . . . , vn} of G and the sets in F such that vi and vj are adjacent
if and only if Si ∩ Sj 6= ∅, for 1 ≤ i, j ≤ n. In the special case where there is a
tree T such that each set in F corresponds to the vertex set of a subtree of T ,
then G is called the intersection graph of subtrees of a tree. In this case, we call
T a host tree for G.

A tree T with a bijection between its vertex set and the set of maximal cliques
of a graph G, is called a clique tree of G if, for every vertex v of G, the set of
vertices of T that correspond to the cliques containing v induce a connected
subtree of T .

A graph is chordal if it contains no induced cycle of length 4 or more. A
chordal graph on n vertices has at most n maximal cliques [7]. Chordal graphs
have many different characterizations. For our purposes, the following will be
sufficient.

Theorem 1 ([5, 8–10]). Let G be a graph. The following are equivalent.

– G is chordal.
– G has a perfect elimination order.
– G is the intersection graph of subtrees of a tree.
– G has a clique tree.

Especially the last two points of Theorem 1 are crucial for our algorithm and
its implementation. To make sure that there is no confusion between the vertices
of G and the vertices of a host tree or a clique tree, we will from now on refer
to vertices of a tree as nodes.

Rose, Tarjan, and Lueker [25] gave an algorithm called Maximal Cardinality
Search (MSC) that creates a perfect elimination order of a chordal graph in
time O(n+m). Blair and Peyton [3] gave a modification of MCS to list all the
maximal cliques of a chordal graph in time O(n+m). Implicit in their proofs is
the following well-known fact that is not often highlighted on its own.

Lemma 1 ([3, 25]). The sum of the sizes of the maximal cliques of a chordal
graph is O(n+m).

Next, we briefly mention the algorithms for generating chordal graphs from
the works of Andreou, Papadopoulou, Spirakis, Theodorides, and Xeros [2]; Pem-
maraju, Penumatcha, and Raman [22]; and Markenzon, Vernet, and Araujo [18].
Some of these algorithms create very limited chordal graphs, which is either men-
tioned by the authors or clear from the algorithm. Thus, in the following we only
mention the algorithms that are general enough to be interesting in our context.

3

It should also be noted that the purpose of Andreou et al. [2] is not to obtain
general chordal graphs, but rather chordal graphs with a known bound on some
parameter. One of the algorithms that they propose starts from an arbitrary
graph and adds edges to obtain a chordal graph. How the edges are added is not
given in detail, but note that there are many algorithms for generating a chordal
graph from a given graph by adding a minimal set of edges and their running
time is usually O(nm), far from linear [15]. Andreou et al. [2] do not report on
the quality of chordal graphs obtained by this method.

We highlight below the algorithms that are the most promising with respect
to generating random chordal graphs. In addition to these, there is an O(n2)-
time algorithm by Markenzon et al. [18] that generates a random tree and adds
edges to this tree until a chordal graph with desired edge density is obtained.
However, no test results about the quality of the generated graphs is given.

Alg 1 [2]. The algorithm constructs a chordal graph by using a peo. At ev-
ery iteration, a new vertex is added and made adjacent to a random selection
of already existing vertices. Then necessary edges are added to turn the neigh-
borhood of the new vertex into a clique. No test results are given in the paper
about the quality of the chordal graphs this algorithm produces. As we found
the algorithm interesting, we have implemented it, and we compare the resulting
graphs to those generated by our algorithm in Section 4.

Alg 2 [18, 22]. The algorithm starts from a single vertex. At each subsequent
step, a clique C in the existing graph is chosen at random, and a new vertex is
added adjacent to exactly the vertices of C. The inverse of the order in which
the vertices are added is a peo of the final graph. It is observed by the authors
of both papers that this procedure results in chordal graphs with approximately
2n edges experimentally. They propose the following changes:

Alg 2a [18] modifies the above generated graph by randomly choosing maxi-
mal cliques that are adjacent according to the clique tree and merging these until
desired edge density is obtained. Some test results about the graphs generated
by Alg 2a are provided in [18]. Although these tests are not as comprehensive as
the tests we give on our algorithm in Section 4, we compare our results to those
of [18] as best we can. The running time of Alg 2a is O(m+ nα(2n, n)).

Alg 2b [22] is a modification of Alg 2 in a different way: instead of randomly
choosing a clique, a maximum clique is chosen and a random subset of it is made
adjacent to the new vertex. Although test results for Alg 2b are provided in [22],
the authors acknowledge that the produced graphs are still very particular with
very few large maximal cliques and many very small maximal cliques. For this
reason, we do not include Alg 2b in our comparisons.

3 Generating chordal graphs using subtrees of a tree

We find it surprising that the intersection graph of subtrees of a tree character-
ization of chordal graphs has not been used for generation. One reason could be
that this characterization does not give a direct way to decide the number of

4

edges. However, as we will see, edge density can be regulated by adjusting the
sizes of the generated subtrees. We are now ready to present our main algorithm
for generating chordal graphs on n vertices:

Algorithm ChordalGen

Input: Two integers n and k
Output: A chordal graph G on n vertices and m edges

Generate a tree T on n nodes uniformly at random
Create n random subtrees of T : {T1, . . . , Tn} of average size k
Output as G the intersection graph of the trees {T1, . . . , Tn}

By Theorem 1 the graph generated by Algorithm ChordalGen is chordal. We
want to show that this high level definition of the algorithm is general and can
create any chordal graph. The proof of the following lemma is already implicit
in the proofs of the relevant parts of Theorem 1. We give it here, as it will also
be of help in the explanation of the running time of our algorithm.

Lemma 2. Let G be a chordal graph on n vertices and m edges. There is an
execution of Algorithm ChordalGen that generates G.

Proof. First of all we want to show that there is a host tree T on exactly n
nodes, and a set of n subtrees of T , such that G is the intersection graph of these
subtrees. Let T ′ be a clique tree of G. Let us call the vertices of G: v1, v2, . . . , vn.
Define subtree T ′i to be the subtree of T ′ that corresponds to the nodes (maximal
cliques) that contain vertex vi, for 1 ≤ i ≤ n. By the definition of a clique tree,
T ′ has at most n nodes and each T ′i is a connected subgraph of T ′. If T ′ has
less than n nodes, we can add new nodes adjacent to arbitrary nodes of T ′ until
we get a new tree T with exactly n nodes. The subtrees stay the same. As two
vertices are adjacent in G if and only if they appear together in a clique, G is
the intersection graph of subtrees T ′1, . . . , T

′
n of T . Finally, we simply let k be

the average size of the subtrees Ti. ut

The most interesting part of the algorithm is the generation of the subtrees
of T . For this, we propose an algorithm called SubtreeGen as follows.

Algorithm SubtreeGen

Input: A tree T on n nodes and an integer k
Output: A set of n subtrees of T of average size k

for i = 1 to n do
Select a random node x of T and set Ti = {x}
Select a random integer ki ≤ n between 1 and 2k − 1
for j = 1 to ki − 1 do

Select a random node y of Ti that has neighbors in T outside of Ti
Select a random neighbor z of y outside of Ti and add z to Ti

Output {T1, T2, . . . , Tn}

5

Lemma 3. The running time of Algorithm SubtreeGen is O(n+
∑n

1=i |Ti|).

Proof. Observe first that each subtree Ti is simply a list of nodes of T . We show
that after an initial O(n) preprocessing time, each subtree Ti can be generated
in time O(|Ti|). For this, we need to be able to add a new node to Ti in constant
time, at each of the ki − 1 steps.

As selecting random elements in constant time is easier when accessing the
elements of an array directly by indices, we start with copying the nodes of T
into an array A of size n, and copying the adjacency list of each node x into an
array Ax of size deg(x). This can clearly be done in total time O(n) since T is
a tree.

In general, selecting an unselected element of a set at random can be done
easily in constant time if the set is represented with an array. Let us say we
have an array S of t elements. We keep a separation index s that separates the
selected elements from the not selected ones. At the beginning s is 1. At each
step, we generate a random integer r between s and t. S[r] is our randomly
selected element. Then we swap the elements S[s] and S[r] and increase s by 1.

We can use this method both for selecting a node y of Ti that still has
neighbors outside and for selecting a neighbor z of y that has not yet been
selected. For the latter, whenever we select a neighbor z of y, we move z to the
first part of the array Ax using swap. When the separation index reaches the
degree of y then we know that y should not be selected to grow the subtree Ti at
later steps. Representing Ti with an array of size ki, we can use the same trick to
move y to a part of the array that we will not select from. Also, when z is added,
we can check whether it is a leaf in T in constant time, and immediately move
it to the irrelevant part of the array for Ti if so, since z can then not be used for
growing Ti at later steps. It is sufficient to check that z is a leaf of T , because
otherwise it must have neighbors outside of Ti, since T is a tree and we cannot
have cycles. When the generation of Ti is finished, the separation indices of each
of its nodes should be reset before we start generating Ti+1. The adjacency arrays
need not be reorganized, as we will anyway be selecting neighbors at random.

Note that we do not need this trick to select an initial node x of each subtree
Ti, because we should indeed be able to select the same node several times (and
grow another subtree from it perhaps in a different way).

With the described method, each step of Algorithm SubtreeGen takes O(1)
time, in addition to initial O(n) time to copy the information into appropriate
arrays. Thus the total running time is O(n+

∑n
1=i |Ti|). ut

We can now prove the total running time for chordal graph generation.

Theorem 2. Algorithm ChordalGen generates a chordal graph with n vertices
and m edges in time O(n+m).

Proof. Rodionov and Choo [23] prove that the following procedure which runs
in O(n) time generates a tree T on n nodes uniformly at random: start with a
tree T that contains only one node. Then repeat n− 1 times the following: pick
a random node x of T and add a new node adjacent to it.

6

We use Algorithm SubtreeGen to generate n subtrees of T . By Lemma 3,
this adds to our running time an order of the sum of the sizes of the generated
subtrees.

To each subtree Ti, we associate a vertex vi of G. In addition to storing the
node lists Ti, we also store in the nodes of T information about which subtrees
contain that node. More precisely, at node x of T , we store the following list: {vj |
Tj contains x}. Observe that this is equivalent to each node of T representing a
clique by storing the list of graph vertices that are contained in this clique. By
Lemma 2, T then contains the information that corresponds to a clique-tree of G.
By Lemma 1 the sum of the sizes of the lists contained at the nodes is O(n+m).
As we only used the lists Ti to generate this information, the sum of the sizes
of the subtrees is also O(n+m). By methods described by Blair and Peyton [3]
it is possible to turn T into a proper clique tree for G in time O(n+m). Thus,
in total O(n + m) time we both have a representation of our output graph G
and a list of maximal cliques of it. It could, however, be desirable to output an
adjacency list representation for G. Markenzon et al. [18], using the methods of
Blair and Peyton [3], explain how this can be done in O(n+m) time. ut

As argued in the proof of Theorem 2, the sum of the sizes of the generated
subtrees is O(n+m). In our test results, we give both k and the resulting number
of edges, m, to give an indication of how k affects the density of the generated
graph. It is also possible to supply Algorithm SubtreeGen with a vector of n
subtree sizes {k1, k2, . . . , kn} to generate subtrees of exactly desired size. This
does not change the running time of the algorithm. Within the same running
time, even more user control is possible, like limiting the maximum degree of each
subtree, if so desired, for instance to generate intersection graphs of paths in a
tree. In fact, a completely different method for subtree generation can be plugged
in instead of SubtreeGen in Algorithm ChordalGen. This gives the possibility
of fine-tuning the generation towards designated purposes. In the concluding
section, we mention a few other ideas for subtree generation.

4 Experimental results

In this section, we give extensive test results to show what kind of chordal
graphs are generated by Algorithm ChordalGen. In Table 1 we show how the
selection of parameter k affects the number of resulting edges and connected
components. We also present the number of maximal cliques, and the minimum,
maximum, and mean size for the maximal cliques, along with their average
standard deviation. For each parameter pair n and average subtree size k, we
performed ten independent runs and report the average values across those then
runs. For each n, we tuned the average subtree sizes in order to approximately
achieve some selected average edge density values of 0.01, 0.1, 0.5, and 0.8, where
edge density is defined as m

n(n−1)/2 .

We want to compare our results to the results showing the kind of chordal
graphs that are generated by Alg 2a [18]. Note, however that, the results given

7

Table 1: Experimental results of Algorithm ChordalGen

n
avg
subtree
size (k)

density # edges
conn.
comp.s

#
maximal
cliques

min
clique
size

max
clique
size

mean
clique
size

sd of
clique
sizes

1000 4.0 0.011 5646.6 16.5 355.7 1.0 21.4 6.16 3.41
1000 17.0 0.101 50374.8 1.0 169.6 5.2 134.1 30.62 20.26
1000 70.0 0.505 252237.8 1.0 77.6 29.6 474.0 140.24 92.23
1000 162.5 0.801 399906.4 1.0 49.1 74.8 726.2 313.27 163.59

2500 7.0 0.011 35289.6 3.0 680.5 1.1 54.0 11.58 6.96
2500 32.0 0.103 322433.4 1.0 299.0 10.5 344.8 62.07 44.47
2500 135.0 0.503 1572067.0 1.0 134.5 50.0 1196.3 291.23 206.63
2500 318.0 0.803 2509818.4 1.0 88.4 115.0 1866.1 639.35 385.94

5000 10.5 0.010 130255.1 1.2 1092.9 1.8 97.1 18.15 11.47
5000 50.5 0.098 1229487.3 1.0 476.4 15.3 650.9 100.99 77.59
5000 225.0 0.509 6361645.4 1.0 199.5 76.9 2531.3 504.05 381.98
5000 549.0 0.809 10114806.0 1.0 122.0 163.6 3695.8 1217.44 756.58

10000 16.0 0.010 506598.1 1.0 1745.7 3.4 203.5 29.05 19.98
10000 85.0 0.107 5338077.0 1.0 706.5 25.0 1366.8 181.86 148.12
10000 377.0 0.497 24832462.0 1.0 312.6 103.0 4871.6 861.59 681.79
10000 926.0 0.802 40101492.0 1.0 191.7 236.6 7294.4 2109.65 1394.89

by [18] only contain graphs on 10000 vertices, with varying number of edges.
Most metrics presented in [18] are about the number of edges. When it comes
to the maximal cliques, they present only the average maximum clique size over
the generated graphs for each edge density. Comparing these to our numbers we
see that graphs corresponding to edge densities 0.01, 0.1, 0.5, and 0.8 of Alg 2a
have average maximum clique sizes 727, 2847, 6875, and 8760, respectively. As
can be seen from Table 1, these numbers are quite higher than the corresponding
numbers for the graphs generated by Algorithm ChordalGen. In fact, studying
the numbers more carefully, we can conclude that the maximum clique of a
graph generated by Alg 2a contains almost all the edges of the graph. In the
case of density 0.01, such a clique contains more than half of the edges, whereas
in the case of higher densities, the largest clique contains more than 80, 94, and
95 percent of the edges, respectively. Thus there does not seem to be an even
distribution of the sizes of maximal cliques of graphs generated by Alg 2a.

As we mentioned in Section 2, we also implemented Alg 1 [2]. In Table 2 we
give results analogous to Table 1 for 1000, 2500, and 5000 vertices. In order to
obtain results for Table 2 comparable to those given in Table 1, we wanted to have
approximately the same edge density values. For this purpose, when determining
in Alg 2 the number of neighbors of a vertex at each step, we multiplied the total
number of candidate vertices with a coefficient between 0 and 1, which we call
upper bound coefficient. A running time analysis for this algorithm has not been
given [2]. With our implementation, this algorithm turned out to be too slow to
allow testing graphs on 10000 vertices in reasonable time. However, already from
the obtained numbers, we can reach a conclusion for Alg 1 similar to that on
Alg 2a. Observe that the maximum clique sizes obtained for 5000 vertices by Alg
1, are comparable to the maximum clique sizes obtained for 10000 vertices by
Algorithm ChordalGen. Hence, like Alg 2a, also Alg 1 seems to generate graphs
with few big maximal cliques. As can be seen in Table 2, Alg 1 outputs connected

8

Table 2: Experimental results of our implementation of Alg 1 [2]

n
upper
bound
coef.

density # edges
#conn.
comp.s

#
maximal
cliques

min
clique
size

max
clique
size

mean
clique
size

sd of
clique
sizes

1000 0.00130 0.011 5368.6 1.0 935.1 2.0 56.0 4.7 8.74
1000 0.00300 0.103 51519.5 1.0 755.3 2.0 219.2 31.3 63.85
1000 0.01100 0.499 249288.5 1.0 405.2 2.0 561.8 184.3 231.81
1000 0.03500 0.808 403436.2 1.0 185.8 2.0 793.8 394.5 346.26

2500 0.00053 0.010 31978.1 1.0 2322.9 2.0 154.2 8.5 25.39
2500 0.00120 0.101 316107.4 1.0 1882.4 2.0 549.3 71.3 160.68
2500 0.00440 0.501 1565224.3 1.0 1005.7 2.0 1401.1 458.8 592.22
2500 0.01400 0.807 2519340.1 1.0 470.0 2.0 1980.7 988.2 887.66

5000 0.00027 0.011 134535.7 1.0 4628.4 2.0 320.7 16.0 56.66
5000 0.00062 0.107 1331285.2 1.0 3717.0 2.0 1144.5 144.1 339.34
5000 0.00220 0.503 6289143.9 1.0 2001.7 2.0 2804.3 919.5 1195.48
5000 0.00700 0.804 10049827 1.0 938.5 2.0 3945.8 1945.0 1787.89

chordal graphs for the selected set of average edge density values and number of
vertices. The minimum size of the maximal cliques did not show any variation
throughout our experiments and always turned out to be two. The consistency in
this measure may be an additional indication of the lack of potential to produce
a diverse range of chordal graphs.

(a) Results from Algorithm ChordalGen

(b) Results from our implementation of Alg 1 [2]

Fig. 1: Histograms of maximal clique sizes for n = 1000 and average edge densi-
ties 0.01, 0.5, and 0.8 (from left to right)

We wanted to evidence the above conclusions by investigating how the sizes
of the maximal cliques are distributed. Figures 1-3 show the average number
of maximal cliques across ten independent runs in intervals of width five, for
1000, 2500, and 5000 vertices and varying edge densities. These figures consist

9

of two sub-figures, and each subfigure is comprised of three histograms for three
different average edge density values. The top sub-figures show the results from
Algorithm ChordalGen and the second those from our implementation of Alg 1
[2]. For a given n and average density value, the ranges of x-axes are kept the
same in order to render the histograms comparable. The y-axes, however, have
different ranges because maximum frequencies in histograms corresponding to
Alg 1 and Algorithm ChordalGen vary drastically. The ratios of the maximum
frequencies of Alg 1 to those of Algorithm ChordalGen range roughly from 4 to
160.

(a) Results from Algorithm ChordalGen

(b) Results from our implementation of Alg 1 [2]

Fig. 2: Histograms of maximal clique sizes for n = 2500 and average edge densi-
ties 0.01, 0.5, and 0.8 (from left to right)

As Figures 1-3 reveal, the vast majority of maximal cliques of graphs output
by Alg 1 have sizes of 2 to 15. With the increase in edge densities, frequencies of
large-size maximal cliques become visible relative to the dominant small clique
frequencies; however, all but the extremes of the range is barely used regardless of
selection of n and edge density. The restricted shape of the distribution of clique
sizes indicates that Alg 1 likely produces chordal graphs of limited structure
in general. Algorithm ChordalGen, however, does not demonstrate such bias
toward the extremes over the range of its maximal clique sizes; output graphs
contain maximal cliques of many different sizes. The fair dispersion of clique
sizes of Algorithm ChordalGen suggests diversity of its output graphs, which is
a desired characteristic of a random chordal graph generator.

10

(a) Results from Algorithm ChordalGen

(b) Results from our implementation of Alg 1 [2]

Fig. 3: Histograms of maximal clique sizes for n = 5000 and average edge densi-
ties 0.01, 0.5, and 0.8 (from left to right)

5 Concluding remarks and future work

Algorithm ChordalGen is the first linear-time method in literature for generating
chordal graphs. Furthermore, as it can be seen from the test results, it generates
the most varied chordal graphs, compared to existing methods. The algorithm
is also very general and flexible in the sense that many different methods for
subtree generation can be plugged in.

As already mentioned in Section 3, we can further fine-tune the generation of
subtrees for special purposes, and we can use other methods for subtree gener-
ation in Algorithm ChordalGen instead of SubtreeGen. Two such possible ideas
are generating the subtrees by selecting a set of random nodes and connecting
them via the paths in the host tree, and selecting a random set of edges to re-
move from the host tree and selecting one of the resulting connected components
as a subtree. We will revisit these methods in the long version of this work.

References

1. F. Abu-Khzam, P. Heggernes. Enumerating minimal dominating sets in chordal
graphs. Inf. Process. Lett. 116(12): 739-743 (2016).

2. M. I. Andreou, V. G. Papadopoulou, P. G. Spirakis, B. Theodorides and A. Xeros.
Generating and radiocoloring families of perfect graphs. Experimental and Efficient
Algorithms, pp. 302–314, Springer, 2005.

3. J. R. S. Blair and B. W. Peyton. An Introduction to Chordal Graphs and Clique
Trees. In Graph Theory and Sparse Matrix Computations, IMA Vol. in Math. Appl.
56: 1-27, Springer, 1993.

11

4. M. Bougeret, N. Bousquet, R. Giroudeau, and R. Watrigant. Parameterized Com-
plexity of the Sparsest k-Subgraph Problem in Chordal Graphs. SOFSEM 2014:
150–161, Springer.

5. P. Buneman. A characterisation of rigid circuit graphs, Disc. Math. 9(3): 205–212,
1974.

6. A. Brandstädt, V. B. Le, and J. Spinrad. Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications (1999).

7. G. A. Dirac. On rigid circuit graphs. Ann. Math. Sem. Univ. Hamburg 25: 71–76,
1961.

8. D. Fulkerson and O. Gross. Incidence matrices and interval graphs. Pac. J. of Math.
15(3): 835–855, 1965.

9. F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. on Comp.
1(2): 180–187, 1972.

10. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. of Comb. Th. B, 16(1): 47–56, 1974.

11. P. Golovach, P. Heggernes, and D. Kratsch. Enumerating minimal connected domi-
nating sets in graphs of bounded chordality. Theor. Comput. Sci. 630: 63–75 (2016)

12. P. Golovach, P. Heggernes, D. Kratsch, and R. Saei. An exact algorithm for Subset
Feedback Vertex Set on chordal graphs. J. of Disc. Alg. 26: 7–15 (2014).

13. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of
Disc. Math. 57, Elsevier (2004).

14. A. Hajnal and J. Surányi. Über die Ausflösung von Graphen in vollständige Teil-
graphen. Ann. Univ. Sci. Budapest, pages 113–121, 1958.

15. P. Heggernes. Minimal triangulations of graphs: A survey. Disc. Math. 306(3):
297–317, 2006.

16. D. Loksthanov. Dagstuhl Seminar 14071 “Graph Modification Problems”, 2014.
17. G. S. Lueker and K. S. Booth. A linear time algorithm for deciding interval graph

isomorphism. JACM 26(2): 183–195, 1979.
18. L. Markenzon, O. Vernet, and L. H. Araujo. Two methods for the generation of

chordal graphs. Ann. of Op. Res. 157(1): 47–60, 2008.
19. D. Marx. Parameterized coloring problems on chordal graphs. Theor. Comput. Sci.

351(3): 407–424, 2006.
20. N. Misra, F. Panolan, A. Rai, V. Raman, S. Saurabh. Parameterized Algorithms for

Max Colorable Induced Subgraph Problem on Perfect Graphs. WG 2013: 370-381,
Springer.

21. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, Morgan Kaufmann, 2014.

22. S. V. Pemmaraju, S. Penumatcha and R. Raman. Approximating interval coloring
and max-coloring in chordal graphs. J. of Exp. Alg. 10: 2–8, 2005.

23. A. S. Rodionov and H. Choo. On Generating Random Network Structures: Trees.
International Conference on Computational Science 2003: 879-887, LNCS 2658,
Springer.

24. D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. Graph theory and computing 183: 217, 1972.

25. D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimina-
tion on graphs. SIAM J. on Comp. 5(2): 266–283, 1976.

26. J. P. Spinrad. Efficient graph representations. AMS, Fields Institute Monograph
Series 19 (2003).

12

