
Optimal Berth Allocation, Time-variant Quay Crane Assignment and Scheduling
with Crane Setups in Container Terminals1

Yavuz B. Türkoğullarıa, Z. Caner Taşkınb,∗, Necati Arasb, İ. Kuban Altınelb
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Abstract

There has been a dramatic increase in world’s container traffic during the last thirty years. As a consequence, the

efficient management of container terminals has become a crucial issue. In this work we concentrate on the integrated

seaside operations, namely the integration of berth allocation, quay crane assignment and quay crane scheduling

problems. First, we formulate a mixed-integer linear program whose exact solution gives optimal berthing positions

and berthing times of the vessels, along with their crane schedules during their stay at the quay. Then, we propose

an efficient cutting plane algorithm based on a decomposition scheme. Our approach deals with berthing positions of

the vessels and their assigned number of cranes in each time period in a master problem, and seeks the corresponding

optimal crane schedule by solving a subproblem. We prove that the crane scheduling subproblem is NP-complete

under general cost settings, but can be solved in polynomial time for certain special cases. Our computational study

shows that our new formulation and proposed solution method yield optimal solutions for realistic-sized instances.

Keywords: Integer programming; container terminal management; berth allocation; crane assignment; crane

scheduling.

1. Introduction

Shorter transit times, lower shipping costs, higher reliability and security, and multi-modality are some of the

factors that make containers an attractive means of transportation. There has been a considerable growth in the

share of containerized trade in the world’s total dry cargo during the last 30 years: the increase between 2000 and

2010 was 53.3%, 11% of which is attributed to year 2010 alone (UNCTAD, 2011). As a consequence of such a drastic

increase in container traffic, the efficient management of container terminals has become a crucial issue and attracted a

considerable research effort from various disciplines, including Operational Research (Steenken et al., 2004; Stahlbock

and Voß, 2008). This is a difficult task since there is a myriad of interdependent operations, which can be grouped

as the seaside, transfer and yard operations (Vis and de Koster, 2003). In this work, we concentrate on the integrated

planning of seaside operations, which includes the berth allocation problem (BAP), quay crane assignment problem

1A shorter version of this paper has been presented in the 2015 International Conference on Logistics and Maritime Systems (LOGMS 2015).
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(CAP) and quay crane scheduling problem (CSP). We direct any reader having a particular interest in the transfer and

yard operations, especially in the transshipment flow of containers and the associated decision problems between the

seaside and the yard, to the work by Vacca (2010).

Efficient planning of seaside operations has a direct impact on the dwell time of the vessels (i.e., the period elaps-

ing between the arrival and departure times of the vessels, consisting of the sum of the waiting and processing times),

which is one of the main performance measures at a container terminal. Major international maritime ports have

several container terminals operated by different companies. Thus, longer dwell times can have a negative impact on

the competitiveness of both the port and companies operating terminals there. This explains the existence of studies in

the literature that are concerned with BAP, CAP, CSP, and their integrated versions; namely berth allocation and quay

crane assignment problem (BACAP), crane assignment and scheduling problem (CASP) and berth allocation, quay

crane assignment and scheduling problem (BACASP). The type of integration we aim for here is the so-called deep in-

tegration defined by Geoffrion (1994), where subproblems are combined in the form of a single, unified mathematical

optimization framework.

Generally, BAP deals with the determination of optimal berthing times and positions of vessels in container ter-

minals. The focus of CSP, on the other hand, is mainly in determining an optimal handling schedule of vessels for

available cranes at the terminal. Excellent recent surveys of the related works with a classification according to some

specific attributes are provided in Bierwirth and Meisel (2010, 2015), and Carlo et al. (2013). CAP finds the optimal

number of cranes assigned to the vessels, and thus can be seen as a special form of the optimal crane splitting problem

(Steenken et al., 2004). CAP is relatively simpler and can easily be solved in practice to optimality using intuitive

reasoning, which makes it a less attractive research problem. However, as can be realized, crane numbers have a direct

effect on the processing times of the vessels. As a result, related decisions should be embedded within either BAP or

CSP models.

To the best of our knowledge, the earliest attempts to study BACASP, namely the integration of BAP, CAP and

CSP within a unified mathematical optimization model to determine optimal berthing times and positions of the

vessels along with the number of cranes and their identities as well as schedules are due to Rashidi (2006), Theofanis

et al. (2007), and Zhang et al. (2010). The integration is slightly weaker on the BAP side in the work by Liu et al.

(2006). Their BACAP model determines both the optimal crane numbers and specifications, but an optimal solution

includes berthing times of the vessels without any information on their berthing positions. Besides, they generate

possible handling times for each vessel and each assignable number of cranes as inputs to their BACASP model using

a preprocessing scheme. The same approach is adopted by Meier and Schumann (2007), Meisel (2009), Meisel and

Bierwirth (2013), and Ak (2008). Meier and Schumann (2007) try to achieve this by functionally integrating their

CASP model with BAP. However, Meisel (2009) and Meisel and Bierwirth (2013) functionally integrate BAP, CAP

and CSP in three phases. In his work on the optimal planning of the seaside operations, Ak (2008) develops a mixed-

integer linear programming (MILP) model that integrates BAP, CAP and CSP. His BACASP model calculates optimal

berthing times, berth allocations and crane number assignments of the vessels, and crane schedules simultaneously

for calculated crane assignments. In this formulation, berth allocation constraints are based on the relative positions

of the vessels in time-space representation, crane scheduling allows crane shifting with no crossing and the objective
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minimizes the sum of the total dwell times of the vessels and penalty caused by the late vessels. As can be noticed,

Ak (2008) with this objective intends to favor fast vessel throughput. While this objective attempts to treat different

vessels fairly, the cost accrued due to the roaming cranes is not considered. Yang (2008) also proposes an MILP

formulation that integrates BAP, CAP and CSP. In this formulation, crane shifting is allowed and the berth allocation

constraints are based on assigning the rectangles of the time-space grid (i.e., position assignments) to the vessels

and the total makespan is minimized as the objective. Unfortunately, the negative effect of crane reallocations is

not considered since crane traveling cost is ignored. In addition, both models can be solved exactly only for small

instances, and therefore the authors propose heuristics for the solution of their formulations.

Regarding the number and mobility of cranes assigned to the vessels, there are different assumptions made in

the literature. Some authors assume that the number of cranes may change dynamically between the minimum and

maximum number of cranes (see, e.g. Park and Kim (2003); Meisel and Bierwirth (2009)). Zhang et al. (2010)

criticize such models by noting that the number of quay cranes assigned to a vessel cannot be changed frequently in

practice due to the significant setup effort and adjustment time needed for moving the quay cranes. They assume that

the number of quay cranes assigned to each vessel can be changed only once before the vessel departs. This motivation

for reducing large setup losses due to the reallocation of quay cranes leads Türkoğulları et al. (2014) to formulate a

time-invariant model where the same subset of quay cranes serves a vessel during its stay at the berth. They essentially

adopt the position assignment settings given in Ak (2008), where he considers continuous quay layout discretized by

means of fixed length sections (for modeling purposes) and dynamic arrivals with time discretized by means of fixed

length unit periods. In other words, in the position assignment formulation the time-space area is divided into unit

rectangles having one berth section as height and one time period as length, which reduces BAP to the positioning of

a certain number of small rectangles within a large rectangle without overlap. Here, each small rectangle represents

a vessel whose height equals to its length measured in the number of berth sections and width equals to its berthing

time measured in the number of periods as illustrated by Ak (2008), and Bierwirth and Meisel (2010). Türkoğulları

et al. (2014) first provide a new position assignment formulation for time-invariant BACAP minimizing the total cost

consisting of the sum of the cost of berthing away from the desired berth section, the cost of late berthing, the cost

of late departures and the cost due to the change in the number of active cranes. Then, they propose an efficient

cutting plane algorithm that benefits from an optimal solution of their BACAP formulation for exactly solving large

BACASP instances. Although this is a very efficient method that can solve realistic instances, the crane assignments

are time-invariant (Bierwirth and Meisel, 2010). This means that the group of cranes and their number assigned to

a vessel remains the same during its stay at the berth. In Türkoğulları et al. (2012) the authors relax time-invariance

assumption and develop an MILP model that considers a time-variant version of the same problem and incorporate

the cost due to the change in the number of assigned cranes. It is also a position assignment formulation minimizing

the total cost but includes the flexibility that the number of active cranes may change dynamically. However, this

approach is still restricted since the setup cost is not considered as realistically as possible and it is assumed that total

setup cost is proportional to the number of setups. In other words, the total setup cost term in the objective function

is based primarily on the frequency that the number of active cranes changes and does not pay attention to issues

such as traveling time and traveling distance of the cranes. Similar issues arise for the integrated formulations of Ak
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(2008) and Yang (2008); they both consider time-variant crane assignments but do not take into account additional

complications due to crane relocations and the resulting cost figures.

In this work, we follow this line of research and introduce a formulation that deeply integrates BAP, CAP, and

CSP (BACASP), as our first major contribution. Our formulation allows the inclusion of realistic costs associated

with crane relocations consisting of both variable and fixed costs. We remark that CSP considered here as a part

of BACASP is similar to bus/train scheduling with cranes corresponding to buses/trains and berthed vessels waiting

for cranes replacing bus stops/train stations. Since there is a distribution of resources, namely cranes, over time,

this is a scheduling problem as well. However, it is simpler than crane operations scheduling and thus named as

CAP(specific) by Bierwirth and Meisel (2010). The crane operation scheduling is defined by Bierwirth and Meisel

(2010, 2015) and Carlo et al. (2013) as the general task scheduling for cranes. As a result, BACASP may be seen as

the deep integration of BAP, CAP and CSP (i.e. these three problems are addressed within a unified framework in the

form of a mathematical optimization decomposition model), where CSP determines the crane-to-vessel assignments

and specific time periods of these assignments when berthing times and locations of the vessels and the number

of cranes allocated to vessels are given. We also point out that this definition of CSP has been used before in the

literature (Park and Kim, 2003; Imai et al., 2008; Ak, 2008; Yang, 2008). The formulation we present in the following

sections is, however, capable of handling various kinds of setup costs due to crane relocations such as the traveling

time and distance, and fixed costs that can incur due to possible crane-specific, vessel-specific, and location-specific

reasons. Our second major contribution is a new exact solution algorithm for BACASP. It is an efficient cutting plane

algorithm, which is based on a decomposition scheme that isolates the determination of crane schedules given the

berthing positions of the vessels and the number of cranes assigned to them. We show that the CSP subproblem is

computationally difficult in general and discuss some special cases where it is easily solvable. We also develop a new

branch-and-bound algorithm using minimum cost flow relaxations and compare its performance with the shortest path

implementation on the state network of a dynamic programming formulation, whose roots are in the earlier work by

Park and Kim (2003).

The remainder of the paper is organized as follows. The next section is devoted to the formulation of the new

model. In Section 3 and Section 4 we explain respectively the new decomposition algorithm that solves BACASP

exactly and an algorithm that gives a quick upper bound on the optimal value. In Section 5 we mainly focus on CSP

and propose approaches for its efficient solution. In Section 6 we present enhancements increasing the efficiency

of the new methods. Computational results demonstrating the efficiency of the proposed approaches are reported in

Section 7. Finally, concluding remarks and future research directions are listed in Section 8.

2. Formulation of the Integrated Model

Our proposed integrated BACASP formulation is mainly based on the following eight assumptions:

1. The planning horizon is divided into time periods of equal length.

2. The berth is continuous and discretized by equal-sized unit berth sections. They are just as large as a single

crane can operate freely in each of them.
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3. Each berth section is occupied by no more than one vessel in each time period.

4. The desired berthing sections of the vessels are known. The preference for a berth section may be due to its

proximity to the portion of the yard where the containers are to be unloaded (loaded) from (into) the vessel.

5. Each quay crane can work on at most one vessel per time period.

6. Each vessel has a minimum and maximum number of quay cranes that can be assigned to it; and it is long

enough to accept the maximum number of cranes.

7. The service of a vessel by the quay cranes starts immediately after its berthing and continues without disruption

until its departure with possible changes in the number of allocated cranes.

8. The net amount of work q cranes can produce while working on the same vessel for one period is qλ crane-

periods. Here, λ is the interference exponent, which can be set to values in (0, 1].

Assumptions 1 through 7 are widely used in the literature and are quite realistic. Assumption 8 is related to

the decrease in the productivity of the quay cranes due to the interference among them and extends the range of

applicability of our model. According to Schonfeld and Sharafeldien (1985) the productivity loss can be modeled

by using an interference exponent that reduces the marginal productivity of quay cranes. For a given interference

exponent λ ∈ (0, 1], the productivity obtained from assigning q cranes to a vessel for one period is given by a total of

qλ crane-periods. This idea is also adopted by Silberholz et al. (1991) to improve the allocation of human resources in

container terminals, and by Oguz et al. (2004) and Dragovic et al. (2006) to describe the berthing process with respect

to the quay crane assignment.

In our solution approach, we decompose the problem into a master problem and a subproblem. The master problem

integrates BAP and CAP, and thus its solution yields only feasible berth allocations and crane number assignments

to the vessels. The subproblem is the CSP and its solution provides a crane schedule minimizing total setup cost due

to crane relocations, given a set of feasible berth allocations and crane number assignments of the vessels. Notice

that, because the optimal value of CSP is relative to the solution of BAP and CAP integration (i.e. BACAP) we can

eventually obtain upper and lower bounds on the optimal value of BAP, CAP and CSP integration (i.e. BACASP).

However, it is possible to gradually improve these bounds to make them converge to each other via a Benders-like

decomposition scheme (Benders, 1962), which are explained in Section 3. We use optimality cuts, which is a known

solution approach for intractable mathematical programming problems. For example, Laporte and Louveaux (1993)

report a successful application of optimality cuts similar to (13) in their early work on stochastic integer programs

with complete recourse.

All BACASP formulations mentioned in the literature review integrate somehow the formulations of three prob-

lems: BAP, CAP and CSP. Hence, one can notice that the essential body of the constraints of BACASP is grouped in

three blocks, each belonging to one of these three problems. The remaining ones are the coupling constraints, whose

role is mainly to attach the blocks. This is also the case for our formulation whose parameters and decision variables

are summarized with their brief descriptions in Table 1 and Table 2, respectively. In Table 1, parameters in Greek

letters are given first in alphabetic order followed by the parameters in Latin letters.

There are many summations with lower and upper limits of the indices, which are long and difficult to follow in

the formulation. We have reformulated them using compact representations for the sake of notational convenience.
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Table 1: Parameters used in our mathematical model

Parameter Definition
αit Arrival parameter, which is set to 1 if vessel i can start berthing in period t
βitt′ Departure parameter, which is set to 1 if vessel i that berths in period t

can depart in period t′

δe
i Upper limit on the deviation of vessel i’s berthing time from ei

δs
i Upper limit on the deviation of vessel i’s berthing position from si

λ Interference exponent, a real number in (0, 1]
θm Setup cost that corresponds to the mth feasible solution of the master problem

computed by solving the Crane Scheduling Subproblem (CSSP)
φe

i Cost of berthing one period later than the expected arrival time for vessel i
φr

i Cost of departing one period later than the due time for vessel i
φs

i Cost of deviating one unit from the desired berthing section for vessel i
B Number of berthing sections
ei Expected arrival time of vessel i
K Number of quay cranes
ki Maximum number of cranes that can be assigned to vessel i
ki Minimum number of cranes that can be assigned to vessel i
`i Length of vessel i measured in terms of the number of discretized quay sections
pi Upper bound on the processing time of vessel i, which is set to

⌈
wi/kλi

⌉
p

i
Lower bound on the processing time of vessel i, which is set to

⌈
wi/k

λ

i

⌉
ri Restarting time of a new journey or departure due time of vessel i
si Desired berthing section of vessel i
T Number of time periods
V Number of vessels
wi Workload of vessel i in crane-periods

Table 2: Decision variables used in our mathematical model

Decision Variable Definition
θ Variable lower bound on the minimum total setup cost
at One if there is a berthing vessel in period t, zero otherwise
dt One if there is a departing vessel in period t, zero otherwise

xi jtt′ One if vessel i berths at section j in period t and departs in period t′,
zero otherwise

yit One if vessel i is in the berth in period t, zero otherwise
ziqt One if the number of cranes assigned to vessel i in period t is q,

zero otherwise

The definitions of these representations are given in Table 3. The quantities replacing these limits are listed in the

first column; their explanations and the original terms they replace are provided in the second and third columns,

respectively. For example, si−δ
s
i and si+δ

s
i appear in the summation limits for berth section index j, and provide lower

and upper bounds on the desired berthing section si of vessel i, respectively. Here, δs
i can be obtained by generating a

feasible solution of BACASP for which the value of the objective function is Z f . Since each unit deviation of vessel

i’s berthing position from the desired one contributes φs
i units to the objective value, δs

i can be set equal to dZ f /φ
s
i e. In

other words, if the total cost were attributed only to this cost component, then the deviation from the desired berthing

position would become equal to δs
i . In a similar fashion, we can set an upper limit on the tardiness of vessel i with
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respect to its expected arrival time ei. It is denoted by δe
i and can be set to dZ f /φ

e
i e, where φe

i is the cost of vessel i’s

berthing one period later than ei. As previously mentioned, a feasible solution of BACASP is needed for obtaining the

values of these limits. We describe an efficient computational procedure for its computation in the following section.

Table 3: Lower and upper limits of the indices

Parameter Explanation Original term
σ1

i The smallest index of the berth section
for vessel i

max
(
1, si − δ

s
i

)
σ2

i The largest index of the berth section
for vessel i

min
(
B − `i + 1, si + δs

i

)
η1

i (t) The earliest period in which vessel i can
depart. Here t is the berthing time of the
vessel

t + p
i
− 1

η2
i (t) The latest period in which vessel i can

depart. Here t is the berthing time of the
vessel

min
(
t + pi − 1,T

)
τi The latest period in which vessel i can

berth
min

(
T − p

i
+ 1, ei + δe

i

)

We begin with the formulation of the objective function. It is the total cost to be minimized and expressed as the

sum of two terms:
V∑

i=1

σ2
i∑

j=σ1
i

τi∑
t=ei

η2
i (t)∑

t′=η1
i (t)

{
φs

i | j − si| + φe
i (t − ei) +φr

i max
(
0, t′ − ri

)}
xi jtt′ + θ. (1)

The first term is obtained by summing up over the vessels the costs of deviation from the desired berthing section si,

the costs of berthing later than the expected arrival time ei (i.e. late arrival), and the costs of departing later than the

departure due time ri that marks the time at which the loading/unloading operation of the vessel should be finished (i.e.

late departure). These three cost components are formulated by means of the binary variable xi jtt′ , which represents

the allocation of berths to vessels for a time interval; it is set to one if vessel i berths at section j from time t until its

departure time t′, and zero otherwise. The second term, θ, represents a lower bound on the minimum total setup cost

due to crane movements.

We adopt the position assignment approach in formulating BAP by means of constraints (2) and (3) given below;

σ2
i∑

j=σ1
i

τi∑
t=ei

η2
i (t)∑

t′=η1
i (t)

xi jtt′ = 1 i = 1, . . . ,V, (2)

V∑
i=1
ei≤t̂

min(B−`i+1, ĵ)∑
j=max(1, ĵ−`i+1)

min(τi,t̂)∑
t=ei

η2
i (t)∑

t′=max(η1
i (t),t̂)

xi jtt′ ≤ 1 ĵ = 1, . . . , B; t̂ = 1, . . . ,T. (3)

They respectively enforce that each vessel is allocated to a berth section for a time interval (i.e., from t to t′), and a

berth section can be occupied by at most one vessel in any time period. In fact, they help positioning rectangles over
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the time-space diagram without any overlap. The next three sets of constraints are related to CAP.

ki∑
q=0

ziqt = 1 i = 1, . . . ,V; t = ei, . . . ,T, (4)

T∑
t=ei

ki∑
q=0

qλziqt ≥ wi i = 1, . . . ,V, (5)

V∑
i=1
ei≤t

ki∑
q=0

qziqt ≤ K t = 1, . . . ,T. (6)

Binary decision variable ziqt equals one if the number of cranes assigned to vessel i in period t is q, zero otherwise.

Constraints (4) determine the number of cranes assigned to a vessel in a period, while (5) guarantee that the as-

signments satisfy the required workload of the vessels (measured by crane-periods). Constraints (6) ensure that the

number of assigned cranes does not exceed the number of available ones. Notice that assigning q cranes to vessel i in

time period t does not necessarily imply a crane productivity of q crane-periods. This is because of the productivity

loss due to the interference of the quay cranes. If the interference exponent λ is less than one, i.e. if there is a loss due

to the interference between the cranes, the productivity obtained by assigning q cranes to vessel i in time period t is

qλ, which is less than q.

BAP and CAP constraints given above are independent of each other. To couple them we define a new binary

decision variable yit. It is an auxiliary variable and its value equals one if vessel i is berthed in period t, zero otherwise.

Equalities

yit̂ =

σ2
i∑

j=σ1
i

min(τi,t̂)∑
t=ei

η2
i (t)∑

t′=max(η1
i (t),t̂)

xi jtt′ i = 1, . . . ,V; t̂ = ei, . . . ,T, (7)

relate variables yit with variables xi jtt′ . Lower and upper bound inequalities (8) on the number of cranes used for vessel

i in period t,

kiyit ≤

ki∑
q=0

qziqt ≤ kiyit i = 1, . . . ,V; t = ei, . . . ,T, (8)

form the relationship between yit and ziqt. Namely, no crane is assigned to a vessel when it is not berthed and the

number of assigned cranes must lie between its lower and upper bounds in each period.

CSP constraints are essential for controlling the crane assignments over time. We formulate them by means of

new binary decision variables at and dt. at equals one if there is an arrival to the berth in period t, and zero otherwise.

Similarly, dt equals one if there is a departure from the berth in period t, and zero otherwise. Constraints (9) identify

whether or not there is an arrival in period t. They are followed by constraints (10), which are their departure-related
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versions.

at ≤

V∑
i=1

σ2
i∑

j=σ1
i

η2
i (t)∑

t′=η1
i (t)

αit xi jtt′ ≤ Vat t = 1, . . . ,T, (9)

dt′ ≤

V∑
i=1

σ2
i∑

j=σ1
i

τi∑
t=ei

βitt′ xi jtt′ ≤ Vdt′ t′ = 1, . . . ,T. (10)

Notice the use of the arrival and departure coefficients αit and βitt′ , which determine whether or not vessel i can begin

or end berthing in period t. Their values are set as:

αit =

 1 if ei ≤ t ≤ τi

0 otherwise

and

βitt′ =

 1 if η1
i (t) ≤ t′ ≤ η2

i (t)

0 otherwise
.

The two sets of constraints

ki∑
q=0

qziqt −
ki∑

q=0
qziq(t−1) ≤ ki (at + dt−1) i = 1, . . . ,V; ei + 1 ≤ t ≤ T, (11)

ki∑
q=0

qziq(t−1) −
ki∑

q=0
qziqt ≤ ki (at + dt−1) i = 1, . . . ,V; ei + 1 ≤ t ≤ T, (12)

relate vessel arrivals and departures with the number of assigned quay cranes: the number of cranes assigned to vessel

i can change from period t − 1 to period t only if arrival of another vessel occurs in period t or departure of another

vessel occurs in period t − 1. In fact, these inequalities follow from the linearization of the dominance relations∣∣∣∣∣∣∣ ki∑
q=0

qziqt −
ki∑

q=0
qziq(t−1)

∣∣∣∣∣∣∣ ≤ ki (at + dt−1) i = 1, . . . ,V; ei + 1 ≤ t ≤ T.

The last set of constraints determines the minimum total crane setup cost by setting the value of variable θ to

the largest possible lower bound on it. Since the decision variables in constraints (2)–(12) are binary, there is only a

finite number of values for variables xi jtt′ and ziqt that satisfy these constraints. Let m = 1, . . . ,M index these feasible

solutions, and consider the set of inequalities

θ ≥ θm − θm


V − V∑

i=1

∑
{ j,t,t′:xm

i jtt′=1}

xi jtt′

 +

V∑
i=1

(T − ei + 1) −
T∑

t=ei

∑
{q:zm

iqt=1}

ziqt


 m = 1, . . . ,M, (13)

where θm denotes the minimum total setup cost obtained by solving the crane scheduling subproblem (CSSP) for

given xm and zm. Note that the summation of the x-variables on the right-hand side of (13) is V for x = xm, and is

strictly less than V for any other feasible x , xm. Similarly, the summation of the z-variables on the right-hand side

9



of (13) is T − ei + 1 for z = zm, and is strictly smaller for any other feasible z , zm. Thus, the term in square brackets

on the right-hand side of (13) is zero for (x = xm, z = zm), and is strictly positive for any other feasible solution of the

problem. Hence, the mth constraint of type (13) reduces to θ ≥ θm for the mth feasible solution, and is redundant for

any other feasible solution.

3. Exact Solution Algorithm

Observe that the upper limit M of index m, and thus the number of constraints (13), is finite. Observe also that the

objective function (1), which is to be minimized, is the total cost including θ as a cost term, and constraints (13) ensure

that θ equals the setup cost corresponding to an optimal solution of the crane scheduling subproblem. Consequently,

it is possible to generate all constraints of type (13) to obtain a monolithic formulation, in principle. Then, one can

solve the formulation that minimizes (1) subject to the constraints (2)–(13) to find an optimal solution of BACASP.

Unfortunately, this is possible only for very small instances, as the number of inequalities (13) can be exponential.

A typical approach considered in similar cases is to decompose the problem into a relaxed master problem and

a subproblem whose solution gradually generates the constraints, namely cutting planes, to be added to the relaxed

master problem until an optimal solution is found. To be more specific, the relaxed master problem at some stage

consists of (1)–(12) with the generated inequalities of type (13) up to that stage. Moreover, the subproblem becomes

simply the determination of an optimal crane schedule relative to a set of given feasible berth allocations and crane

number assignments. We formally express the steps of this approach with Algorithm 1, where H(x, z, θt) represents

the right-hand side of inequality (13) with θt instead of θm.

Algorithm 1
Initialization UB← ∞, LB← −∞, θ0 ← −∞,m← 1
Initialize the master problem with constraints (2)–(12)
loop

Solve the master problem, min (1) subject to (2)–(12) and θ ≥ H(x, z, θt) t = 0, 1, . . . ,m − 1 to optimality.
Record optimal x, z, i.e. optimal solution, as xm, zm.
Record the optimal objective value as the current lower bound LB.
Compute the minimum total setup cost θm corresponding to xm, zm by running Algorithm 2.
Calculate O(xm, zm, θm), the objective value of the master problem corresponding to xm, zm, θm by evaluating (1).
if O(xm, zm, θm) ≤ UB then

UB← O(xm, zm, θm), x∗ ← xm, z∗ ← zm, θ∗ ← θm.
end if
if LB = UB then

Stop; x∗, z∗, θ∗ are optimal.
else

Add constraint (13) corresponding to xm, zm, θm to the master problem.
m← m + 1.

end if
end loop

As can be noticed, we initially relax constraints (13) and solve the relaxed master problem. The optimal objective

value of the relaxed master is a lower bound (LB) on the optimal value of BACASP. We calculate the minimum
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total setup cost corresponding to the current solution (xm, zm) using Algorithm 2 presented in Section 5.2.3, which

determines an optimal crane schedule corresponding to (xm, zm). Quantity O(xm, zm, θm) corresponds to the value of

the objective function obtained with feasible solution xm, zm, θm of BACASP and thus forms an upper bound (UB) on

its optimal value. We update the UB if we obtain a better (i.e. smaller) upper bound. If the LB is equal to the UB,

we terminate the algorithm as the current solution is an optimal solution of BACASP. Otherwise, we add constraint

(13) corresponding to xm, zm, θm to the master problem and solve it again. Figure 1 includes a diagram illustrating this

communication between the relaxed master problem and the subproblem.

Solve

min (1)
s.t. (2) - (12)

! " H(x,z,!t)  t = 0, 1, 2, ..., m-1

   Solve 

   CSSPm

  !m

(xm,  zm)

Figure 1: Information transfer between the relaxed master problem and subproblem in Algorithm 1

4. Generating a Feasible Solution of BACASP

We use δs
i and δe

i in the lower and upper limits of several summations of the BACASP formulation given with

(1)–(13). The calculation of these quantities requires the generation of a feasible solution of BACASP. To this end

we adapt the heuristic proposed in Türkoğulları et al. (2014) for solving a time-invariant version of BACASP, where

it is assumed that the crane group and the number of cranes assigned to a vessel remain unchanged during the time

interval the vessel stays berthed. A crane group is defined as a set of cranes that are pairwise adjacent to each other

in the sequence with no other crane in between. For example, {1, 2, 3} and {5, 6, 7, 8} are crane groups, but {1, 2, 4}

and {5, 7, 8, 10} are not. Note that the crane group assigned to a vessel may change even if there is no change in the

number of cranes (i.e., the size of the group). The proposed heuristic considers each period t consecutively starting

at t = 1. It is based on the idea of assigning vessels to available berth sections with minimum possible cost. This is

accomplished by first determining in each period t the vessels that have arrived prior to and during period t and have

not been assigned a berthing position yet. Among these vessels, to avoid the cost of late departure, priority is given

to the ones which would depart after their due time in case the minimum number of cranes are assigned to them. The

missing details, which we omit here for the sake of brevity, can be found in Türkoğulları et al. (2014). Although it is

assumed in Türkoğulları et al. (2014) that productivity is proportional to the number of assigned cranes, it is possible

to adapt the heuristic easily to the situation where there exists a loss in productivity due to crane inferences as we

assume in this paper.

5. Determination of the Total Setup Cost θm by Solving the Crane Scheduling Subproblem

The subproblem considered in this section, which we refer to as the Crane Scheduling Subproblem (CSSP), focuses

on assigning quay cranes to optimal work positions in each period given the berth allocations of the vessels and number
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of cranes that will serve them (i.e., a feasible solution of BACAP) with the objective of minimizing the total setup

cost due to crane relocations on the berth over the planning horizon. We discuss two different solution approaches

to solve a different network optimization problem. In the first approach, we construct a layered network using vessel

positions and formulate a minimum cost network flow problem with additional constraints to prevent arc pairs with

positive flows crossing each other, in an optimal solution. The new algorithm is based on the solution of this restricted

flow problem by eliminating the crossings that occur in an optimal solution of the ordinary minimum cost flow

problem obtained after relaxing constraints preventing crossing by branch-and-bound. In the second approach, we also

construct a layered network, but this time the network represents the states of a dynamic programming formulation,

which is also used by Park and Kim (2003). The determination of an optimal crane schedule becomes then equivalent

to the solution of a single-pair shortest path problem. Both formulations make the following assumptions:

1. A setup cost incurs if one of the following three events occurs: a crane starts working on a new vessel when it

was serving another one, a crane is assigned to a vessel when it was idle, or a crane stops serving a vessel and

becomes idle.

2. Cranes can serve any berthed vessel but are restricted to move along a single line, and hence cannot pass each

other.

3. Cranes are initially labeled according to their sequence along the berth starting from the beginning of the berth.

4. In any period, idle cranes wait for their new assignments at the available positions with given capacities located

before and after the vessels.

5. Cranes are identical; the differentiation in the setup costs is only due to the difference in their working condi-

tions.

The setup cost mentioned in the first assumption is not necessarily proportional to the travel distance or time, and

can include a fixed cost due to vessel, crane and position-specific characteristics. The existence of constraints used to

prevent crossings makes CSSP intractable depending on the underlying cost structure.

5.1. The Crane Scheduling Subproblem is NP-complete

Lim et al. (2004), Zhu and Lim (2006), and Lee et al. (2008) study two variants of CSSP. In the work of Lim

et al. (2004) the objective is to maximize the total throughput, namely the number of vessels served. The objective

becomes the minimization of the maximum completion time, namely the departure time of the last vessel, in the

works of Zhu and Lim (2006) and Lee et al. (2008). The authors have shown that these variants are NP-complete

and computationally intractable. The objective of CSSP in the form we consider here is the minimization of the total

setup cost and results in a decision version of the problem which is different from the ones of Lim et al. (2004), Zhu

and Lim (2006) and Lee et al. (2008). As will be seen, in our proof we use an auxiliary problem, the budget restricted

version (CSSP-BR), where each crane has a fixed budget to spend on the setups. We define the decision problems

associated with CSSP and CSSP-BR in the following.

CSSP Instance: There are V ∈ Z+ vessels, which are served by K ∈ Z+ available cranes in L ∈ Z+ time intervals.

The setup cost of serving vessel j after serving vessel i by some crane is ci j ∈ Z+, i, j = 0, 1, . . . ,V; i , j. Here, c0 j
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is the setup cost of a crane when it starts to work on vessel j initially. A similar definition can be made for c j0 when

a crane goes idle. In addition, there is a given number C ∈ Z+, and the number of cranes required by vessel i during

time interval l is gil ∈ Z+, i = 1, 2, . . . ,V; l = 1, 2, . . . , L.

Question: Is there a temporal allocation of the quay cranes that satisfy vessels’ needs within the planning horizon

such that there is no crossing between the crane relocation paths and total setup cost is less than C?

CSSP-BR Instance: The same as the CSSP instance except that the number C is replaced with Ck ∈ Z+, k = 1, . . . ,K.

Question: Is there a temporal allocation of the quay cranes that satisfy vessels’ needs within the planning horizon

such that there is no crossing between the crane relocation paths, and the total setup cost for each crane k is less than

Ck, k = 1, . . . ,K?

Proposition 1. CSSP-BR is NP-complete.

Proof. Given in the Appendix.

As a consequence of the above proposition, it is possible to say that for C ≥
∑K

k=1 Ck the set of “yes” instances of

CSSP includes those of CSSP-BR’s. This is a pointer to the NP-completeness of the CSSP, which we show with the

following proposition. The proof for the NP-hardness is obtained by reducing CSSP-BR polynomially to CSSP.

Proposition 2. CSSP is NP-complete.

Proof. Given in the Appendix.

5.2. Minimum Cost Noncrossing Flow Formulation

The minimum cost noncrossing flow problem (MCNFP) formulation of CSSP is based on a directed, layered,

single source and single sink network as shown in Figure 2. The only node of the first layer is the source node with

supply equal to the total number of quay cranes. Similarly, the last layer consists of a single node as well; it is the

sink node with demand equal to the total number of quay cranes. The remaining ones belong to internal layers and

are pure transshipment nodes.

Except the first and last layers, each one of L layers represents a snapshot of the berth for the time elapsing between

two events, which can be either an arrival or departure of a vessel. In other words, layer l exists in the network if a

vessel berths or departs changing the current snapshot; it is followed by a new one. Notice that the number of cranes

assigned to the berthed vessels can change only between consecutive layers, since such a change can only be caused

by either an arrival or departure.

Each vessel berthed in layer l is represented by a node, whose demand is equal to the number of assigned cranes.

These nodes are called vessel nodes and they are ordered starting from the bottom of the layer to the top in accordance

with their position in the berth from the beginning to the end. There is a second type of node below and above each

vessel node. They are called waiting nodes and represent the waiting area for idle cranes. In any layer, the number

of waiting nodes is one larger than the number of vessel nodes. To summarize, by letting nl denote the number of

berthed vessels in time interval l, there are nl vessel nodes and nl + 1 waiting nodes. Hence, the total number of nodes

in layer l is 2nl + 1 and nodes with an even index (i.e., 2, 4, . . . , 2nl) correspond to a vessel node, while those with an
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odd index (i.e., 1, 3, . . . , 2nl +1) represent waiting nodes with finite capacities. The capacities of the first (last) waiting

node in each layer is equal to the number of available berth sections between the beginning (end) of the berth and

the first (last) vessel, whereas the capacity of an intermediate waiting node is equal to the number of available berth

sections between two consecutive vessels. If there is not enough room in one of these locations, then the capacity of

the corresponding node is set to zero, which is a consequence of Assumption 2 given at the beginning of Section 2; a

berth section can be occupied by only one quay crane.

Each vessel node in layer l has two copies. Therefore, we name the first one as the original vessel node and the

duplicate as the copy vessel node. The original node il and its copy i′l , for even il are connected by arc (il, i′l). Since

the demand of an original vessel node in layer l is equal to the number of assigned cranes gil, so is the demand of a

copy vessel node. Therefore, both the lower bound uili′l
and upper bound uili′l on the capacity of the arc (il, i′l) are set to

gil, which implies that the flow on the arc (il, i′l) for even il is equal to gil. Similar to the vessel nodes, waiting nodes

also have duplicates. An original waiting node il and its copy i′l for odd il are connected by an arc whose capacity

has a lower bound uili′l
= 0 and an upper bound uili′l = hil , which is the capacity of the waiting area il, namely the

capacity of waiting node il. Notice that il is odd. In short, nodes have associated weights in their original form. Vessel

nodes have crane demands, and waiting nodes have capacities. By using duplicates, vessel nodes are transformed

from transshipment sinks to pure transshipment nodes, and waiting nodes are transformed into uncapacitated, pure

transshipment nodes. This construction is illustrated in Figure 2.

Figure 2: Network presentation of the crane scheduling subproblem

Let V, V′, W, and W′ denote the set of original vessel nodes, copy vessel nodes, original waiting nodes, and
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copy waiting nodes, respectively. Then, the overall network N has (V ∪V′ ∪W ∪W′ ∪ {s1, s2}) nodes, where s1

and s2 are the source and sink nodes, respectively. By generating the duplicates of the vessel and waiting nodes, all the

nodes become transshipment nodes with zero demand or supply except s1 and s2. The supply of s1 and the demand

of s2 are equal to K, that is the total number of cranes. There is an outgoing arc connecting s1 and an original node of

the first layer, and an incoming arc connecting a copy node of layer L to s2. The capacity of these arcs, as well the one

of arcs (i′l , jl+1), which connect a copy node i′l in layer l with an original node jl+1 in layer l + 1, have a lower bound

of zero and an upper bound of K.

As can be noticed, the flows on the arcs of this network correspond to crane relocations or movements from waiting

areas to vessels, from vessels to vessels (this includes the case where a crane continues serving the same vessel or

starts serving a new vessel at the same berth section), or from vessels to waiting areas in each time interval. The costs

associated with these relocations are defined as unit flow costs. The unit flow cost on arc (i′l , jl+1) between two layers,

where 1 ≤ i′l ≤ 2nl + 1 and 1 ≤ jl+1 ≤ 2nl+1 + 1 is equal to ci′l jl+1 . Similarly, the unit flow cost of the arcs between the

source node s1 and the original nodes in the first layer is given as cs1i1 , while that of the arcs between the copy nodes

in layer L and the sink node s2 is equal to ciL s2 . The arcs (il, i′l) in each layer l = 1, . . . , L have a zero unit flow cost,

because these arcs are only used for treating vessel and waiting nodes as transshipment nodes.

The subproblem becomes an ordinary minimum cost flow problem (MCFP) on the described layered network if

crane crossing is allowed (i.e. Assumption 2 given in Section 5 is relaxed), and it can be solved very efficiently (Ahuja

et al., 1993). The objective function

θ =

2n1+1∑
i1=1

cs1i1 fs1i1 +

L∑
l=1

2nl+1∑
il=1

2′nl+1∑
i′l =1′

cili′l fili′l +

L−1∑
l=1

2′nl+1∑
i′l =1′

2nl+1+1∑
il+1=1

ci′l il+1 fi′l il+1 +

2′n1+1∑
i′L=1

ci′L s2 fi′L s2 , (14)

which represents the total cost of flows in the network, is essentially the total setup cost due to the crane relocations.

Notice that the network has only arcs (il, i′l), therefore the second term of (14) computes only flow cost on these arcs

not on all arc combinations, which can be guaranteed by setting the cost of the arcs different from (il, i′l) to arbitrarily

large values. The total flow cost is minimized subject to the flow balance equations

2n1+1∑
i1=1

fs1i1 = K (15)

fili′l −
2′nl−1+1∑
i′l−1=1′

fi′l−1il = 0 il = 1, . . . , 2nl + 1; l = 2, . . . , L (16)

2nl+1+1∑
il+1=1

fi′l il+1 − fili′l = 0 i′l = 1′, . . . , 2′nl + 1; l = 2, . . . , L − 1 (17)

−

2′nL+1∑
i′L=1′

fi′L s2 = −K, (18)

and lower and upper bounds on the flow variables
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0 ≤ fs1i1 ≤ K i1 = 1, . . . , 2n1 + 1 (19)

uili′l
≤ fili′l ≤ uili′l il = i′l = 1, 2, . . . , 2nl + 1; l = 2, . . . , L − 1 (20)

0 ≤ fi′L s2 ≤ K i′L = 1′, . . . , 2′nL + 1, (21)

which are set to uili′l
= uili′l = gil for il = i′l = 2, 4, . . . , 2nl, uili′l

= 0 and uili′l = hil for il = i′l = 1, 3, . . . , 2nl + 1, for

calculating θm, as mentioned earlier. Briefly, the determination of θm for the new optimality cut consists of solving

the MCFP formulated as the minimization of (14) subject to (15)–(21), when crossing of crane relocation paths (i.e.

crossing arcs of the distinct s1, s2-flow paths) is allowed.

Unfortunately, this is not possible in reality; quay cranes are restricted to move on a single line and thus the

relocation paths cannot cross, as also stated with Assumption 2 in Section 5. In other words, it is not enough to solve

the MCFP, which consists of the minimization of (14) subject to the constraints (15)–(21), to compute θm. Additional

constraints preventing arc crossings must be considered. As a consequence, it is possible to say that CSSP is in fact

equivalent to a MCFP with additional constraints allowing only noncrossing arcs to have positive flow values in an

optimal solution. This is what we call a minimum cost noncrossing flow problem (MCNFP).

5.2.1. Reducing the number of crossings

An optimal solution of the MCFP defined by (14)–(21) may have crossings. We propose a branch-and-bound

algorithm that implicitly considers additional constraints and eliminates all crossings between the paths of the cranes

occurring in an optimal solution. The efficiency of this algorithm, which eventually solves the MCFNP of CSSP,

depends on the number of crossings that can occur in an optimal solution of MCFP, and may be considerably improved

if some of the crossings can be detected and prevented in advance during the construction of the network. This is in

fact possible as the following proposition shows.

Proposition 3. Arc (i′l−1, jl) can be removed from network N if the demand of vessel nodes lying below (above) node

jl in layer l is larger than the maximum possible inflow to node i′l−1 and all other nodes below (above) it in layer l− 1.

Proof. Given in the Appendix.

Although it provides a sufficient condition for an arc to be crossed, all possible crossings cannot be prevented in an

optimal solution of the MCFP by the condition described in the proposition. Nevertheless, it can reduce the number

of the crossings by neglecting arcs in the network. As a result, the efficiency of the branch-and-bound method may

increase not only because the network size (i.e. the number of arcs) becomes smaller, but also a significant number

of potential branches (i.e. crossings) of the branch-and-bound tree can be eliminated a priori. Our implementation

includes a preprocessing phase that uses this rule.

5.2.2. A Polynomially Solvable Special Case

Let us assume that the nonnegative setup costs are symmetric and additive, namely
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clk = ckl, (22)

clk =

k−1∑
j=l

c j( j+1), (23)

for an ordering p1, p2, . . . , pk of crane positions along the berth, where p1 and pk are, respectively, the nearest and the

farthest positions with respect to the beginning of the berth. Here, ci j is the setup (relocation) cost associated with a

crane that finishes its work on a vessel berthed at position pi and starts to work on a vessel berthed at position p j.

Proposition 4. If setup costs are symmetric and additive, the MCFP has an optimal solution with no crane path

crossings.

Proof. Given in the Appendix.

Because of Proposition 4 it is possible to clean-up all the crossings in an optimal solution of the MCFP and obtain

an alternate optimal solution in polynomial time (i.e. O(VL) where V and L are respectively the number of vessels and

layers) when the setup costs are symmetric and additive. Notice that the setup costs are symmetric and additive when

they are proportional to crane travel distances or times, which makes this proposition widely applicable in practice.

Furthermore, the quay crane scheduling problem studied in Ak (2008) can be obtained by

1. redefining vessels as berth sections that require work,

2. considering time periods instead of intervals,

3. allowing at most one crane to work at any berth section, namely sending exactly one crane to any berth section

that requires work in any period,

4. setting ci j = |i − j|, which is the number of berth sections between sections i and j.

5.2.3. Branch-and-Bound Using the Minimum Cost Flow Relaxation

Recall that each crane is labeled according to its initial position along the berth, starting from the one nearest to

the beginning of the berth. We say that two vessels are properly aligned in a time interval if the label of the rightmost

crane assigned to the vessel in the left position is less than the label of the leftmost crane assigned to the vessel in the

right position. Notice that the proper alignment of the berthed vessels in an optimal solution of the MCFP corresponds

to an optimal solution with no crossings. Unfortunately, such an optimal solution is not guaranteed in general. Hence,

we propose the branch-and-bound scheme given below as Algorithm 2.

Algorithm 2 essentially corrects the crossings between the paths of the cranes that occur in an optimal solution

of the MCFP. Obviously, the paths of two cranes can cross more than once. Since path crossings imply arc crossings

between two consecutive layers of the network on the path of two cranes, it is possible to focus on a single crossing

each time there is need for branching at a node of the branch-and-bound tree. The next proposition shows that this

branching strategy works.
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Algorithm 2
Initialization v← 1, LB = 0,UB = ∞

Step 1:
Solve the problem associated with node v of the branch-and-bound tree
if the problem associated with node v of the branch-and-bound tree is infeasible then

Remove node v from node list
end if
l = 2
while l ≤ L do

for each copy (vessel or waiting) node i′l−1 in layer l − 1 do
for each positive flow fi′l−1 jl to an original (vessel or waiting) node jl in layer l do

if there is also a positive flow fk′l−1ml from a node k′l−1 with kl−1 < il−1 (equivalently k′l−1 < i′l−1) to
node ml with ml > jl, or from a node k′l−1 with kl−1 > il−1 (equivalently k′l−1 > i′l−1) to node ml with
ml < jl then

Remove node v from node list
Add nodes |node list| + 1, |node list| + 2 to node list with constraints fi′l−1 jl = 0, fk′l−1ml = 0
respectively
Record the optimal objective value at node v, Zv as the value of the nodes |node list| + 1,
|node list| + 2. Go to step 2.

end if
end for

end for
Increment the layer counter by setting l← l + 1

end while
The solution of the node is feasible. Remove node v from node list
if (UB > Zv) then

UB← Zv, f ∗ ← f
end if
Step 2:
Let Z be the minimum of the values of the nodes in node list.
if Z > LB then

LB← Z
end if
if the value of a node is larger than or equal to UB then

remove that node from the node list
end if
if LB = UB then

f ∗ is optimal; Stop
end if
Find node v in node list with the minimum value
if |node list| is zero then

f ∗ is optimal; Stop
else

Execute Step 1
end if
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Proposition 5. An optimal crane schedule that satisfies the proper alignment constraint can be obtained by means of

Algorithm 2.

Proof. Given in the Appendix.

5.3. Shortest Path Formulation

To formulate the CSSP as a shortest path problem we construct the layered network N =
(
V ∪ {s1, s2},A

)
. The

layers represent again the L intervals during which there is no change in the berthed vessels. Each node inV in layer

l is for a crane-to-vessel assignment combination and arcs inA are for the relocations between the layers. The nodes

s1 and s2 are, respectively, the source and sink nodes. There is an arc connecting s1 to the nodes of layer 1 and the

nodes of layer L to s2. Each combination represents a sequence of the cranes along the berth after they are allocated

to the vessels subject to the non-crossing constraints.

Note that the network N is a representation of the states of dynamic programming (DP) formulation of (Park

and Kim, 2003), which we briefly describe here to serve as a benchmark for our novel branch-and-bound algorithm

explained in the previous section. Intervals are the stages and the sequence of the assigned cranes in an interval are

the states. Stages are connected with the changes in the crane sequences; each has a cost equal to the sum of the setup

cost it requires. The recursion given in Park and Kim’s formulation can be restated as

TS C(l) = min
i=1,2,...,S l; j=1,2,...,S l+1

{S C(i, j) + TS C(l + 1)} l = 0, 1, . . . , L. (24)

Here, S l and S l+1 are the labels of non-crossing sequences at layers l and l + 1, TS C(l) is the minimum total setup

cost for periods l, l + 1, . . . , L and S C(i, j) is the cost of the setups required to obtain crane sequence j from sequence

i, which can be calculated by summing up the individual costs associated with the setups transforming sequence i to

sequence j. Clearly, layers 0 and L + 1 have only single nodes, namely s1 and s2 representing initial and terminal

crane sequences. Hence, TS C(L + 1) = 0 and the minimum total setup cost θm = TS C(0).

The size of the network N depends on the number of non-crossing sequences (i.e., states) S l, which gives the

number of vertices at layer l because it has
∑L

l=1 S l + 2 vertices and
∑L−1

l=1 S lS l+1 + S 1 + S L arcs, which can be very

large as a consequence of the following proposition.

Proposition 6. Let |V| and |A| denote the size of V and A respectively, and let nl denote the size of Vl, the set of

vessels berthed in interval l. Then,

|V| =

L∑
l=1

(K − ∑
i∈Vl

gil + nl

nl

)
(25)

|A| =

L∑
l=0

(K − ∑
i∈Vl

gil + nl

nl

)(K − ∑
i∈Vl+1

gil+1 + nl+1

nl+1

)
, (26)

with the convention thatV0 = VL+1 = ∅.

Proof. Given in the Appendix.
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In order to clarify the implication of the above proposition let us consider the pathological example where the

number of vessels V is equal to the number of cranes K, which is equal to the number of intervals L. Let us assume

that there is exactly one new arrival at the beginning of each interval and vessels stay berthed until the end of the

planning horizon. Let us also assume that each vessel demands exactly one crane per interval. In other words, in

interval l there are l vessels and they are served by l cranes for l = 1, 2, . . . , L. Then, |V| =
K∑

l=1

(
K
l

)
= 2K . Also,

|A| =
K−1∑
l=0

(
K
l

)(
K

l+1

)
+ K, which is larger than

K−1∑
l=0

K
K−l

(
K−1

l

)(
K

l+1

)
. This value is clearly larger than

K−1∑
l=0

(
K−1

l

)(
K

l+1

)
, which is

equal to
(

2K−1
K

)
. In short, for the given example |A| ≥

(
2K−1

K

)
.

6. Algorithm and Model Improvements

In this section we present some ideas that improve the performance of our new method. In order to decrease the

number of cuts generated in Algorithm 1 we relate θ with ziqt variables. The idea is to set a lower bound on the setup

cost θ using the number of cranes assigned to each vessel i in each time period t. The change in the number of cranes

assigned to a vessel in two successive periods, or the decrease in the total number of cranes used by the vessels in two

successive periods, sets a lower bound on the total setup cost. Crane assignments that give large setup costs are not

chosen by Algorithm 1 because inequalities (27) and (28) that yield the lower bound (29) on the setup cost θ enforce

it to take high values for these crane assignments.

Notice that if the number of cranes used by vessel i increases by ρit from period t − 1 to period t, the number of

setups should increase by ρit. Moreover, if the total number of cranes used by the vessels decreases by ψt from period

t − 1 to period t, a setup cost incurs again because at least ψt cranes should stop serving vessels. It is important to

realize that if we sum all ρit and ψt, there is no double counting of setups because ρit is related to the assignment of

new cranes to vessel i and ψt is related to the movement of cranes from a vessel to become idle at a waiting area. In

other words,

ρit ≥

ki∑
q=0

qziqt −

ki∑
q=0

qziq(t−1) i = 1, . . . ,V; t = ei + 1, . . . ,T (27)

ψt ≥ −

V∑
i=1
t≥ei

ki∑
q=0

qziqt +

V∑
i=1

t−1≥ei

ki∑
q=0

qziq(t−1) t = 2, . . . ,T, (28)

from which the following lower bound on θ is obtained:

θ ≥ Cmin

 V∑
i=1

ki∑
q=0

qziqei +

V∑
i=1

T∑
t=ei+1

ρit +

T∑
t=2

ψt

 . (29)

Here, Cmin is the smallest unit setup cost, i.e. Cmin = mini, j{ci j}.

We propose an efficient strategy in order to accelerate Algorithm 1. At each iteration, instead of solving BACAP

exactly, we first determine a feasible solution and calculate the corresponding real setup cost. Then, we add the

optimality cut to the problem if the real setup cost associated with the cut is larger than the setup cost estimated by
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the current optimal θ value. Notice that if the real setup cost corresponding to the cut is equal to the setup cost given

by the current master problem, the cut is not added to the master problem and the current master problem is used for

finding the next cut. The solution process continues from the last stopping point. We update the upper bound if the

new cut provides a better one. Since the master problem is solved at each iteration, we obtain a lower bound for the

problem as well. In order to define the optimality cuts we use the number of cranes assigned to vessel i in period t

with the binary variable ziqt. Yet another improvement is possible when we use the integer variable yit, which is the

number of cranes assigned to vessel i in period t instead of ziqt while solving the main problem without any cuts.

We also propose the following enhancement for our branch and bound based CSSP solution procedure. Notice that

the definition of our setup cost is general; it also covers costs that are not necessarily proportional to the travel distance

or time. However, even for cases where the setup cost is not proportional to the travel distance or time, we slightly

perturb the cost figures with very small costs proportional to the travel distance. That way, among the alternative

solutions of the minimum cost flow problem the ones where cranes travel less (i.e. with fewer crossings) are favored.

Consequently, the number of nodes in the branch-and-bound tree can be decreased. Notice that the perturbing cost

figures should be small enough so that there is no unwanted change in the desired real cost structure which may not

be proportional to the travel distance or time.

7. Computational Study

In this section we perform computational tests in order to assess the performance of the new model and solution

methods. They can be grouped in two major sets. The first one is realized with a subset of the test instances listed

in Table 4. They are given in (Zhang et al., 2010) and belong to a real container terminal. Also, they have been used

before for the same purpose in some of the works, and thus they can be treated as standard benchmark problems. We

select seven instances with V = 3, 6, 9, 12, 15, 18, 21 vessels. The second set consists of larger test problems. They

are generated randomly, mainly for pushing the new methods to their limits.

In Table 4, si and ei refer to the desired berth section and arrival time of vessel i, respectively. ri refers to the due

time of vessel i. For instance s1 = 13 means that the desired berthing section of the first vessel is the beginning of

berth section 13. Similarly, e1 = 1 means that the arrival time of the first vessel is the beginning of the first time period.

The cost coefficients associated with berthing away from the desired berth section, late berthing, and late departure

are selected as φs
i = 1000, φe

i = 1000, and φr
i = 2000. We assume that the setup costs related to crane relocations

are all equal and have value 50. As mentioned previously, this choice does not make CSSP polynomially solvable

since the additivity condition of the costs is violated. In all instances there are K = 12 cranes, B = 24 berth sections

each having a length of 50 meters, and T = 200 periods each corresponding to one hour. The interference exponent

λ is set to 0.95 during the experiments, except the ones whose results are reported in Table 11 where λ = 1. The

experiments are carried out on a computer with Intel Xeon 3.16 GHz processor and 32 GB of RAM working under

Windows 2003 Server operating system. We run commercial solver CPLEX 12.6 on single core to solve linear and

integer programming problems.
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Table 4: Realistic vessel data given in (Zhang et al., 2010)

Vessel `i ki ki si ei ri wi Vessel `i ki ki si ei ri wi

1 3 2 2 13 1 21 18 12 5 2 4 17 78 104 66
2 7 3 6 2 1 26 96 13 7 3 6 15 86 112 109
3 3 2 2 14 2 16 11 14 8 3 7 10 90 112 84
4 8 3 7 11 2 25 113 15 5 2 4 19 94 105 22
5 6 3 5 12 18 51 113 16 4 2 3 16 102 122 31
6 4 2 3 13 22 41 25 17 4 2 3 12 110 129 36
7 7 3 6 9 35 46 18 18 7 3 6 6 122 149 108
8 8 3 7 5 38 54 27 19 3 2 2 18 122 136 13
9 6 3 5 6 50 79 114 20 4 2 3 1 152 183 49

10 6 3 5 16 54 88 105 21 5 2 4 10 152 168 19
11 4 2 3 4 78 100 30

7.1. The Efficiency of the Branch-and-bound Method for the Solution of CSSP

In the first part of our computational study we compare the efficiencies of the branch-and-bound (BB) and shortest

path (SP) algorithms that solve CSSP on very large randomly generated layered networks. The results reported in

Table 5, where the first two columns contain information about the size of the layered network. The first one shows

the number of layers in the test instances. The second one includes the maximum number of nodes in each layer, which

is generated randomly between the half of the maximum and maximum number of nodes. The crane requirement of

each vessel is randomly generated between 1 and 10 and the available number of cranes is assigned in accordance

with the crane requirements. For each layer the size and number of nodes, we generate five instances. The last two

columns report the average CPU Times. As can be noticed BB is faster than SP. The difference becomes significant

with the increasing instance sizes. This is in harmony with the theoretical worst case analysis of SP summarized with

Proposition 6.

Table 5: Efficiency of the BB and SP algorithms for solving CSSP: CPU time in seconds

L Max. no. of nodes CPU Time
in each layer BB SP

50 10 0.9 1.5
50 20 9.4 17.2
50 30 106.6 235.2
50 40 758.2 1316.9
50 50 4703.5 12642.3

100 60 18815.3 36783.6
100 70 28222.6 55981.4
100 80 34862.5 72982.3

Column average 10934.9 22495.1

We should point out that the sizes of the layered networks corresponding to the CSSP of the largest BACASP

instances we could solve exactly is even smaller than the smallest layered networks considered in this comparison.

As a result, one can be misled by the insignificance of the differences between the values reported for BB and SP
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algorithms in Table 7 and Table 10 and may think that both methods are equally efficient. However, this is not the

case, as can be observed.

7.2. The Effect of the Valid Inequality (29) on the Effciency of the Decomposition Algorithm

In the second part we investigate the contribution of inequality (29) presented in Section 6. For this purpose, we

solve the test instances with and without this inequality. The second column of Table 6 shows the optimal value in

each test instance. The other columns show the number of iterations, the number of cuts and the total CPU time when

the decomposition algorithm is executed with and without the inequality. Table 6 shows that the number of iterations

and the total CPU Time decreases drastically when the cutting plane algorithm is executed with the valid inequality

(29) presented in Section 6.

Table 6: Optimal cost and the number of cuts generated for the selected test instances from Zhang et al. (2010)

V Optimal with inequality (29) without inequality (29)
Cost No. of iterations No. of cuts Total CPU Time No. of iterations No. of cuts Total CPU Time

3 2800 6 5 10.7 49 45 110.5
6 14,850 40 38 1,293.1 391 382 13,232.5
9 17,550 11 7 543.5 83 79 5,632.8

12 20,550 36 33 2,951.7 321 315 33,546.7
15 35,250 49 46 4,482.3 467 462 46,754.9
18 39,950 41 38 4,543.2 401 396 46,385.6
21 41,700 72 67 10,493.6 736 732 113,215.3

Column average 36.43 33.43 3,474.01 349.71 344.43 36,982.61

Table 7 shows the average CPU time in seconds per optimality cut to solve the main model, the CPU time to solve

CSSP by BB algorithm and SP, and the size of the BB tree averaged over the number of cuts added to the master

problem. Tree size statistics is only reported for BB since SP also resulted in exactly the same values. We see that the

proposed solution methodology can optimally solve all the instances presented in Zhang et al. (2010). To the best of

our knowledge, exact optimal solutions could not be obtained for problems of this size before. We see that the largest

instance with 21 vessels can be solved in around three hours.

Table 7: Performance of the new method: CPU time in seconds on realistic instances selected test instances from Zhang et al. (2010)

V Master CSSP with Overall Problem with No. of nodes
Problem BB SP BB SP in the BB tree

3 2.7 0.01 0.02 10.7 10.8 6
6 35.1 0.01 0.02 1,293.1 1,293.8 13
9 77.9 0.02 0.03 543.5 544.1 19

12 95.2 0.02 0.04 2,951.7 2,954.3 25
15 99.6 0.03 0.04 4,482.3 4,484.8 29
18 119.6 0.03 0.05 4,543.2 4,545.1 32
21 159.2 0.04 0.06 10,493.6 10,496.8 35

Column average 84.19 0.024 0.037 3,474.01 3,475.67 22.71
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7.3. The Efficiency of the Decomposition Algorithm

The third part of the computational study starts with Figure 3 which depicts the berth time diagram corresponding

to an optimal solution for the 21-vessel instance. Table 8 reports the cost components along with the specific crane

assignments for each vessel. To clarify the notation, as an example (C1-C5)[11-17] in the fifth column of Table 8

means that cranes from one to five are assigned to vessel two in time periods from eleven to seventeen.
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Figure 3: Optimal solution’s berth time diagram for the 21-vessel instance of Zhang et al. (2010)

Based on our observations during the computational tests on the test instances selected from Table 4, we can say

that there is a direct relation between the solution times and sizes of the instances. As a consequence, in order to

test the performance of the new approach better we have generated larger ones randomly. We vary the number of

vessels V from 20 to 60. T is 400, 500, and 600 when V takes on values between 20 and 40, 45 and 50, and 55 and

60, respectively. The length of the berth, the number of cranes available and the cost coefficients are the same as

explained in the second paragraph of Section 7. The vessel-dependent parameters, namely length (`i), desired berth

section (si), workload (wi), lower bound (ki), and difference between the bounds (ki − ki) on the crane numbers are

generated from uniform distributions respectively between 3 and 8 berth sections, 1 and B − `i + 1, 10 and 120, 1 and

5, and 0 and 5. For each number of vessels we generate five instances. Table 9 shows the average number of iterations

and the average number of cuts generated by Algorithm 1 for each group of five large test instances.

Table 10 reports the average CPU times spent for solving the master problem and the overall problem over five

instances, for each group.We report CPU times for solving the master problem, CSSP and the overall problem when
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Table 8: Cost components for each vessel in the 21-vessel instance of Zhang et al. (2010)

Vessel φs
i × | j − si| φe

i × (t − ei) φr
i ×max (0, t′ − ri) specific crane assignments

1 3,000 0 0 (C9-C10)[1-7],(C11-C12)[8-10]
2 1,000 0 0 (C1-C4)[1],(C1-C3)[2-10],(C1-C5)[11-17],

(C1-C3)[18-21],(C1-C5)[22-26]
3 5,000 0 0 (C11-C12)[2-7]
4 3,000 0 0 (C4)[2-7],(C4-C10)[8-10],(C6-C12)[11-17],

(C4-C9)[18-21]
5 4,000 0 0 (C10-C12)[18-21],(C8-C12)[22-34],(C10-C12)[35-49]
6 1,000 0 0 (C6-C7)[22-34]
7 0 0 0 (C5-C9)[35-38]
8 0 1,000 0 (C7-C9)[39-48]
9 0 0 0 (C2-C6)[50-77]

10 0 0 0 (C8-C12)[54-77]
11 0 0 0 (C2-C4)[78-85],(C2-C3)[86-89]
12 3,000 0 0 (C9-C12)[78-95]
13 2,000 0 0 (C4-C8)[86-101],(C6-C10)[102-109]
14 5,000 0 0 (C1-C3)[90-101],(C1-C5)[102-112]
15 1,000 2,000 0 (C9-C12)[96-101]
16 4,000 0 0 (C11-C12)[102-118]
17 1,000 0 0 (C8-C10)[110-121],(C9-C10)[122]
18 0 0 0 (C6-C7)[122],(C6-C10)[123-149]
19 0 0 0 (C11-C12)[122-128]
20 0 0 0 (C6-C7)[152-177]
21 0 0 0 (C9-C10)[152-161]

Table 9: Average number of cuts per group of test instances

V Number of iterations Number of Cuts
20 73 70
25 96 92
30 138 133
35 173 168
40 199 194
45 230 224
50 259 252
55 295 290
60 341 335

BB or SP is used, and the number of nodes in the BB tree when CSSP is solved with BB; these values are exactly

the same with SP. We can observe that very large problem instances with T = 600 and V = 60 can be solved to

optimality. This is a considerable improvement when compared with the performance of the existing exact models in

the literature.

7.4. The Effect of Time-variance on the Solution Quality

The last part of the computational study aims to give an idea on the contribution of the flexibility introduced by

time-variance of crane allocations. Recall that Türkoğulları et al. (2014) present a time-invariant model for BACAP,
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Table 10: Performance of the new method: CPU time in seconds on large instances

V Master CSSP with Overall Problem with No. of nodes
Problem BB SP BB SP in the BB tree

20 124.5 0.04 0.05 8,585.2 8,587.3 42
25 163.2 0.04 0.06 14,845.7 14,847.9 55
30 218.0 0.05 0.06 28,768.2 28,771.1 57
35 226.9 0.06 0.07 37,641.3 37,644.2 66
40 248.3 0.06 0.07 47,893.9 47,897.2 69
45 298.2 0.07 0.08 66,192.6 66,196.4 75
50 349.4 0.07 0.08 87,690.7 87,695.1 79
55 374.5 0.07 0.09 108,223.3 108,228.3 86
60 420.8 0.08 0.09 140,505.5 140,511.2 89

Average 346.26 0.06 0.07 77,178.49 77,196.95 88.29

where the number of cranes assigned to a vessel does not change in time and there is no setup cost. Although

this approach helps to reduce crane relocations, it is expected to increase the other cost components, i.e., the cost

of berthing away from the desired berthing section, the cost of berthing later than the arrival time, and the cost of

departure later than the due date. To analyze the magnitude of the reduction in the above-mentioned cost components,

we solve the instances with V = 3, 6, . . . , 21 vessels, selected from Table 4, using the new model and the time-invariant

model of Türkoğulları et al. (2014). The results are given in Table 11. Based on these results, we can say that the

optimal cost of the new model is significantly less than that of the time-invariant model in all test instances. Notice

that Zhang et al. (2010) report 36, 000 as the best objective value for the 21-vessel instance. The objective value found

by our model is smaller than that of Zhang et al. (2010) because they calculate this value using a heuristic.

Table 11: The comparison of the time-variant and invariant models

Optimal cost
V Proposed model with Time-invariant model

zero setup costs of Türkoğulları et al. (2014)
3 2,000 2,000
6 13,000 21,000
9 15,000 21,000

12 15,000 21,000
15 27,000 35,000
18 30,000 43,000
21 30,000 43,000

Average 18,857.14 25,571.43

8. Conclusions

In this paper we formulate a new mixed integer linear program to obtain an optimal solution of berth allocation,

quay crane assignment and scheduling problems simultaneously. We devise a decomposition algorithm in order to

solve the problem efficiently based on the separate solution of the scheduling subproblem at each step. We first for-
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mulate the quay crane scheduling problem as a minimum cost network flow problem where arc crossing is allowed.

In order to obtain a crane schedule without any arc crossing we propose a branch-and-bound algorithm. Then, we

develop another method and solve the quay crane scheduling problem by finding the shortest path on a layered net-

work representing the states of a dynamic programming formulation from the literature. Our computational study

demonstrates that the new formulation coupled with the proposed solution method gives optimal solutions for realistic

size large problem instances. Also it turns out that the branch-and-bound based method is more efficient than the

shortest path based method in solving the quay crane scheduling problem. As a further study, a challenging direction

can be the extension of the new mathematical optimization model by means of new constraints and objective function

terms with the aim of integrating the storage and yard operations with seaside operations. As we can see in Table 8,

some vessels have large deviations from their desired berthing positions. Modifying the objective function in such a

way that it evenly distributes the deviations among the vessels may be another promising research direction. Finally,

although we have shown that CSSP is NP-complete, we conjecture that it is in fact strongly NP-complete, namely it

is possible to devise a reduction from a known strongly NP-hard problem.
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APPENDIX: Proofs of the Propositions

Proposition 1. CSSP-BR is NP-complete.

Proof. i. CSSP-BR ∈ NP: If a crane schedule is given, its feasibility can be checked in polynomial time. Checking

the schedule for having non-crossing paths of the cranes can be done in O(V2L) time. Checking whether the total

setup cost of each crane k is less than Ck can be done in O(KL) time. Hence, there is a polynomial-time certificate

checking algorithm and CSSP-BR ∈ NP.

ii. CSSP-BR is hard: The Set Partitioning Problem (SPP), which is known to be NP-complete (Garey and Johnson,

1979), reduces polynomially to CSSP-BR. The SPP deals with the following question: Given a set S of W elements

with values sv ∈ Z+, v = 1, 2, . . . ,W and
∑

v∈S sv = D, is there a subset S ′ ⊂ S such that
∑

v∈S ′ sv =
∑

v∈S \S ′ sv = D
2 ?
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For L ≥ W + K, an instance of CSSP-BR corresponding to an arbitrary SPP instance can have K cranes, W + K

vessels with

gil =


1, if i = 1, . . . ,W + 2; l = 1, . . . , L; l = i

0, if i = 1, . . . ,W + 2; l = 1, . . . , L; l , i

1, if i = W + 3, . . . ,W + K; l = 1, . . . , L.

and Ck = D, k = 1, . . . ,K. Besides, ci j which is the setup cost of relocating a crane from vessel i to vessel j can be

chosen as

ci j =



D
2 , if i = 1, . . . ,W + 2; l = 1, . . . , L; j = i

si, if i = 1, . . . ,W; j = i + 1

s j−1, if i = 3, . . . ,W + 2; j = i − 1

D, if i = 0; j = W + 3, . . . ,W + K

D + 1, otherwise.

Figure 4 illustrates this transformation. It shows K cranes, W + K vessels, the setup costs and crane allocations

for each vessel.

1 2 3 K

1 2 3 W W+1

Crane

Vessel

Setup cost

Crane allocation

W+2 W+3 W+4 W+K

1 1111 1 1 1 1

D/2 D/2 DDDs2s1 sWsW-1

4

Figure 4: Transformation from SPP to CSSP-BR

Then, it must be shown that S has a subset S ′ such that
∑

v∈S ′ sv =
∑

v∈S \S ′ sv = D
2 if and only if all the W + K

vessels are served by K cranes each of which spends no more than Ck = D units for setups during L time intervals

without crossing.

First, suppose that S has a subset S ′ such that
∑

v∈S ′ sv =
∑

v∈S \S ′ sv = D
2 . Then, K cranes can be scheduled without

any crossing as follows: crane 1 first works on vessel 1 and then on vessels v = 2, 3, . . . , |S ′| + 1, where iv−1 ∈ S ′;

crane 2 first serves vessel W + 2, and then vessels v = W + 1,W, . . . , |S ′| + 2, where iv−1 ∈ S \ S ′; cranes 3 to K work

on vessel W + 3 to vessel W + K, respectively. Observe that there is no crossing in this schedule and the setup cost

for each crane is D. Thus, if the set S has a subset S ′ such that
∑

v∈S ′ sv =
∑

v∈S \S ′ sv = D
2 , all W + K vessels can be

served by K cranes with the setup cost of each crane being equal to D within L time intervals.

Conversely, suppose that all the W + K vessels can be served by K cranes (within L intervals) spending no more

than D cost units for each crane. According to this, the sum of the setup costs for crane 1 and crane 2 is equal to 2D,

which follows from the fact that
∑

v∈S sv = D. This implies that crane 1 and crane 2 fully use their budget since each

of them cannot spend more than D. Besides, neither crane 1 nor crane 2 can serve both vessel 1 and vessel W + 2 due
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to the non-crossing constraints. Therefore,
∑

v∈S ′ sv =
∑

v∈S \S ′ sv = D − D
2 = D

2 . This transformation can be done in

O(W + K) time, and the proof is complete.

Proposition 2. CSSP is NP-complete.

Proof. First of all, any certificate of CSSP can be checked polynomially using an algorithm similar to the one used

for CSSP-BR. Hence, CSSP ∈ NP. Then, consider any arbitrary instance of CSSP-BR with setup costs ci j ∈ Z+,

i, j = 1, 2, . . . ,V; i , j, crane allocations gil ∈ Z+, i = 1, 2, . . . ,V; l = 1, 2, . . . , L, and budget restrictions Ck,

k = 1, . . . ,K. Also define Q =
∑V

i=1
∑L

l=1 gil.

To generate an instance of CSSP let us define the setup costs c′i j = ci j + λ where λ =
∑K

k=1 Ck, and choose

crane allocations g′il, i = 1, 2, . . . ,V; l = 1, 2, . . . , L such that Q′ = Q + 1 where Q′ =
∑V

i=1
∑L

l=1 g′il. Let us also set

C = Ck∗ + λQ′ where Ck∗ = mink{Ck}.

First, suppose that CSSP-BR has a non-crossing schedule satisfying budget restrictions and let Pk denote the

route crane k follows in this schedule. In other words, Pk is a directed path of size |Pk | representing the sequence of

vessels served by crane k. Clearly, ci j is the setup cost associated with the adjacent pair (i, j) ∈ Pk. Since the budget

restrictions are satisfied, ∑
(i, j)∈Pk

ci j ≤ Ck k = 1, . . . ,K,

and thus
K∑

k=1

∑
(i, j)∈Pk

ci j ≤

K∑
k=1

Ck.

Then,

K∑
k=1

∑
(i, j)∈Pk

c′i j =

K∑
k=1

∑
(i, j)∈Pk

(ci j + λ)

=

K∑
k=1

∑
(i, j)∈Pk

ci j + λ

K∑
k=1

|Pk |

=

K∑
k=1

∑
(i, j)∈Pk

ci j + λQ

≤

K∑
k=1

Ck + λQ = λ(Q + 1)

≤ λQ′ + Ck∗ = C.

The last inequality follows from the fact that Q′ = Q + 1 and Ck∗ > 0.

Conversely, suppose that CSSP has a non-crossing schedule with an overall setup cost less than C. Let P′k denote

the directed path associated with crane k’s route. Then,
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K∑
k=1

∑
(i, j)∈P′k

c′i j =

K∑
k=1

∑
(i, j)∈P′k

(ci j + λ)

=

K∑
k=1

∑
(i, j)∈P′k

ci j + λ

K∑
k=1

|P′k |

=

K∑
k=1

∑
(i, j)∈P′k

ci j + λQ′ ≤ C.

As a consequence,
K∑

k=1

∑
(i, j)∈P′k

ci j ≤ C − λQ′ = Ck∗ ,

from which ∑
(i, j)∈P′k

ci j ≤ Ck∗ k = 1, . . . ,K

follows since ci j ≥ 0, i, j = 1, . . . ,V; i , j, implying
∑

(i, j)∈P′k
ci j ≥ 0, k = 1, . . . ,K. Therefore,

∑
(i, j)∈P′k

ci j ≤ Ck k = 1, . . . ,K

by the definition of Ck∗ .

Finally, this transformation can be done in O(V2L + VL + K + K) time, which is polynomial and the proof is

complete.

Proposition 3. Arc (i′l−1, jl) can be removed from network N if the demand of vessel nodes lying below (above) node

jl in layer l is larger than the total inflow to node i′l−1 and all other nodes below (above) it in layer l − 1.

Proof. Suppose that there is an arc from the copy node i′l−1 in layer l − 1 to the original node jl in layer l. Recall

that original vessel nodes in layer l have crane requirements which must be satisfied by the crane flows from the copy

nodes in layer l − 1. Now, if the total crane demand of the vessel nodes below node j in layer l is larger than the total

possible inflow from the copy node i′l−1 and other copy nodes in layer l − 1 that lie below i′l−1, then it is necessary

that there be a flow on an arc connecting a copy node located above node i′l−1 in layer l − 1 and a node located below

node jl in layer l to obtain a feasible solution of the MCFP. This arc, however, crosses the arc from i′l−1 to jl, which

is assumed to exist. Therefore, we can remove the latter arc. Similarly, if the total crane demand of the vessel nodes

above node j in layer l is larger than the total possible inflow from the copy node i′l−1 and other copy nodes in layer

l − 1 that lie above i′l−1, then it is necessary that there be a flow on an arc connecting a copy node located below node

i′l−1 and a node located above node jl. This arc will also cross the arc (i′l−1, jl). To put it differently, in order for an arc

(i′l−1, jl) to exist, the demand of vessel nodes lying below (above) node jl must be less than or equal to the total inflow

to node i′l−1 and all other nodes below (above) it in layer l − 1. As a consequence, the existence of either condition

helps us remove the corresponding arc from further consideration.
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Proposition 4. If setup costs are symmetric and additive, the MCFP has an optimal solution with no crane path

crossings.

Proof. Let us assume that two of the relocation paths cross in an optimal solution of the MCFP in some interval. Let

us also assume that the first path is from position p1 to position p2 along the berth, the second one is from p3 to p4,

and p1 is before p3 (i.e., p1 < p3), namely closer to the beginning of the berth. Based on the structure of the network,

the arcs (p1, p2) and (p3, p4) must cross, which implies that p4 < p2. The setup cost associated with this relocation

is c12 + c34, where ci j denotes the setup cost associated with the path (pi, p j) path. The relocations on these paths

can occur in the same or opposite directions. There are two and four possibilities when the direction is the same and

opposite, respectively. They are represented in Figure 5. The positions are labeled with numbers. Solid arcs represent

the crossing relocations given in the solution, whereas dashed ones represent their non-crossing equivalents.
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(a)

(b)

same direction

(c)

(d)

(e)

(f )

opposite direction

Figure 5: Crossing and non-crossing relocations

In case (a) the crossing relocations (p1, p2) and (p3, p4) are replaced with their non-crossing equivalents (p1, p4)

and (p3, p2). Observe that relocations from (p3, p2) are realized first. The setup cost associated with this relocation

is c14 + c32, which is clearly equal to c12 + c34 under the symmetry and additivity assumptions of the setup costs.

Similarly, c34 + c12 = c14 + c32 for case (b).

Cases (c)–(f) are for the relocations in opposite directions and the setup cost associated with crossing relocations

is higher than that of their non-crossing versions. For example, in case (c) c12 + c34 = c12 + c43 = c14 + c42 + c42 + c23

≥ c14 + c23 = c14 + c32.

Let fi j denote the number of cranes moving from position pi to p j, namely the flow on the arc (p′i , p j) where p′i
represents a copy node in layer l and p j represents an original node in layer l + 1 of the network given in Figure 2. It

is possible to streamline a crossing arc flow by a simple operation and adjust the flows on the corresponding arcs in

this network without harming its feasibility. If f12 ≥ f34, then add new arcs (p′3, p2) and (p′1, p4) with flows f34, adjust

the flow on arc (p′1, p2) by subtracting f34, and finally delete arc (p′3, p4). If f34 > f12, then operate similarly by adding
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new arcs (p′3, p2) and (p′1, p4) with flows f12, adjust the flow on arc (p′3, p4) by subtracting f12, and finally delete arc

(p′1, p2). These operations are illustrated in Figure 6.

f34
f34

Layer l Layer l+1

f34

f12   ! f34
(a)   

f 12

(f 12 –
 f 34)

p2p3

p1 p4 p'4

p'2p'3

p'1

(f34  – f12 )

f12

f34

Layer l Layer l+1

f12

f34  > f12
(b)   

f 12

p3

p1

p'3

p'1

p2

p4

p'2

p'4

Figure 6: Crossing and non-crossing relocations

The crossing represented with the solid arcs is streamlined by the dashed arcs. Observe that flow balance is

preserved at all nodes and capacity restrictions are satisfied on the new arcs since the upper bound is set to the total

number K of cranes. Consequently, only cases (a) and (b) of Figure 5 can occur in an optimal solution of the MCFP

since otherwise it is possible to create a new feasible flow with one less crossing and smaller cost after implementing

the above operation. Therefore, the elimination of the crossings in an optimal solution of the MCFP results in an

alternative solution with no crossings.

Proposition 5. An optimal crane schedule that satisfies the proper alignment constraint can be obtained by means of

Algorithm 2.

Proof. Any crane schedule with properly aligned cranes is a feasible solution of the MCFP. Arc crossing is not

possible for a crane schedule that satisfies the proper alignment constraint. Therefore, the optimal value obtained by

the branch-and-bound scheme or the minimum cost crane schedule without any arc crossing is not larger than the cost

of any schedule which satisfies the proper alignment condition. Now, consider Algorithm 3 starting with an optimal

solution of Algorithm 2.

Algorithm 3
Assign cranes from 1 to K to vessel and waiting nodes in interval t1 from left to right on the berth (i.e., bottom-up
in the layered network).
Assign cranes to vessels in other time periods by following the arcs in the network.
if the cranes in a node separates into multiple nodes in two consecutive layers then

assign the cranes to vessels from left to right
end if

Assume there exists a misplaced crane pair, that is a crossing, at the end of Algorithm 3. This means that there

exist two cranes with ordering k1 < k2 with v1 (vessel to which crane k1 is assigned) to the right of v2 (vessel to which

crane k2 is assigned) in interval tl. These two cranes must come from two different nodes of the previous layer because

otherwise they would be aligned by the algorithm. Since there is no arc crossing due to the branching strategy of the
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algorithm, a misplacement should also exist in interval tl−1. Repeating this argument we conclude that there must be

a misplacement in interval t1 which is a contradiction because the algorithm provides proper alignment in interval

t1. In other words, Algorithm 2 together with Algorithm 3 gives a crane schedule that satisfies the proper alignment

condition (i.e., a schedule with no crossings). We have also shown that the setup cost of this crane schedule is not

larger than the cost of any crane schedule which satisfies the proper alignment condition.

Proposition 6. Let |V| and |A| denote the size of V and A respectively, and let nl denote the size of Vl, the set of

vessels berthed in interval l. Then,

|V| =

L∑
l=1

(K − ∑
i∈Vl

gil + nl

nl

)
(A.1)

|A| =

L∑
l=0

(K − ∑
i∈Vl

gil + nl

nl

)(K − ∑
i∈Vl+1

gil+1 + nl+1

nl+1

)
, (A.2)

with the convention thatV0 = VL+1 = ∅.

Proof. K −
∑

i∈Vl

gil is the number of available cranes after allocating gil cranes to vessels i ∈ Vl for fixed l. Then, the

total number of non-crossing allocations of the cranes becomes equal to the number of selections with repetitions of nl

objects from K −
∑

i∈Vl

gil + 1 + nl types of objects in interval l. This is the number of nodes at layer l and its summation

gives (A.1). Similarly, (A.2) is obtained by multiplying the number of nodes at layer l with the number of nodes at

layer l + 1 and using the convention.
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