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Abstract Multiple instance learning (MIL) is a variation of supervised learning,
where data consists of labeled bags and each bag contains a set of instances. Unlike
traditional supervised learning, labels are not known for the instances in MIL. Ex-
isting approaches in the literature make use of certain assumptions regarding the
instance labels and propose mixed integer quadratic programs, which introduce
computational difficulties. In this study, we present a novel quadratic program-
ming (QP)-based approach to classify bags. Solution of our QP formulation links
the instance-level contributions to the bag label estimates, and provides a linear
bag classifier along with a decision threshold. Our approach imposes no additional
constraints on relating instance labels to bag labels and can be adapted to learning
applications with different MIL assumptions. Unlike existing specialized heuristic
approaches to solve previous MIL formulations, our QP models can be directly
solved to optimality using any commercial QP solver. Our computational exper-
iments show that proposed QP formulation is efficient in terms of solution time,
overcoming a main drawback of previous optimization algorithms for MIL. We
demonstrate the classification success of our approach compared to the state-of-
the-art methods on a wide range of real world datasets.
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1 Introduction

Most data mining approaches focus on solving classification problems using ma-
chine learning and pattern recognition techniques. Classification tasks require in-
put samples with given outputs, known as the class labels. In multiple instance
learning (MIL), instances are grouped into bags and a class label is known for each
bag, whereas the instance labels are not fully provided. The data representation
and learning setup of MIL are in alignment with many real world applications.
Current research areas of MIL include image classification, drug activity predic-
tion, text mining and many others [5]. In these applications, global descriptions
of the objects are decomposed into multiple parts. When objects are represented
by multiple parts, only some parts may be relevant for classification. In addition,
it is expensive and time consuming to collect true labels of parts individually.
MIL paradigm provides an opportunity to solve classification problem under these
circumstances.

For instance, consider sample images from Corel image classification dataset [6]
in Figure 1. Under MIL scenario, images correspond to bags and patches sampled
from the images correspond to the instances. In this example, images are classified
either as positive or negative based on the presence of a horse on its patches as
shown in Figure 1. Only some patches of an image are informative for classification
and it is sufficient to label the whole image instead of the individual instances.

Figure 1. An illustration of MIL setting for image classification. Images on the left
with located horses inside the red rectangles are classified as positive whereas the
other images form the negative class.

Unknown instance labels and uncertainty on the bag formations contribute to
the difficulty of MIL problem. Success of the MIL algorithms depends on their
capability of capturing the internal structures of bags. The most common way of
relating bag labels to the individual instance labels is introduced as standard MIL
assumption in the first MIL application [8] and is widely used in several methods.
The standard MIL assumption states that label of a bag is positive if and only if
it contains at least one positive instance, otherwise the bag is negatively labeled.
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In Figure 2, a regular input data with 12 instances and 3 features is used to form
a MIL data with 3 bags following the standard MIL assumption.

Although it is embraced by many methods, standard assumption is considered
to be restrictive for some MIL applications. For example, consider a document
retrieval application, where the bags are articles and multiple sections extracted
from them are the instances. The aim is to detect whether an article is about a
specific subject (e.g. finance) or not. A section including the predetermined words
and word combinations makes this section a positive instance. However, articles
that are not relevant may also contain these words in a particular section (e.g.
including financial terms in the introduction). Thus, standard MIL assumption
is not well suited to this problem. Generalized MIL [1,12,34] is formalized to
describe MIL scenarios other than the standard MIL under various constraints [34].
Under generalized MIL, collective MIL assumption [12] models equal contribution
of instances to the bag label. The idea is to derive a bag-level classifier from an
instance-level decision function by averaging the learning results in underlying
instance-feature space.

Figure 2. Multiple instance data representation of one positive bag and 2 negative
bags with 3 features.

We propose a novel Quadratic Programming-based Multiple Instance Learning
(QP-MIL) framework. Our proposal is based on the idea of determining a simple
linear function for discriminating positive and negative bag classes. We model MIL
problem as a QP problem using the input data representation. An optimal solution
of our QP formulation returns an instance-level scoring function. For an unlabeled
bag, instance-level scores are averaged to assess the bag-level score. Finally, class
label of the bag is determined according to the predetermined threshold value.
Rather than selecting bag representatives as in standard MIL, QP-MIL regards
collective MIL assumption because of its modeling capability of the standard as-
sumption and coverage on other MIL assumptions by means of the smooth average
of instance-level decisions [13].

The remainder of the paper is organized as follows: Sect. 2 summarizes the ex-
isting MIL methods and mathematical programming formulations of MIL. Sect. 3
introduces formal description of the MIL problem and provides an existing SVM-
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based MIL formulation, MIHLSVM as a background. Sect. 4 describes the pro-
posed QP-MIL framework. Sect. 5 provides insights resulting from the numerical
comparisons of QP-MIL with MIHLSVM and presents the classification success
and computational efficacy of QP-MIL with the experiments on a wide-range of
MIL datasets. Conclusions and future extensions are discussed in Sect. 6.

2 Related Work

Previously, various data-mining and machine learning algorithms have been de-
vised to solve the MIL problem. These approaches are heuristic algorithms and
optimality of their solutions cannot be guaranteed. In this study, we focus on
optimization-based approaches to solve MIL problem, and we refer the reader to
comprehensive surveys [1,5] for other categories of MIL methods.

SVM classification is extended to MIL setting previously [2,20,22,23,25,37].
Table 1 describes and compares the Multiple Instance Support Vector Machine
(MISVM) models in the literature. The level of the formulations indicates whether
the misclassification penalties are incurred for bags or not. The assumptions are
qualified as weak if only the standard MIL assumption holds. Otherwise, if there
are additional restrictions reflected to the mathematical model, assumption status
is entitled as strong.

In MISVM models, an instance is selected from a positive bag as a witness
to represent that bag. Figure 3 illustrates standard SVM classification in instance
space and bag-level separation. To classify bags, a witness instance is selected
from a positive bag as shown in Figure 3. Witness instances are considered to be
responsible from bag positivity and must be correctly classified.

Figure 3. An illustration of witness selection in MISVM models. Red circles indi-
cate instances in negative bags. In positive bags, instances are represented with
blue triangles and witness instances are enclosed in dashed circles.

In mi-SVM and MI-SVM formulations [2], two types of constraints are added
to the SVM formulation satisfying at least one sample in each positive bag has a
label of one in mi-SVM and a witness instance is present for positive bags in MI-
SVM. MissSVM [37] is formulated upon MI-SVM [2] with additional constraints
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on the positive bags. Minimizing the misclassification error at either extreme, an
instance of a positive bag is either positively or negatively labeled. Another method
KI-SVM [22] selects witnesses from positive bags as key instances.

Sparse transductive MIL formulation (stMIL) [4] has an additional constraint
that pulls all the negative instances in the bag closer to the hyperplane. An ℓ1-
norm SVM-based formulation [23] incorporating the assumption “arbitrary convex
combination of instances in the positive bags represents each positive bag” is a
linear program with bilinear constraints.

MIL problem is formulated as a mixed 0 − 1 quadratic programming prob-
lem in [20], where MIL is reduced to instance-level learning, disregarding the bag
information. Hard margin and soft margin maximization formulations of MIL,
MIHMSVM and MIHLSVM [25] have additional bag-level misclassification penal-
ties. A penalty is incurred if all instances in a positive bag are misclassified or at
least one instance in the negative bag is misclassified. The resulting formulations
are mixed integer quadratic programs (MIQPs), which are known to be NP-hard
problems [20].

Most of the aforementioned MISVM models are analyzed in a recent survey [9].
It is emphasized in [9] that local convergence of the heuristic solution approaches
for solving non-convex MISVM formulations leads to a sacrifice from the clas-
sification performance. The authors also discuss scalability of MISVM methods:
Increased number of instances and bags affect model dimensionality and therefore
increase both hyperparameter selection and model solution times.

When SVMs are tailored for MIL, specifically devised SVM solvers [11] can
only be used solving subproblems of various heuristic solution algorithms [2,20,22,
23,26,37]. We propose a simplified QP formulation, which can be directly solved
to optimality using any commercial QP solver. Instead of utilizing an iterative
heuristic procedure, we are able to report exact solutions of each problem instance.
Thus, repetition of the performed classification task is possible and the resulting
classifier is reproducible in this way.

Table 1. The comparison of MIL formulations.

Formulation Model type Level Assumptions Solution approach Main reference
mi-SVM MIQP instance weak mi-SVM opt. heuristic [2]
MI-SVM MIQP bag weak MI-SVM opt. heuristic [2]
stMIL NC-MINLP instance strong CCCP [4]
MissSVM NLP instance strong CCCP [37]
ℓ1-norm SVM-MIL LP/NLP instance strong MICA [23]
KI-SVM MIQP instance strong Cutting plane algorithm [22]
Max-Margin MIL 0-1 MIQP instance weak Branch and bound [20]
MIHMSVM MIQP instance strong Three-phase heuristic [25]
MIHLSVM MIQP bag strong Exact [25]

Our study explores the utility of QP-MIL compared to the previous state-of-
the-art MIL approaches. Leading methods in MIL literature are various machine
learning-based approaches. We select several MIL algorithms as baseline methods
to demonstrate success of the MIL classifiers. We carry out another comparison
of QP-MIL considering SVM-based MIL, in terms of model building and classifier
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testing. We experimented direct solution of a mixed integer quadratic program-
ming (MIQP) formulation proposed in [25] for comparison.

3 Background

3.1 Problem Statement

Let xi be a d-dimensional feature vector of instance i and X = {xi : i = 1, .., n} be
a set of instances. Also let yi be a single, discrete-valued feature, specifically the
label of instance i. Then, instance set X = {xi : i = 1, .., n} forms the training set.
This set can be labeled with yi, i = 1, ..., n or can be unlabeled. A bag Bj consists
of a set of instances Ij formed by xi’s and nj is the number of the instances in
Bj . Therefore, χ = {(Bj , lj) : j = 1, ..,m} is a training bag set containing instances
and a label lj of each bag. Let an instance-based classifier be a function from
instances to labels f(xi) → yi, and let g(Bj) → lj be the function of a bag-based
single classifier. Concisely, given a training set of bags with given label information
χ = {(Bj , lj) : j = 1, ..,m}, our MIL task is to learn a classifier g(Bj) to predict
the labels of input bags.

The sets, parameters and decision variables used in models are given as follows.
Indices:
i = 1, 2, . . . , n: index for the instances
j = 1, 2, . . . ,m: index for the bags
Sets:
Ij : set of instances in bag
J+ = {j : lj = 1}: set of positive bags
J− = {j : lj = −1}: set of negative bags
I+ = {i : i ∈ Ij ∧ j ∈ J+}: set of instances in positive bags
I− = {i : i ∈ Ij ∧ j ∈ J−}: set of instances in negative bags
I = I+ ∪ I−: set of all instances
Parameters:
xi ∈ ℜd, i = 1, 2, ..., n: instance vectors
lj : bag labels
C: trade-off parameter
Decision variables of QP-MIL:
w: d-dimensional feature weight vector
mi, i = 1, 2, . . . , n: instance pseudo class memberships
βj , j = 1, 2, . . . ,m: bag class memberships
δ+j , δ−j : slack variables for the positive and negative bag deviations
τ : decision threshold for bag classification
Decision variables of MIHLSVM [25]:
w: d-dimensional feature weight vector
b: bias term
βj , j = 1, 2, . . . ,m: bag class memberships
ηi, i = 1, 2, . . . , n: variables identifying witness instances
zi, i = 1, 2, . . . , n: auxiliary variables replacing ξiηi, i = 1, 2, . . . , n.
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3.2 A previous MIQP formulation: MIHLSVM [25]

Multiple Instance Hinge Loss Support Vector Machines (MIHLSVM) [25] ex-
tends traditional SVM for MIL. Unlike earlier SVM-based approaches to MIL,
MIHLSVM defines bag-level hinge loss to penalize bag misclassifications. The pro-
posed model handles the situation of nonlinearly seperable classes and the resulting
formulation is a MIQP. The authors propose direct solution of MIHLSVM in [25]
and do not present a heuristic algorithm as those in other MISVM studies [2,20,
22,23,37]. Still, it is difficult to get an exact solution to a MIHLSVM problem
instance. We present our comparisons with MIHLSVM in Sect. 5.4.1.

A MIQP formulation of the described problem [25] is given as below

(MIHLSVM) min
w,b,ξ,ξ+,ξ−,η,z

1

2
||w||2 + C

 ∑
j∈J−

ξ−j +
∑
j∈J+

ξ+j

 (1a)

st − (⟨w,xi⟩+ b) ≥ 1− ξi ∀i ∈ I− (1b)

⟨w,xi⟩+ b ≥ 1− ξi ∀i ∈ I+ (1c)∑
i∈Ij

ηi = 1 ∀j ∈ J+ (1d)

ξi ≤ ξ−j ∀j ∈ J−, ∀i ∈ Ij (1e)

ξ+j =
∑
i∈Ij

zi ∀j ∈ J+ (1f)

zi ≥ ξi −M(1− ηi) ∀i ∈ I+ (1g)

zi ≤ ξi ∀i ∈ I+ (1h)

zi ≤ Mηi ∀i ∈ I+ (1i)

zi ≥ 0 ∀i ∈ I+ (1j)

ξi ≥ 0 ∀i ∈ I (1k)

ηi ∈ {0, 1} ∀i ∈ I+. (1l)

In addition to maximization of the margin between bag classes, the objective
function (1a) also minimizes bag misclassifications where a selected constant C

controls the trade-off between two objectives. Constraints (1b) and (1c) are margin
constraints enabling penalization of misclassification using slack variables ξi for
misclassified instances. The weight vector w and the offset parameter b defines the
instance-level separating hyperplane. Constraint (1d) forces a positive bag to have
a positive instance as a witness. Negative bag misclassifications are represented
by constraint (1e) using slack variables ξ−j , ∀j ∈ J−. It is assumed that a negative
bag is misclassified if all of its instances are misclassified.

Constraints (1g)–(1i) with the auxiliary variables zi ≥ 0, ∀i ∈ I+ determine
misclassification of a witness instance in a positive bag. Constraint (1f) assesses
the misclassification of a positive bag as misclassification of its selected witness
instance. Constraint (1l) imposes binary restrictions on witness variables and non-
negativity restrictions on slack variables are introduced by constraint (1k).

After solving MIQP formulation, the following classifier can be used for bag
classification
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(2)sgn

(
max
i∈Ij

(⟨w,xi⟩+ b)

)
, j ∈ J.

We know that the MIHLSVM formulation given in (1) is a mixed integer
quadratic program, and therefore, can be solved directly by commercial MIQP
solvers. The efficiency of this approach along with QP-MIL is compared in Sect. 5.4.1
to verify the modeling and solution quality of the proposed MIL framework.

4 Quadratic Programming for Multiple Instance Learning

A bag classification rule can be found by solving the following optimization model:

(QP) min
w,β,m,τ,δ+,δ−

1

2
||w||2 − C

 1

m+

∑
j∈J+

δ+j +
1

m−

∑
j∈J−

δ−j

 (3a)

s.t. ⟨w,xi⟩ = mi ∀i ∈ I (3b)

βj =
1

nj

∑
i∈Ij

mi ∀j ∈ J (3c)

βj ≥ τ + δ+j ∀j ∈ J+ (3d)

βj ≤ τ − δ−j − ε ∀j ∈ J− (3e)

0 ≤mi ≤ 1 ∀i ∈ I (3f)

0 ≤δ+j ≤ 1 ∀j ∈ J+ (3g)

0 ≤δ−j ≤ 1 ∀j ∈ J− (3h)

0 ≤τ ≤ 1 (3i)

Regularization processes are introduced to supervised learning problems for
recovering the important features and for satisfying model generalizability. The
quadratic objective function (3a) performs maximization of bag class member-
ship margin together with a regularization of feature weights. In the first term
of the objective function (3a), standard ℓ2-norm of the weight coefficients w are
minimized. Therefore, effect of redundant or uninformative features can also be
controlled. The second term of the objective function (3a) maximizes the margin of
bag class estimates formed by the threshold variable τ . In order to handle potential
problems due to class imbalances, summations of the nonzero slack variables δ+j ,

∀j ∈ J+ and δ−j , ∀j ∈ J− in the objective function (3a) are normalized with the

number of positive bags m+, and the number of negative bags m−, respectively.
The hyperparameter C in the objective function (3a) tunes the trade-off between
regularization of w and maximization of bag class membership estimate margin.

For each instance, an estimate of the class label is obtained as a pseudo class
membership value. Constraint (3b) determines instance pseudo class memberships
mi,∀i = 1, . . . , n using the coefficient vector w entry of which corresponds to the
weight assigned to a feature of the input data. For each instance, Constraint (3c)
maps bag-level class estimates βj , ∀j = 1, . . . ,m onto the [0, 1] interval by averaging
instance-level scores, which are forced to be between 0 and 1 by Constraint (3f).
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Constraints (3d) and (3e) ensure that absolute difference between class member-
ship estimate βj and the threshold τ are maximized in the objective function for
both positive and negative bags. Constraint (3i) restricts the decision threshold
τ to be between 0 and 1. Similarly, slack variables δ+j , ∀j ∈ J+ and δ−j , ∀j ∈ J−

are restricted to be between 0 and 1 by Constraints (3g) and (3h). We set ε in
Equation (3e) to a small positive value (10−6) so that class membership value of
a negative bag is strictly below the threshold τ .

QP-MIL models the contributions of all instances in a bag to the bag label
collectively. Averages of pseudo-class membership estimates for instances deter-
mine the class membership estimates for the bags. A bag is positively labeled if
its class membership value is above decision threshold τ , and negatively labeled
otherwise. An optimal value of τ is adaptively identified in QP-MIL during the op-
timization process. This threshold is also applicable to the test bags. After solving
the QP formulation in (3) on the training set, instance scores are calculated by
Equation (3b) for each instance in a test bag and simply averaged in Equation (3c)
to compute the bag-level score. If the output is below the optimal value of τ , the
classifier produces a negative label, else a positive label.

The resulting bag-level classifier can be defined as

g(Bj) =

{
1 if βj ≥ τ,

−1 otherwise,

where

βj =
1
nj

∑
i∈Ij

mi,

and

mi = ⟨w,xi⟩ ∀i ∈ Ij .

Our proposed MIL framework is independent of the underlying MIL assump-
tions. We seek to model bag structures by taking into account the reflection of
instance scores to the bag labels. Since all instances contribute to the bag-level
scoring, this paradigm resembles the collective MIL assumption [12]. It is shown
in [13] that if an instance level separation can be performed in an embedding
space H with a classifier f in a standard MIL problem, then the bags can also
be separated in another embedding space H′, which has a higher dimensionality
than H, by scoring each bag with the average of its instance-level estimates as
g(Bj) =

1
nj

∑
i∈Ij

f(xi). Therefore, various MIL assumptions can be handled with

a proper data representation and collective modeling of the bag structures.

In order to perform class separation by correct classification, having class mem-
bership values above the threshold for positive bags and below the threshold for
negative bags is desirable. Therefore, we maximize summation of the absolute
differences between bag class membership estimates. This paradigm defines the
margin between positive and negative class membership estimates, as well. Thus,
optimal value of decision threshold τ leaves the maximummargin between bag class
membership estimates. Figure 4 illustrates a possible solution to the QP model
(3). The selected value for decision threshold τ is 0.55 and the class memberships
estimates for 3 positive and 3 negative bags are consistent with this threshold.
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Figure 4. An illustration of a solution to QP model (3). Instance level scores are
symbolized with red circles and blue triangles, for negative and positive bags, re-
spectively. The vertical green line indicates the decision threshold and each dashed
line maps bag class membership of a bag. For a positive and a negative bag, class
membership margins are indicated with horizontal arrows.

5 Experiments

5.1 Data representation

In MIL, a specific data region representing the positive instance class is named as
a concept. The concept instances are informative for class discrimination. Based on
this idea, representative sets can be derived in many ways as prototypes to capture
the informative instance relationships. Several MIL methods benefit from the dis-
similarities to selected prototypes to represent the bags [6,7,10,14,21]. Moreover,
a number of similar algorithms [31,38] utilize clustering to learn a target concept
in MIL problems. Inspired by success of aforementioned methods, we attempt to
perform MIL classification in a newly represented feature space. QP model (3)
produces a linear classifier and success of this classifier is limited only to linearly
separable data.

In QP-MIL, the relationships between instances can be implicitly modeled by
preprocessing the input data. Instead of building a classifier in the original instance
feature space, we attempt to represent the instances using dissimilarities to the
selected prototypes. Aim of the representation is building a linear classifier, which
is capable of class separation in a different space. We pool instances in bags and
then group them by k-means clustering algorithm into an appropriate number of
clusters. Then, the cluster centers are taken as the prototypes. The new features are
simply constructed by calculating the Euclidean distances of each instance to these
cluster centers. This way, protoypes are derived as a summarized representation of
the original data and the linear classifier becomes applicable to the new features.



Multiple Instance Classification via Quadratic Programming 11

5.2 Multiple instance datasets

We evaluate our approach in image classification, molecular activity prediction,
text categorization and audio classification tasks. The datasets are categorized
in Table 2 based on their application domain and the dataset characteristics are
also provided. The first category includes famous drug activity prediction tasks on
Musks and Mutagenesis’ datasets and a protein identification task. Image classifi-
cation datasets constitute the second category containing the Corel image datasets,
UCSB breast cancer dataset and other smaller sized benchmarks Elephant, Fox
and Tiger. Positive class is considered as the target images and the remaining
images determine the negative bag class.

Another dataset category covers web mining tasks on Newsgroups andWeb rec-
ommendation datasets. In Newsgroups, blog posts are categorized into 20 groups
based on their subjects where a bag is formed by a collection of multiple posts (i.e.
the instances). In the positive class, the terms about a specific subject appears in
a number of posts, and the bags with posts about other subjects constitute the
negative bags. In Web recommendation, a web page in the user history is a bag
and the web pages linked to that web page are the instances. Recommendations of
a specific user form the positive class and the bags constituted by the remaining
eight users are negatively labeled.

The last category is the bird song recordings from 13 different classes of birds,
where a recording is bag and segments of recording are the instances. The target
bird class is considered as positive, whereas the bags from the other classes are
labeled as negative. We follow an effective experimentation strategy. Cross vali-
dation folds are generated by splitting the original dataset into the training set
and the test set. We utilize the same splitting indices across both our proposed
and the state-of-the-art methods from the literature to perform a comprehensive
comparison. All the datasets and cross validation indices are available online at
[19].

5.3 Experimental setting and performance criteria

Our experiments use a Windows 10 PC with 16 GB RAM, dual core CPU (Intel
Core i7-7700HQ 2.8 GHz). For each dataset, a stratified cross validation scheme
is conducted to assess the generalizability of the classifiers. Initially, we scale each
feature to zero mean and unit variance. We obtain data representations in QP-MIL
via the implementation in Python that uses scikit-learn [24] library. We model QP
formulations using Gurobi Python interface and solve using barrier QP solver of
Gurobi 8.0 [15]. The default parameters are accepted for the barrier algorithm
except for the convergence tolerance, which is set to 0.01. QP-MIL has two pa-
rameters: number of clusters, κ in data representation and cost parameter C of
QP model (3). In k-means clustering, necessarily enough number of clusters, κ is
determined by using elbow approach [18]. Briefly, within cluster variance after k-
means clustering is plotted along with increasing values of κ and the position of the
elbow is identified to assign the corresponding value to κ. We run a nested cross-
validation with an inner cross-validation loop to choose hyperparameter C from
the set {0.01, 0.1, 1, 10, 100, 1000}. All of the instances of MIHLSVM formulation
are also executed using Gurobi 8.0 [15].
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Table 2. Common MIL datasets

Name Instances Min Max Features Bags + bags - bags
Musk 1 [8] ♣ 476 2 40 166 92 47 45
Musk 2 [8] ♣ 6598 1 1044 166 102 39 63
Mutagenesis 1 (easy) [27] ♣ 10486 28 88 7 188 125 63
Mutagenesis 2 (hard) [27] ♣ 2132 26 86 7 42 13 29
Protein [28] ♣ 26611 35 189 8 193 25 168
Elephant [2] ♥ 1391 2 13 230 200 100 100
Fox [2] ♥ 1302 1 13 230 200 100 100
Tiger [2] ♥ 1220 2 13 230 200 100 100
Corel, African [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Antique [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Battleships [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Beach [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Buses [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Cars [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Desserts [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Dinosaurs [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Dogs [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Elephants [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Fashion [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Flowers [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Food [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Historical [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Horses [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Lizards [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Mountains [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Skiing [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Sunset [6] ♥ 7947 2 13 9 2000 100 1900
Corel, Waterfalls [6] ♥ 7947 2 13 9 2000 100 1900
UCSB Breast Cancer [17] ♥ 2002 21 40 708 58 26 32
Newsgroups 1, alt.atheism [36] ♠ 5443 22 76 200 100 50 50
N.g. 2, comp.graphics [36] ♠ 3094 12 58 200 100 50 50
N.g. 3, comp.os.ms-windows.misc [36] ♠ 5175 25 82 200 100 50 50
N.g. 4, comp.sys.ibm.pc.hardware [36] ♠ 4827 19 74 200 100 50 50
N.g. 5, comp.sys.mac.hardware [36] ♠ 4473 17 71 200 100 50 50
N.g. 6, comp.windows.x [36] ♠ 3110 12 54 200 100 50 50
N.g. 7, misc.forsale [36] ♠ 5306 29 84 200 100 50 50
N.g. 8, rec.autos [36] ♠ 3458 15 39 200 100 50 50
N.g. 9, rec.motorcycles [36] ♠ 4730 22 73 200 100 50 50
N.g. 10, rec.sport.baseball [36] ♠ 3358 15 58 200 100 50 50
N.g. 11, rec.sport.hockey [36] ♠ 1982 8 38 200 100 50 50
N.g. 12, sci.crypt [36] ♠ 4284 20 71 200 100 50 50
N.g. 13, sci.electronics [36] ♠ 3192 12 58 200 100 50 50
N.g. 14, sci.med [36] ♠ 3045 11 54 200 100 50 50
N.g. 15, sci.space [36] ♠ 3655 16 59 200 100 50 50
N.g. 16, soc.religion.christian [36] ♠ 4677 21 71 200 100 50 50
N.g. 17, talk.politics.guns [36] ♠ 3558 13 59 200 100 50 50
N.g. 18, talk.politics.mideast [36] ♠ 3376 15 55 200 100 50 50
N.g. 19, talk.politics.misc [36] ♠ 4788 21 75 200 100 50 50
N.g. 20, talk.religion.misc [36] ♠ 4606 25 79 200 100 50 50
Web recommendation 1 [35] ♠ 2212 4 131 5863 75 17 58
Web recommendation 2 [35] ♠ 2212 5 200 6519 75 18 57
Web recommendation 3 [35] ♠ 2212 5 200 6306 75 14 61
Web recommendation 4 [35] ♠ 2291 4 200 6059 75 55 20
Web recommendation 5 [35] 2546 5 200 6407 75 61 14
Web recommendation 6 [35] ♠ 2462 4 200 6417 75 59 16
Web recommendation 7 [35] ♠ 2400 4 200 6450 75 39 36
Web recommendation 8 [35] ♠ 2183 4 200 5999 75 35 40
Web recommendation 9 [35] ♠ 2321 5 200 6279 75 37 38
Birds, Brown creeper [3] ♦ 10232 2 43 38 548 197 351
Birds, Chestnut-backed chickadee [3] ♦ 10232 2 43 38 548 117 431
Birds, Dark-eyed junco [3] ♦ 10232 2 43 38 548 20 528
Birds, Hammonds flycatcher [3] ♦ 10232 2 43 38 548 103 445
Birds, Hermit thrush [3] ♦ 10232 2 43 38 548 15 533

MIL application categories: ♣ molecular activity prediction, ♥ image annotation, ♠ text
classification, ♦ audio recording classification.
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Table 2 continued.

Name Instances Min Max Features Bags + bags - bags
Birds, Hermit warbler [3] ♦ 10232 2 43 38 548 63 485
Birds, Olive-sided flycatcher [3] ♦ 10232 2 43 38 548 90 458
Birds, Pacific slope flycatcher [3] ♦ 10232 2 43 38 548 165 383
Birds, Red-breasted nuthatch [3] ♦ 10232 2 43 38 548 82 466
Birds, Swainsons thrush [3] ♦ 10232 2 43 38 548 79 469
Birds, Varied thrush [3] ♦ 10232 2 43 38 548 89 459
Birds, Western tanager [3] ♦ 10232 2 43 38 548 46 502
Birds, Winter Wren [3] ♦ 10232 2 43 38 548 109 439

MIL application categories: ♣ molecular activity prediction, ♥ image annotation, ♠ text
classification, ♦ audio recording classification.

The baseline MIL approaches selected for comparison are MILES [6], MInD
[7] with bag dissimilarity representation Dmeanmin and miFV [33]. MILES itera-
tively measures similarities of bags to the training instances, and builds a linear
SVM classifier along with ℓ1-norm regularization at the same time. MInD defines
a bag-level feature representation by using the bag-to-bag dissimilarity measure
Dmeanmin. miFV benefits from Fisher vectorial coding to map each bag to a single
vector. Both MInD and miFV build a linear SVM classifier to classify bag vec-
tors. We execute MILES [6] and MInD [7] using the MIL toolbox [29], and use a
MATLAB [32] implementation to run miFV [33]. We accept the default parame-
ters in the original paper for MILES [6]. We use the parameter setting proposed
in [7] for MInD [7]. Following the authors’ advice, we employ an inner ten-fold
cross-validation to select the three parameters of miFV [33], which are enumer-
ated as PCA energy, number of components and cost parameter of linear SVM.
PCA energy attains values from the set {0.8, 0.9, 1}. The alternatives for the num-
ber of Gaussian components is selected from {1, 2, 3, 4, 5}. The cost parameter of
the linear SVM classifier are {0.05, 1, 10}.

A receiver operation characteristics (ROC) curve visualizes the trade-off be-
tween percentage of true positive predictions and percentage of false positive pre-
dictions. Area under the ROC curve (AUC) is asserted to be a reliable metric for
classification [16]. Larger AUC values indicate a better classifier. Another measure
for classifier performance in MIL problems is classification accuracy. For a specific
decision threshold value, such as the value of τ in QP-MIL after optimization, the
bag classes are predicted and the accuracy of the classifier is computed. The class
imbalance problem is seen in MIL tasks such as Corel, Web recommendation and
Birds benchmarks. The value of τ is optimized on the training bags, and suffers
from misleading accuracy when the bag classes are imbalanced. AUC is more effec-
tive under class imbalance since all possible thresholds are evaluated to report the
classifier performance. Additionally, given the consistent performance of AUC on
MIL datasets [30], we qualify AUC as a primary comparison metric in our study.

5.4 Experimental results

5.4.1 Comparison of QP-MIL with MIHLSVM

In this section, we present a comparison between QP-MIL and MIHLSVM formu-
lation given in Sect. 1 in terms of computational efficiency and other indicators
related to classification performance of the derived solutions. The clustering-based
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QP-MIL MIHLSVM
XXXXXXXXDataset

#
Constraints Cont.

variables
Binary

variables
Quad.
terms

Constraints Cont.
variables

Binary
variables

Quad.
terms

Elephant 1611.9 1881.4 0 267.5 4055.4 2952.3 1251.9 267.5
Fox 1548.0 1827.5 0 277.5 3720.6 2834.5 1188.0 277.5
Musk 1 594.0 816.0 0 220.0 1314.0 1160.6 428.4 220.0
Musk 2 6121.8 6381.3 0 257.5 13777.2 12226.7 5938.2 257.5

Table 3. Model size summary of QP-MIL and MIHLSVM on problem instances of
4 datasets.

data representation described in Sect. 5.1 is considered as the input of all compared
formulations.

Table 3 presents the overview of problem sizes on four moderate sized MIL
datasets. All datasets are modelled using QP-MIL formulation in (3) and the
MIHLSVM formulation in (1). For each dataset in Table 3, ten separate models
of QP-MIL and MIHLSVM are built, where ten different partitioning of the orig-
inal dataset form the input in each model. The averages of problem dimension
properties for ten models are reported in Table 3. Formulations in (3) and (1)
have quadratic objective functions and number of the quadratic terms are equal
for both. Since we solve the formulations on a cluster center-based data repre-
sentation, the number of quadratic terms is equal to the dimensionality of this
representation.

In Table 4, we compare the performance of QP-MIL with the MIHLSVM.
MIHLSVM is an MIQP and can be directly solved by standard MIQP solvers.
We solve the MIHLSVM formulation in (1) and set the cost parameter C in the
objective function (1a) to 1. It is plausible to tune up the appropriate value for
C by a cross-validation procedure. However, the computation time of parameter
selection in MIHLSVM is a limitation [25].

We are unable to report overall results for MIHLSVM since each cross-validation
fold lasts longer than one day for relatively small datasets such as Elephant and
Fox. Therefore, we do not carry out a cross-validation loop, and manifest only
the model solution time for C = 1. In contrast with the described procedure in
Sect. 4, we do not embed parameter selection into QP-MIL during comparisons
of this section and the predetermined value of C is 1. The results in Table 4 are
based on one repeat of a ten-fold cross validation. All methods are executed within
a time limit of 1800 seconds. First column is the number of problem instance from
each dataset that is solved to optimality until the time limit is reached. The mean
percentage optimality gap [(upper bound- lower bound)/upper bound] is reported
for each algorithm and the corresponding average model solution time in seconds
is also presented. To observe generalizability of the learner, we evaluate obtained
solutions on the test bags. Average accuracy and AUC values over ten experiments
are reported for all three approaches.

Computational study demonstrates that QP-MIL is significantly more efficient
and provides accurate solutions compared to the MIHLSVM formulation. All in-
stances of QP-MIL can be solved exactly without a sacrifice in classification suc-
cess as demonstrated by AUC and accuracy results in Table 4. Being the largest
dataset in this comparison, Musk 2 requires an average solution time of 3 seconds
to solve QP model (3) to optimality. On the other hand, only one MIHLSVM
instance of Musk 1 dataset can be solved to optimality within the time limit. Ex-
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QP-MIL
Dataset Solved Gap Time AUC Accuracy
Elephant 10 0 1.6 93.7 83.5
Fox 10 0 1.5 70.3 65.0
Musk 1 10 0 0.3 96.5 89.0
Musk 2 10 0 3.0 94.7 88.3

MIHLSVM
Dataset Solved Gap Time AUC Accuracy
Elephant 0 97.6 1800 87.3 63.5
Fox 0 98.6 1800 64.9 55.0
Musk 1 1 37.1 1721.4 89.3 71.7
Musk 2 0 91.0 1800 90.8 74.4

Table 4. Comparison of QP-MIL and MIHLSVM on problem instances of 4
datasets. 10 models of each formulation are built for each dataset, and the av-
erage values are reported.

cept for Musk 1, Gurobi is unable to reduce the optimality gap below 90%. For the
sake of fairness, we do not include MIHLSVM in the overall comparison results in
Sect. 5.4.2 due to the requirements of a higher runtime even for small/moderate
sized datasets.

5.4.2 Comparison to baseline methods

Table 5 summarizes the performance of our proposed QP-MIL approach with
MILES [6], MInD [7] with bag dissimilarity representation Dmeanmin and miFV
[33] on four different MIL application categories. Their descriptions and imple-
mentation details are provided in Sect. 5.3.

AUC and accuracy results of MIL classifiers in Table 5 are the averages of a
ten-fold cross validation repeated for five times. The best result for each dataset
is in boldface. In molecular activity prediction, the highest AUC results are ob-
tained by QP-MIL in Musk 1, and by Dmeanmin in Musk 2. Fisher vector based
bag representation suits on Mutagenesis 1 dataset, where second best AUC and
accuracy results are obtained by QP-MIL and miFV, respectively. In Protein, the
leading method is MILES, which is followed by QP-MIL.

QP-MIL has the best image classification success in Elephant, Tiger and USCB
Breast cancer datasets. The implicit instance selection mechanism of MILES is ef-
fective on Fox dataset and QP-MIL follows MILES on this dataset. In Corel image
datasets, Dmeanmin has the highest average performance, and QP-MIL performs
very close to Dmeanmin. Results of QP-MIL and Dmeanmin are very close to each
other on the average on 20 Newsgroups datasets. In Web recommendation, per-
formance of QP-MIL falls behind miFV and Dmeanmin. QP-MIL has the highest
AUC and accuracy results in almost all Birds datasets.

The average testing results based on problem categories are reported in Ta-
ble 6. For each problem category, results of the best method are in boldface,
whereas the second best results are shown in italic. Average AUC and accuracy
results in Table 6 demonstrate that QP-MIL is competitive with other algorithms
across all application categories and provides the best classification results on some
datasets. QP-MIL achieves the best or the second best average AUC and accuracy
performance on molecular activity prediction datasets.



1
6

E
m
el

Ş
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Table 5. AUC and accuracy results of four MIL methods with standard errors (× 100).

Dataset AUC Accuracy
MILES Dmeanmin miFV QP-MIL MILES Dmeanmin miFV QP-MIL

Musk 1 ♣ 93.5 (1.0) 94.5 (1.2) 94.1 (1.2) 96.8 (0.8) 79.6 (2.0) 84.1 (1.8) 85.2 (1.6) 88.4 (1.4)
Musk 2 ♣ 96.7 (0.7) 97.6 (0.8) 94.7 (1.2) 94.5 (1.0) 86.3 (1.1) 92.3 (1.1) 87.7 (1.6) 87.8 (1.5)
Mutagenesis 1 ♣ 78.0 (1.5) 85.1 (1.2) 88.7 (1.2) 85.5 (1.5) 79.8 (1.2) 77.4 (1.3) 82.6 (1.2) 77.6 (1.5)
Mutagenesis 2 ♣ 62.7 (5.0) 64.7 (5.3) 68.3 (5.0) 78.5 (3.8) 70.9 (2.7) 70.4 (2.0) 76.6 (2.2) 71.2 (3.0)
Protein ♣ 95.3 (1.1) 52.3 (3.7) 80.0 (1.9) 85.1 (1.6) 94.9 (0.6) 87.1 (0.3) 85.4 (0.8) 88.3 (0.9)
Elephant ♥ 92.7 (0.7) 93.6 (0.9) 91.4 (0.9) 94.1 (0.7) 82.7 (1.0) 86.2 (1.0) 82.9 (1.1) 85.0 (0.9)
Fox ♥ 73.8 (1.6) 61.2 (1.7) 67.5 (1.5) 67.7 (1.4) 64.9 (1.4) 57.8 (1.2) 62.3 (1.3) 63.4 (1.2)
Tiger ♥ 86.8 (1.0) 85.3 (1.1) 87.5 (1.1) 90.1 (1.0) 79.2 (1.2) 77.7 (1.2) 80.4 (1.3) 81.8 (1.2)
Corel, African ♥ 95.7 (0.5) 96.7 (0.4) 94.4 (0.6) 95.3 (0.5) 96.6 (0.2) 97.3 (0.1) 96.4 (0.1) 95.8 (0.2)
Corel, Antique ♥ 87.3 (0.7) 92.2 (0.6) 90.8 (0.6) 87.1 (0.7) 93.8 (0.2) 95.4 (0.1) 95.0 (0.1) 92.7 (0.3)
Corel, Battleships ♥ 94.9 (0.5) 98.1 (0.2) 92.9 (0.6) 95.8 (0.3) 96.1 (0.2) 97.1 (0.1) 96.2 (0.1) 96.0 (0.2)
Corel, Beach ♥ 99.3 (0.1) 98.3 (0.4) 97.4 (0.4) 99.3 (0.1) 98.1 (0.1) 97.8 (0.1) 97.7 (0.1) 98.4 (0.1)
Corel, Buses ♥ 97.5 (0.4) 97.3 (0.4) 94.0 (0.7) 96.0 (0.4) 98.1 (0.1) 97.7 (0.1) 97.2 (0.2) 96.8 (0.2)
Corel, Cars ♥ 91.9 (0.7) 94.8 (0.5) 91.7 (0.7) 91.2 (0.7) 95.4 (0.2) 97.3 (0.1) 96.5 (0.1) 95.2 (0.2)
Corel, Desserts ♥ 93.9 (0.7) 97.4 (0.3) 97.3 (0.4) 96.9 (0.3) 96.5 (0.1) 97.7 (0.1) 97.4 (0.1) 96.9 (0.2)
Corel, Dinosaurs ♥ 97.5 (0.3) 98.3 (0.2) 94.4 (0.5) 96.4 (0.4) 97.5 (0.1) 97.9 (0.1) 96.6 (0.1) 96.3 (0.2)
Corel, Dogs ♥ 87.4 (1.1) 91.9 (0.7) 86.4 (1.2) 86.3 (0.9) 94.8 (0.2) 96.3 (0.1) 95.6 (0.1) 93.4 (0.3)
Corel, Elephants ♥ 95.7 (0.4) 98.2 (0.2) 95.7 (0.4) 96.8 (0.3) 96.0 (0.1) 96.9 (0.1) 96.5 (0.1) 96.2 (0.1)
Corel, Fashion ♥ 99.0 (0.1) 99.0 (0.1) 98.9 (0.2) 98.6 (0.2) 98.3 (0.1) 98.6 (0.1) 98.1 (0.1) 98.1 (0.1)
Corel, Flowers ♥ 94.3 (0.6) 94.7 (0.6) 93.8 (0.6) 93.8 (0.5) 96.1 (0.2) 97.0 (0.1) 96.4 (0.2) 95.5 (0.2)
Corel, Food ♥ 99.4 (0.1) 99.8 (0.1) 98.7 (0.1) 99.2 (0.1) 98.6 (0.1) 98.9 (0.1) 97.9 (0.2) 97.9 (0.1)
Corel, Historical ♥ 99.3 (0.1) 99.8 (0.0) 98.5 (0.3) 99.4 (0.1) 98.7 (0.1) 98.9 (0.1) 97.8 (0.1) 98.6 (0.1)
Corel, Horses ♥ 89.6 (0.7) 92.0 (0.6) 88.9 (0.8) 86.0 (0.8) 94.6 (0.2) 96.2 (0.1) 95.9 (0.1) 93.1 (0.2)
Corel, Lizards ♥ 97.0 (0.4) 98.0 (0.3) 95.8 (0.5) 97.3 (0.3) 97.8 (0.1) 97.8 (0.1) 97.0 (0.1) 97.2 (0.2)
Corel, Mountains ♥ 99.9 (0.0) 100 (0.0) 99.9 (0.0) 99.8 (0.0) 99.3 (0.1) 99.5 (0.1) 99.5 (0.1) 99.1 (0.1)
Corel, Skiing ♥ 94.7 (0.4) 96.0 (0.3) 95.9 (0.4) 96.0 (0.3) 96.4 (0.1) 96.4 (0.1) 96.3 (0.1) 96.0 (0.1)
Corel, Sunset ♥ 76.3 (1.2) 83.7 (1.0) 77.1 (1.3) 73.9 (1.2) 92.4 (0.2) 95.2 (0.1) 95.1 (0.1) 90.5 (0.4)
Corel, Waterfalls ♥ 94.5 (0.5) 97.5 (0.2) 93.4 (0.5) 95.5 (0.3) 96.0 (0.2) 97.0 (0.2) 95.8 (0.1) 95.5 (0.2)
UCSB Breast Cancer ♥ 83.3 (2.6) 83.1 (2.7) 86.8 (2.5) 88.8 (2.2) 75.8 (2.2) 72.2 (2.3) 79.6 (2.4) 81.7 (2.0)
Newsgroups 1, alt.atheism ♠ 41.6 (2.3) 94.1 (1.0) 91.1 (1.2) 93.3 (1.2) 41.8 (1.8) 85.6 (1.5) 81.2 (1.4) 82.0 (1.6)
N.g. 2, comp.graphics ♠ 52.8 (2.2) 89.8 (1.6) 57.2 (3.2) 83.1 (1.8) 52.2 (2.0) 79.0 (1.4) 53.4 (1.2) 75.0 (1.8)
N.g. 3, comp.os.ms-windows.misc ♠ 47.9 (2.7) 81.0 (2.1) 66.8 (2.2) 77.8 (2.1) 46.6 (2.2) 54.0 (0.9) 55.2 (1.7) 71.2 (1.7)
N.g. 4, comp.sys.ibm.pc.hardware ♠ 68.2 (2.4) 85.7 (2.2) 69.5 (2.4) 82.0 (1.9) 62.4 (2.5) 75.4 (1.6) 65.0 (2.1) 74.4 (1.9)
N.g. 5, comp.sys.mac.hardware ♠ 58.9 (2.8) 85.2 (1.6) 65.0 (2.6) 81.2 (1.6) 56.4 (2.4) 79.6 (1.2) 59.6 (1.6) 73.4 (1.6)
N.g. 6, comp.windows.x ♠ 61.0 (2.4) 89.0 (1.7) 82.2 (2.0) 84.9 (2.2) 56.8 (2.0) 66.8 (1.5) 75.0 (1.9) 76.4 (2.0)

MIL application categories: ♣ molecular activity prediction, ♥ image annotation, ♠ text classification, ♦ audio recording classification.
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Table 5 continued.

Dataset AUC Accuracy
MILES Dmeanmin miFV QP-MIL MILES Dmeanmin miFV QP-MIL

N.g. 7, misc.forsale ♠ 51.1 (2.4) 79.0 (2.0) 72.6 (2.5) 81.6 (1.8) 53.0 (2.3) 53.2 (1.5) 60.0 (1.8) 70.0 (2.1)
N.g. 8, rec.autos ♠ 49.8 (2.5) 87.0 (1.7) 72.7 (2.5) 81.8 (1.9) 50.2 (1.7) 77.0 (1.6) 63.0 (1.9) 69.0 (2.0)
N.g. 9, rec.motorcycles ♠ 52.2 (2.6) 32.6 (3.2) 81.2 (2.4) 85.0 (1.9) 51.8 (1.9) 51.0 (0.5) 74.0 (2.1) 74.8 (1.9)
N.g. 10, rec.sport.baseball ♠ 51.0 (2.7) 91.4 (1.4) 86.4 (1.8) 88.0 (1.8) 50.6 (1.9) 80.0 (1.6) 77.2 (1.5) 75.8 (1.7)
N.g. 11, rec.sport.hockey ♠ 37.4 (2.2) 95.8 (0.8) 87.9 (1.5) 92.3 (1.4) 42.0 (2.1) 85.8 (1.5) 77.0 (1.5) 82.6 (1.8)
N.g. 12, sci.crypt ♠ 46.2 (2.7) 84.0 (1.9) 85.1 (1.8) 86.5 (2.0) 47.2 (2.0) 62.4 (1.6) 77.6 (2.1) 75.6 (2.1)
N.g. 13, sci.electronics ♠ 48.7 (2.2) 94.6 (1.0) 61.6 (2.6) 94.9 (0.8) 46.6 (1.7) 89.0 (1.3) 57.4 (1.6) 87.4 (1.2)
N.g. 14, sci.med ♠ 49.8 (2.4) 94.2 (0.8) 84.3 (1.7) 88.8 (1.5) 52.0 (1.9) 80.0 (1.4) 73.2 (1.5) 78.6 (1.4)
N.g. 15, sci.space ♠ 43.6 (2.5) 90.5 (1.4) 82.9 (1.9) 92.1 (1.1) 45.2 (2.1) 78.4 (1.5) 77.4 (1.9) 83.6 (1.4)
N.g. 16, soc.religion.christian ♠ 46.1 (2.4) 89.8 (1.4) 84.9 (1.5) 82.2 (2.0) 45.0 (1.9) 83.8 (1.4) 76.0 (1.4) 70.2 (1.7)
N.g. 17, talk.politics.guns ♠ 49.8 (2.5) 87.4 (1.5) 82.7 (2.0) 79.6 (1.9) 48.4 (2.1) 77.8 (1.6) 73.4 (1.7) 66.0 (1.9)
N.g. 18, talk.politics.mideast ♠ 54.6 (3.0) 87.4 (1.7) 85.8 (1.9) 85.2 (1.5) 53.8 (2.1) 78.2 (1.3) 79.0 (1.5) 76.6 (1.7)
N.g. 19, talk.politics.misc ♠ 55.0 (2.3) 80.2 (1.9) 67.2 (2.9) 81.4 (2.0) 51.8 (2.1) 68.6 (1.7) 60.0 (2.2) 72.2 (1.8)
N.g. 20, talk.religion.misc ♠ 56.0 (2.7) 83.4 (2.2) 80.9 (2.3) 81.3 (2.3) 52.8 (2.3) 62.4 (1.3) 69.2 (2.2) 70.8 (1.9)
Web 1 ♠ 73.2 (3.0) 63.4 (4.2) 83.2 (2.3) 65.5 (3.4) 75.5 (1.5) 69.9 (0.9) 74.9 (1.3) 68.1 (2.0)
Web 2 ♠ 54.4 (3.9) 47.4 (4.2) 37.1 (2.5) 53.7 (4.4) 75.0 (1.1) 75.3 (0.9) 73.4 (1.2) 68.1 (2.3)
Web 3 ♠ 67.1 (4.4) 70.8 (4.6) 73.3 (3.6) 66.1 (4.1) 85.1 (1.4) 81.6 (1.0) 82.1 (1.1) 74.9 (2.1)
Web 4 ♠ 74.3 (3.5) 79.9 (3.6) 81.2 (3.4) 62.7 (3.3) 76.5 (1.8) 75.8 (0.9) 82.5 (1.7) 69.6 (1.6)
Web 5 ♠ 74.3 (3.4) 71.1 (3.7) 68.7 (3.4) 55.2 (3.8) 82.1 (1.3) 79.7 (1.1) 79.8 (1.1) 78.0 (1.8)
Web 6 ♠ 55.0 (3.4) 52.5 (4.2) 64.6 (3.6) 65.0 (3.6) 81.5 (1.0) 78.9 (0.8) 74.7 (1.3) 75.1 (1.7)
Web 7 ♠ 62.5 (2.6) 69.0 (2.8) 69.7 (3.4) 54.5 (3.2) 54.3 (1.9) 63.1 (2.3) 65.1 (2.8) 51.3 (2.7)
Web 8 ♠ 51.1 (3.1) 40.9 (2.6) 53.7 (2.4) 53.0 (3.0) 50.1 (2.3) 50.3 (1.4) 53.3 (2.1) 51.7 (2.7)
Web 9 ♠ 68.7 (2.3) 73.5 (2.7) 68.5 (3.1) 50.3 (3.2) 61.8 (2.1) 69.3 (2.2) 65.9 (2.0) 49.8 (2.5)
Birds, Brown creeper ♦ 97.4 (0.3) 89.9 (0.5) 98.8 (0.2) 99.0 (0.1) 92.4 (0.5) 81.8 (0.7) 95.1 (0.5) 95.8 (0.4)
Birds, Chestnut-backed chickadee ♦ 80.1 (1.3) 85.3 (0.8) 92.3 (0.8) 91.7 (0.5) 80.6 (0.8) 88.4 (0.5) 91.1 (0.4) 86.9 (0.5)
Birds, Dark-eyed junco ♦ 89.1 (1.2) 85.6 (1.3) 88.1 (1.2) 93.2 (0.6) 95.8 (0.3) 95.8 (0.2) 95.2 (0.3) 94.6 (0.3)
Birds, Hammonds flycatcher ♦ 93.9 (0.8) 94.4 (0.7) 94.0 (0.7) 100.0 (0.0) 91.1 (0.8) 90.8 (0.4) 92.6 (0.4) 99.6 (0.1)
Birds, Hermit thrush ♦ 68.2 (3.0) 57.8 (4.4) 66.2 (3.1) 90.3 (1.1) 96.7 (0.2) 97.2 (0.1) 97.0 (0.1) 95.6 (0.3)
Birds, Hermit warbler ♦ 90.4 (1.3) 78.1 (1.5) 94.0 (0.6) 98.4 (0.3) 90.4 (0.5) 91.6 (0.3) 93.8 (0.4) 95.2 (0.5)
Birds, Olive-sided flycatcher ♦ 92.0 (0.5) 89.6 (0.6) 95.9 (0.4) 96.7 (0.3) 88.7 (0.5) 84.3 (0.2) 91.3 (0.5) 91.4 (0.5)
Birds, Pacificslope flycatcher ♦ 84.8 (0.8) 75.4 (1.0) 98.6 (0.2) 94.3 (0.4) 79.6 (0.8) 77.6 (0.5) 95.4 (0.4) 86.4 (0.6)
Birds, Red-breasted nuthatch ♦ 90.7 (0.7) 87.6 (0.7) 94.6 (0.5) 97.1 (0.3) 88.4 (0.6) 85.0 (0.2) 90.3 (0.5) 92.7 (0.5)
Birds, Swainsons thrush ♦ 80.4 (1.7) 76.7 (1.7) 91.4 (1.0) 97.6 (0.3) 86.7 (0.7) 91.4 (0.3) 93.4 (0.4) 94.2 (0.5)
Birds, Varied thrush ♦ 95.1 (0.6) 84.0 (1.2) 93.0 (0.7) 99.7 (0.2) 92.7 (0.6) 88.1 (0.3) 91.4 (0.4) 98.5 (0.2)
Birds, Western tanager ♦ 89.4 (1.6) 84.9 (1.8) 98.9 (0.2) 97.3 (0.3) 93.5 (0.5) 94.7 (0.3) 97.9 (0.2) 94.6 (0.4)
Birds, Winter wren ♦ 94.6 (0.4) 93.1 (0.7) 99.7 (0.1) 98.8 (0.1) 91.2 (0.4) 93.4 (0.4) 97.6 (0.3) 94.7 (0.4)

MIL application categories: ♣ molecular activity prediction, ♥ image annotation, ♠ text classification, ♦ audio recording classification.
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Table 6. Average AUC and accuracy results of four MIL methods based on problem
categories.

Dataset AUC Accuracy
MILES Dmeanmin miFV QP-MIL MILES Dmeanmin miFV QP-MIL

Musk ♣ 95.1 96.1 94.4 95.7 83.0 88.2 86.5 88.1
Mutagenesis ♣ 70.4 74.9 78.5 82.0 75.4 73.9 79.6 74.4
Protein ♣ 95.3 52.3 80.0 85.1 94.9 87.1 85.4 88.3
Elephant, Fox, Tiger ♥ 84.4 80.0 82.1 84.0 75.6 73.9 75.2 76.7
Corel ♥ 94.3 96.2 93.8 94.0 96.6 97.3 96.7 96.0
UCSB Breast Cancer ♥ 83.3 83.1 86.8 88.8 75.8 72.2 79.6 81.7
Newsgroups ♠ 51.1 85.1 77.4 85.2 50.3 73.4 69.2 75.3
Web recommendation ♠ 64.5 63.2 66.7 58.4 71.3 71.5 72.4 65.2
Birds ♦ 88.2 83.3 92.7 96.5 89.8 89.2 94.0 93.9
Avg. 80.7 79.3 83.6 85.5 79.2 80.8 82.1 82.2

MIL application categories: ♣ molecular activity prediction, ♥ image annotation, ♠ text
classification, ♦ audio recording classification.

Table 7. Average time results of QP-MIL.

Dataset Instances Features Bags RL time CV time Solution time
Musk 1 ♣ 476 166 92 5.3 15.4 0.3
Musk 2 ♣ 6598 166 102 59.4 187.0 2.7
Mutagenesis 1 ♣ 10486 7 188 47.8 844.1 27.4
Mutagenesis 2 ♣ 2132 7 42 25.7 570.8 20.0
Protein ♣ 26611 8 193 125.2 782.7 13.2
Elephant ♥ 1391 230 200 17.8 77.5 1.5
Fox ♥ 1302 230 200 19.5 77.1 1.6
Tiger ♥ 1220 230 200 16.1 69.9 1.6
Corel, African ♥ 7947 9 2000 34.2 294.6 5.0
Corel, Antique ♥ 7947 9 2000 36.6 346.2 7.4
Corel, Battleships ♥ 7947 9 2000 34.7 339.3 6.1
Corel, Beach ♥ 7947 9 2000 30.8 321.0 5.8
Corel, Buses ♥ 7947 9 2000 31.7 325.8 5.8
Corel, Cars ♥ 7947 9 2000 34.1 350.1 6.1
Corel, Desserts ♥ 7947 9 2000 37.0 345.9 5.7
Corel, Dinosaurs ♥ 7947 9 2000 35.5 329.8 6.0
Corel, Dogs ♥ 7947 9 2000 35.7 338.2 6.8
Corel, Elephants ♥ 7947 9 2000 32.6 341.0 6.0
Corel, Fashion ♥ 7947 9 2000 37.1 350.3 6.3
Corel, Flowers ♥ 7947 9 2000 41.7 336.2 6.2
Corel, Food ♥ 7947 9 2000 39.8 333.7 5.8
Corel, Historical ♥ 7947 9 2000 42.5 330.8 6.1
Corel, Horses ♥ 7947 9 2000 37.9 330.2 6.8
Corel, Lizards ♥ 7947 9 2000 32.4 321.0 5.7
Corel, Mountains ♥ 7947 9 2000 34.8 370.1 6.0
Corel, Skiing ♥ 7947 9 2000 40.0 316.1 5.6
Corel, Sunset ♥ 7947 9 2000 41.9 362.0 12.0
Corel, Waterfalls ♥ 7947 9 2000 28.4 348.6 6.6
UCSB Breast Cancer ♥ 2002 708 58 33.6 31.0 0.5
Newsgroups 1, alt.atheism ♠ 5443 200 100 41.2 129.6 1.8
N.g. 2, comp.graphics ♠ 3094 200 100 57.1 303.1 4.5
N.g. 3, comp.os.ms-windows.misc ♠ 5175 200 100 79.4 172.0 2.7
N.g. 4, comp.sys.ibm.pc.hardware ♠ 4827 200 100 85.3 179.8 2.7
N.g. 5, comp.sys.mac.hardware ♠ 4473 200 100 83.5 239.1 2.9
N.g. 6, comp.windows.x ♠ 3110 200 100 45.2 217.6 2.8
N.g. 7, misc.forsale ♠ 5306 200 100 75.7 162.9 2.4
N.g. 8, rec.autos ♠ 3458 200 100 53.7 282.2 3.0
N.g. 9, rec.motorcycles ♠ 4730 200 100 47.3 128.1 1.9
N.g. 10, rec.sport.baseball ♠ 3358 200 100 49.4 265.0 4.0
N.g. 11, rec.sport.hockey ♠ 1982 200 100 32.8 176.0 3.8
N.g. 12, sci.crypt ♠ 4284 200 100 30.4 97.5 1.3
N.g. 13, sci.electronics ♠ 3192 200 100 65.0 380.6 6.4
N.g. 14, sci.med ♠ 3045 200 100 26.1 143.9 2.0

MIL application categories: ♣ molecular activity prediction, ♥ image annotation, ♠ text
classification, ♦ audio recording classification.
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Table 7 continued.

Dataset Instances Features Bags RL time CV time Solution time
N.g. 15, sci.space ♠ 3655 200 100 32.1 146.6 2.3
N.g. 16, soc.religion.christian ♠ 4677 200 100 35.9 112.1 1.6
N.g. 17, talk.politics.guns ♠ 3558 200 100 27.0 107.6 1.6
N.g. 18, talk.politics.mideast ♠ 3376 200 100 40.9 181.3 2.3
N.g. 19, talk.politics.misc ♠ 4788 200 100 39.3 108.7 1.5
N.g. 20, talk.religion.misc ♠ 4606 200 100 36.6 113.9 1.6
Web 1 ♠ 2212 5863 75 143.3 29.1 0.4
Web 2 ♠ 2212 6519 75 144.8 26.1 0.4
Web 3 ♠ 2212 6306 75 154.7 31.5 0.4
Web 4 ♠ 2291 6059 75 142.4 26.9 0.4
Web 5 ♠ 2546 6407 75 158.7 33.4 0.5
Web 6 ♠ 2462 6417 75 156.7 26.2 0.4
Web 7 ♠ 2400 6450 75 151.6 27.1 0.4
Web 8 ♠ 2183 5999 75 137.2 23.1 0.4
Web 9 ♠ 2321 6279 75 149.6 28.2 0.4
Birds, Brown creeper ♦ 10232 38 548 43.3 211.8 3.6
Birds, Chestnut-backed chickadee ♦ 10232 38 548 43.8 212.7 3.6
Birds, Dark-eyed junco ♦ 10232 38 548 39.3 241.7 4.3
Birds, Hammonds flycatcher ♦ 10232 38 548 40.9 220.2 4.3
Birds, Hermit thrush ♦ 10232 38 548 48.9 228.9 3.9
Birds, Hermit warbler ♦ 10232 38 548 47.6 229.7 4.0
Birds, Olive-sided flycatcher ♦ 10232 38 548 46.4 232.4 4.1
Birds, Pacificslope flycatcher ♦ 10232 38 548 47.4 232.6 3.9
Birds, Red-breasted nuthatch ♦ 10232 38 548 46.9 225.1 3.9
Birds, Swainsons thrush ♦ 10232 38 548 43.5 234.9 3.9
Birds, Varied thrush ♦ 10232 38 548 49.5 237.2 4.0
Birds, Western tanager ♦ 10232 38 548 48.5 241.1 4.3
Birds, Winter wren ♦ 10232 38 548 44.7 239.6 4.1

MIL application categories: ♣ molecular activity prediction, ♥ image annotation, ♠ text
classification, ♦ audio recording classification.

Image classification results in Table 6 reveal that QP-MIL is broadly compara-
ble with the competitors in all benchmarks. In text categorization, performance of
QP-MIL is competitive in Newsgroups datasets and miFV is the leading method
in Web recommendation datasets. QP-MIL yields the best average AUC and ac-
curacy results in audio recording classification as verified by the reported results
on Birds competition. Finally, QP-MIL has the best overall average AUC and
accuracy results.

Both miFV and Dmeanmin are bag-level methods and they are mostly tuned for
computer vision and bioinformatics applications of MIL. However, QP-MIL is not
tailored for a certain MIL application and overall results of this section confirm
generalizability of our approach to various application domains. Without forcing
the standard MIL assumption, QP-MIL matches or outperforms the state-of-the-
art algorithms on a broad range of applications.

Table 7 shows the time taken up by experiments of QP-MIL on 71 datasets.
Again, reported results are the averages after 5 repeats of a ten-fold cross valida-
tion. We divide the total time spent by QP-MIL into three main parts: represen-
tation learning (RL) time, inner cross-validation (CV) time and model solution
time. At first, we obtain clustering-based data representation. We determine the
required number of clusters on the training instances and use the resulting clus-
ter centers to represent the training bags. Compared to the computational time
on the training instances, RL time for the test bags is negligible. Therefore, we
only report the RL time consumed on the training set. As described in Sect. 5.3,
we report classification results after a nested cross-validation procedure. The time
spent for inner cross-validation loop is the CV time. After parameter selection,
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we solve QP model and record execution time of barrier algorithm as the model
solution time.

Table 7 reveals that QP models are solved efficiently regardless of the dataset
dimensionality. Due to the repeated solution of the QP model within each inner
fold, significant amount of time is spent on parameter selection. However, RL
times are considerably longer compared to CV times in Web datasets since large
number of features complicates the dissimilarity calculations in data representation
phase. In Mutagenesis datasets, predetermined value of the threshold controlling
parameter ε may cause infeasibility in QP models. If infeasibility is detected, we
solve an auxiliary optimization problem to deal with this situation. Specifically,
by keeping the original constraints of (3), we convert ε into a decision variable
and maximize its value. This way, a suitable value of ε is derived. Then, QP
model (3) is solved after stating the selected ε value. This process increases both
the CV time and model solution time on these datasets as seen in Table 7. QP-
MIL provides an efficient learning approach concerning different MIL application
categories. In the light of parameter sensitivity discussions in Sect. 5.4.4, QP-MIL
can be implemented without parameter selection to gain from the execution time.

5.4.3 Contribution of threshold selection to model robustness

To make classification more robust, QP-MIL selects the decision threshold auto-
matically. After each experiment, optimal decision threshold is returned with the
QP solution as the value of variable τ . To observe the robustness of accuracy results
of QP-MIL, we conduct a comparison via solving an extra alternative formulation.
We describe another QP, QP without τ , where only variable τ is excluded and
the remaining variables and constraints are the same with the original QP. After
solving QP without τ , optimal decision threshold is selected on the training set.
Then, testing accuracy is calculated using this threshold value.

Table 9 shows the testing accuracy results after solving both formulations for
3 different datasets. These results imply that including τ as a variable in QP
elicits only negligible differences on accuracy and hence the resulting classifier.
We also compare solutions of the original QP formulation and QP without τ in
terms of variance. In Figure 5, the boxplots of testing accuracies on 3 datasets
are provided. Figure 5 demonstrates that QP solutions with a threshold have
lower variance compared to QP solutions without τ . Namely, QP-MIL results
with similar accuracy and lower variance than QP without τ . Overall, QP with
τ generates robust results and the embedded threshold selection is a particular
advantage of the proposed method.

Accuracy
Dataset QP-MIL with τ QP-MIL without τ
Musk 1 88.4 88.4
Elephant 85.0 84.7
Fox 64.1 63.4

Table 9. Comparison of the testing accuracy results on 3 datasets computed with
two different QP solutions depending on whether threshold parameter τ is included
in the model or not.
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Figure 5. Boxplots of pairwise accuracy comparison of QP solution with a threshold
variable τ , and QP solution without τ on 3 datasets.

5.4.4 Parameter sensitivity

In this section, we conduct experiments on four real-world datasets to examine the
sensitivity of QP-MIL to C setting. Six different values of C are tested with 50 repli-
cates of the experiments. We select the tuning set of C as {0.01, 0.1, 1, 10, 100, 1000}.
We execute data representation and model solving as described in Sect. 5.3 except
for the inner cross validation. For each level of C, we solve QP model (3) and
record the classification results for the test bags. Figure 6 presents the behavior of
the QP-MIL classifier on four datasets. For each dataset, boxplots show the AUC
values for different levels of C. For Musk 2, value of C does not have a significant
effect on the AUC performance. Corresponding boxplots in Figure 6 show that
smaller C values yield slightly better AUC results in Elephant dataset. Finally,
analysis with the boxplots in Figure 6 demonstrates that changing value of C does
not significantly affect the AUC performance for other datasets.

The reported results of the comparisons with baseline approaches are provided
after a cross-validation procedure in Sect. 5.4.2. The trade-off between maximiza-
tion of bag class membership margin and sparsity of the weighting vector can
be considered as a practically dispensable criterion for learning. Since most of the
computation time is consumed by parameter selection as reported in Table 4, value
of C can be fixed initially for run-time considerations. Setting a higher value of C
introduces potential risk of overfitting, and therefore may reduce generalization to
unknown objects. As shown in the boxplots of Figure 6, small C values yield higher
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Figure 6. Sensitivity of the QP-MIL to different values for C on 4 real-world
datasets.

AUC values in both Musk 2 and Elephant. Therefore, if the parameter selection
phase is skipped, we suggest to use small values of C to obtain satisfactory results.

6 Conclusions

In this paper, we propose an optimization-based method, QP-MIL, to solve multi-
ple instance classification problem, where a bag of instances are classified instead
of single instances. Our algorithm is based on an quadratic programming (QP) for-
mulation, which performs classification without imposing additional constraints on
relating instance labels to the bag labels. Solving QP problem produces a decision
function, which computes a bag class membership score by aggregating instance-
level scores. Instance-level scores are obtained by a linear function of feature val-
ues. This way, all instances contribute to the bag label and their contributions
are modeled by specifying the feature weights. The optimization process outputs
a bag-level decision threshold to classify new bags together with the decision func-
tion. Distances of bag class memberships to the threshold value are maximized
and the sparseness of feature weight vector is controlled by a cost parameter.

We have tested our approach on a wide range of datasets from various cat-
egories such as drug activity prediction, image categorization, text mining and
audio recording classification. In order to support further research on this area,
we serve the used datasets, codes and configurations on our supporting page [19].
We compared the performance of our approach to state-of-the-art machine learn-
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ing based approaches. To model instance relationships, cluster centers are selected
as prototypes and input features are the instance-to-prototype distances. For each
dataset, generated problem instances can be easily solved to optimality in seconds.
Our experiments on 71 datasets indicate that QP-MIL is competitive with the re-
cent successful heuristic algorithms, and provides the best classification results on
a variety of datasets.

Since this study focuses on optimization-based MIL, we also performed compar-
isons with a recent method MIHLSVM in terms of problem size and computation
time. MIHLSVM solves mixed integer quadratic programs to learn a bag classifier.
Our comparisons between QP-MIL and MIHLSVM indicate that MIHLSVM prob-
lem instances have difficulties to scale to large datasets. Our computational results
show that direct solution of MIHLSVM is able to retrieve satisfactory solutions to
MIL problem within a reasonable amount of time. Finally, we examined the effect
of the cost parameter and illustrated that the classification performance does not
excessively depend on adjustment of the cost parameter. Our MIL approach offers
an efficient solution to MIL problem in terms of classification accuracy and model
solution time, and can be extended to large real-world challenges as a future work.
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