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On the Construction of Regular QC-LDPC Codes
with Low Error Floor
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Abstract—Quasi-cyclic low-density (QC-LDPC) codes benefit
from efficient encoding hardware and display excellent error
correcting performance. Therefore, they have been accepted into
the 5G standards in addition to being potential candidates for
next generation mobile systems. However, dominant trapping
sets in the Tanner graphs cause some failures for the iterative
decoding algorithm. In this paper, we propose a simulated
annealing based method to find regular QC-LDPC codes without
dominant trapping sets and have good error floor performance.
Simulation results show that our proposed method generates QC-
LDPC codes that have the best trapping sets distribution among
recent works and better frame rate performance than others.

Index Terms—Low Density Parity Check (LDPC) codes, trap-
ping sets, quasi-cyclic (QC), elementary trapping sets, error floor.

I. INTRODUCTION

Protograph-based low density parity-check (LDPC) codes
are popular nowadays due to their high error correcting
performance [1]. In particular, regular quasi-cyclic LDPC (QC-
LDPC) codes are preferred because of their easy implementa-
tion and they have already been adopted into many standards
[2], [3]. However, especially at high signal-to-noise ratio
(SNR) values, QC-LDPC codes have an error floor problem,
i.e., their error performance ceases to improve much despite
using higher SNR channels. The main cause of this problem
are some topological structures in the Tanner graph of the
QC-LDPC code. These structures, which Richardson named as
trapping sets, are known to cause iterative decoding algorithms
to fail [4].

Cycles are the main reason of the trapping sets. Therefore,
the absence of small cycles in the Tanner graph reduces the
number of dominant trapping sets that causes the error floor.
While designing a QC-LDPC code, many studies have focused
on the girth value of the Tanner graph, the size of a smallest
cycle in the Tanner graph, and the number of the cycles
with girth size [5], [6], [7]. Besides them, some studies have
tried to directly reduce the number of dominant trapping sets
in the Tanner graph, which gives more efficient results [8],
[9], [10]. [8] proposed RandPEG-noTS(5,3) algorithm that
eliminates (5,3) trapping sets and decreases the number of
(6,4) trapping sets. [9] constructed QC-LDPC codes that are
free of some small trapping sets by a cycle control algorithm.
[10] improved the minimum lifting degree of some base graphs
that are free of small trapping sets. In both [11] and [12],
algorithms that are capable of exhaustive enumeration of the
elementary trapping sets (ETS) for regular LDPC codes were
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proposed, and it has paved the way for designing QC-LDPC
codes without dominant trapping sets. Moreover, advanced
algorithms to exhaustively enumerate ETSs are also appearing
in very recent works, such as the one proposed in [13].

In this letter, we aim to construct QC-LDPC codes with
much better trapping sets distributions using a simulated
annealing algorithm that improves an initially supplied QC-
LDPC code. To achieve this, the dominant elementary trap-
ping sets of a QC-LDPC code are roughly enumerated with
Algorithm 1 given in [11] and the cost value of this QC-LDPC
code is calculated according to its ETS distribution. With the
help of the simulated annealing (SA) algorithm, QC-LDPC
codes without small ETSs are found.

The remainder of the paper is structured as follows: Section
II introduces the basic concepts and notations of QC-LDPC
codes. In Section III, the proposed simulated annealing algo-
rithm is explained. Then, Section IV presents construction ex-
amples and compares their performance with QC-LDPC codes
constructed by other works. Finally, Section V concludes the
paper.

II. PRELIMINARIES

An (n, k) LDPC code can be represented in terms of a
bipartite graph, G (also called the Tanner graph), with two sets
of nodes: n variable nodes, V = {v1, . . . , vn}, and m = n−k
check nodes, C = {c1, . . . , cm}. The length of a shortest cycle
in G is called girth, g. For a variable node subset S ⊂ G, G(S)
denotes the induced subgraph of S. O(S) represents the set
of check nodes with odd degree in G(S). An LDPC code is
said to be regular if all check nodes and variable nodes in G
have the same degree. dc and ds denote the degree of check
nodes and variable nodes, respectively.

The parity check matrix of QC-LDPC codes can be pre-
sented by a permutation shift matrix P and a lifting degree
L,

P =


p0,0 p0,1 ... p0,dc−1

p1,0 p0,1 ... p1,dc−1

. . . .

. . . .

. . . .
pds−1,0 pds−1,1 ... pds−1,dc−1

 , (1)

The parity check matrix, H , is constructed from I(pi,j)
matrices, that are the L×L identity matrices whose elements
in each row are cyclically shifted to the left by pi,j .
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For QC-LDPC codes, a cycle of length k exists in the Tanner
graph if and only if

k−1∑
l=0

(pil,jl − pil+1,jl) = 0 mod L, (2)

where ik = i0, il 6= il+1, jl 6= jl+1 is satisfied.

Definition 1. A variable node set T ⊂ G is a (a, b) trapping
set such that |T | = a and |O(T )| = b.

A (a, b) trapping set (TS) is a dominant TS if both a and b
are small numbers [4]. Also, a trapping set T is elementary TS
if all check nodes have degree one or two in G(T ). Elementary
trapping sets with small number of a and b are among the most
dominant TS types [4].

III. SIMULATED ANNEALING ALGORITHM

Definition 2. A permutation shift matrix PS is a neighbor of
the permutation shift matrix PT if and only if the girth of the
QC-LDPC code generated by PS is greater than or equal to
the girth of the QC-LDPC code generated by PT , and there
is exactly one pSi,j ∈ PS such that

pSi,j 6= pTi,j mod L, (3)

where i=1, 2, ..., ds, j=1, 2, ..., dc and pTi,j ∈ PT .

Definition 3. A set that consists of permutation shift matrices
is the neighbor set of the permutation shift matrix PT if and
only if every permutation shift matrix in the set is a neighbor of
the permutation shift matrix PT . This set will be represented
as N(PT ) in the rest of the paper.

It is trivial to find the neighbor set of a permutation shift
matrix by using (2) and Definition 2. There are exactly
L × dc × ds candidate permutation shift matrices that could
be neighbors of a permutation shift matrix, and they can be
checked whether they provide the equality in the (2) or not in
polynomial time.

For short-length QC-LDPC codes, [11] and [12] show that
all (a, b) ETS can be found with a simple search algorithm.
In this work, Algorithm 1 given in [11] is adopted to find
the ETSs. Instead of counting all ETSs, only one variable
node is selected from each block, and the cycles and ETSs
to which it is connected to are counted. Then, the results are
multiplied with L to take into account the multiplicity that is
caused by the quasi-cyclic structure. Therefore, it is sufficient
to examine exactly dc variable nodes. The disadvantage of this
approach is that it causes the ETS distribution to be found
roughly instead of exactly, because some of ETSs with the
same isomorphic structures are counted multiple times. The
advantage is that iteration time is considerably shortened. In
the last iteration, however, the ETS distribution of the resulting
matrix is exhaustively determined by the Algorithm 1 given
in [11].

Using a hill-climbing algorithm, it is possible to improve the
ETS distribution of the initially given permutation shift matrix.
However, such an algorithm is likely to get stuck in a local
optimal point regardless of the selection policy. On the other
hand, a simulated annealing algorithm can help converge to a

global optimal solution. According to the gain in the objective
value, new solution is accepted or not in the simulation
annealing algorithm. If there is positive contribution, the new
solution is accepted. Otherwise, Metropolis’ criterion based on
Boltzman’s probability is applied. The acceptance probability
is determined with

P (A) = e−∆E/(kT ), (4)

where ∆E is the difference between objective function value
of the current solution and candidate solution, k is Boltz-
mann’s constant, and T is the temperature, respectively.

In the literature, there are various cooling schedules. Ge-
ometric cooling rule is one of the simple cooling schedules,
and is employed in this work. The update rule is defined as

Ti+1 = λTi, (5)

where λ is the temperature constant that is smaller than 1 but
close to 1. The initial temperature is chosen as a big number to
accept every solution in the early of iterations. The proposed
simulated annealing algorithm is given in Algorithm 2.

Algorithm 1 Simulated Annealing Algorithm
Input: Permutation shift matrix P initial, objective function,
g(x), max. iteration number M , initial temperature T ,
cooling factor λ
1. P initial → P cand., P best.

2. g(P initial) → min.cost
3. For i = 0 : M
4. Generate N(P cand.)
5. Randomly select a permutation shift matrix P j ,

from N(P cand.)
6. Compute the cost g(P j)
7. if g(P j) ≤ g(P cand.)
8. P j → P cand.

9. else
10. Compute P (A) using Equation (4).
11. Generate an output r from a uniform R.V. over [0,1].
12. if r ≤ P (A)
13. P j → P cand.

14. else Go to STEP 5.
15. Ti+1=λ Ti
16. if g(P cand.) < min.cost
17. P cand. → P best

18. g(P cand) → min.cost
19. End if
19.End For
Output: P best.

Decision variables and decision weights of the objective
function are critical to the frame error rate (FER) performance
of the QC-LDPC code generated by the simulated annealing
algorithm. The number of the dominant ETS in Tanner graph
is used as main decision variables in this work. For an (a, b)
ETS class, the number of ETS that are present in the Tanner
graph is represented as na,b. Objective weights are chosen in
proportion to the contribution of ETS class to the error floor.
The weight vector with three different decision weights are
determined, w=[w1 w2 w3], according to following rules:
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TABLE I
ETS OF LDPC CODES WITHIN THE RANGE OF A ≤ 10 AND B ≤ 3

ETS Tanner RandPEG-noTS(5,3) P1

(5,3) 155 - -
(7,3) 930 62 -
(8,2) 465 - -
(9,3) 1860 496 155
(10,2) 1395 31 -

• The coefficients of the decision variables are determined
as w1 for the ETS classes (S1) that do not exist in the
Tanner graph of the permutation shift matrix (P initial)
taken as input for the simulated annealing algorithm.
By selecting w1 value too large, the creation of non-
existent ETS in the Tanner graph of P initial is prevented.

• The coefficient of w2 is used for the ETS classes (S2)
which are required to be completely removed in Tanner
graph of P initial. The number of w2 is chosen to be
much smaller than w1 and greater than w3. During
the iterations of simulated annealing algorithm, the
ETS in this class are allowed to occur sometimes, but
has been targeted to be destroyed at the end of algorithm.

• For the ETSs classes (S3), whose numbers in the Tanner
graph are desired to be reduced, w3 coefficients are
used.

In this manner, the objective function of the simulated
annealing algorithm is given as

g(x) =
∑

(a,b)∈S1

w1na,b +
∑

(a,b)∈S2

w2na,b +
∑

(a,b)∈S3

w3na,b.

(6)

IV. SIMULATION RESULTS

In this section, four examples will be presented to analyze
the performance of proposed method. All simulation results are
based on the sum-product message passing decoding algorithm
with maximum number of iterations equal to 100. For each
SNR point, fifty frame errors are counted.

Example 1. A regular QC-LDPC code with ds=3, dc=5
and L=31 is constructed. Parameters of simulated anneal-
ing algorithm are taken as T=1000, λ=0.99, S1={(6, 2)},
S2={(5, 3), (8, 2), (10, 2)}, S3={(7, 3), (9, 3)}, w=[106 103

100]. To generate the input permutation shift matrix, progres-
sive edge algorithm (PEG) given in [5] is used. According to
these settings, the permutation shift matrix, P1, is generated
as

P1 =

15 29 17 18 12
6 21 14 20 2
23 23 4 13 22

 . (7)

The ETS distributions of QC-LDPC codes constructed by
Tanner Codes in [14], RandPEG no(5,3) Algorithm in [8], and
P1 are given in Table I. The results in this table show that the
QC-LDPC code generated by the permutation shift matrix P1

TABLE II
ETS OF LDPC CODES WITHIN THE RANGE OF A ≤ 12 AND B ≤ 3

ETS C1 P2 C2 P3

(9,3) 246 - 252 126
(11,3) 1230 656 2142 1197
(12,2) 123 - 63 -

avoids almost every (a, b) elementary trapping set that satisfies
a ≤ 10 and b ≤ 3, except for a few (9,3) ETS.

Example 2. A regular QC-LDPC code with ds=3,
dc=5 and L=41 is constructed. Parameters of simulated
annealing algorithm are taken as T=10000, λ=0.8,
S1={(5, 3), (6, 2), (7, 3), (8, 2), (10, 2)}, S2={(12, 2)},
S3={(9, 3), (11, 3)}, w=[106 104 100]. For the input
permutation shift matrix, the matrix C1 given in [9] is used.
According to these settings, the permutation shift matrix, P2,
is constructed as

P2 =

 0 27 0 16 6
28 26 5 22 20
11 11 4 9 16

 . (8)

The ETS distributions of QC-LDPC codes constructed by
the permutation shift matrix C1, given in [9], and permutation
shift matrix P2 are presented in Table II. The statistics in this
table show that the QC-LDPC code generated by P2 avoids
every (a, b) trapping set that satisfies a ≤ 12 and b ≤ 2.

Example 3. A regular QC-LDPC code with ds=3,
dc=6 and L=63 is constructed. Parameters of simulated
annealing algorithm are taken as T=10000, λ=0.95,
S1={(5, 3), (6, 2), (7, 3), (8, 2), (10, 2)}, S2={(12, 2)},
S3={(9, 3), (11, 3)}, w=[106 104 100]. For the input
permutation shift matrix, the matrix C2 given in [9] is used.
According to these settings, the permutation shift matrix, P3,
is constructed as

P3 =

0 0 1 0 1 0
0 20 8 33 29 59
0 9 26 24 32 58

 . (9)

As in Example 2, ETSs that satisfy a ≤ 12 and b ≤ 2 are
completely removed from the Tanner graph of the proposed
permutation shift matrix P3. The ETS list of the suggested
QC-LDPC codes is given in the Table II.

Figure 1 shows the FER performance of several regu-
lar LDPC codes listed in Table I and Table II for binary
phase shift keying (BPSK) modulation over the additive white
Gaussian noise (AWGN) channel. It can be seen clearly that
the suggested QC-LDPC codes have better FER performance
compared to the existing QC-LDPC codes in the high SNR
region.

Example 4. In this example, we improve the lifting degree
of the codes with the fully-connected 3×5, 3×6, and 3×10
base graphs given in [9] and [10]. In these studies, the goal
is to construct QC-LDPC codes that do not contain leafless
ETSs (LETSs) satisfying the conditions a ≤ 8, b ≤ 3 with the
smallest possible lifting degree. [9] found the codes with lifting
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Fig. 1. FER performance of the constructed QC-LDPC codes.

TABLE III
TIME PERFORMANCE OF THE ALGORITHM 1

P1 P2 P3 P4 P5 P6
Max. Size of Counted Cycles 14 16 16 10 12 12
Iteration Number 1000 200 50 147 262 47
Time 3h 23h 75h 0.1h 9h 25h

degrees 41, 61, and 181, for the three base graphs, respectively.
[10] improved these values as 27, 41, and 165, respectively. In
this work, QC-LDPC codes with minimum lifting values 24,
39, and 152 are found by Algorithm 1. Permutation matrices
with the minimm lifting degrees of these codes are obtained
as

P4 =

11 16 3 13 20
11 2 19 12 17
3 16 0 16 13

 , (10)

P5 =

33 5 32 30 29 22
15 14 1 33 10 34
23 4 38 0 15 6

 , (11)

P6 =

131 2 70 65 80 101 116 14 116 10
41 87 119 119 68 73 54 48 4 133
3 12 150 147 11 5 33 114 27 133

 .
(12)

Except for the cooling factor λ, the parameters of the simu-
lated annealing algorithm are taken for these three base graphs
as T = 100, S1={(6, 2)}, S2={(5, 3), (8, 2)}, S3={(7, 3)},
w=[103 101 100]. λ values are taken as 0.9, 0.9, and 0.8,
respectively. To generate the input permutation shift matrices,
PEG algorithm is used for each base graph.

Although it is an offline task to produce a permutation
matrix, the construction time of the permutation matrices

given in the examples is presented in Table III to demonstrate
the complexity of the proposed algorithm. The algorithm
ran on a desktop computer with 2GHz CPU and 46 GB
RAM. The selected parameters of the SA algorithm determine
the construction times of the P1, P2, and P3 matrices. The
algorithm continues even if it achieves the best result in a
certain iteration. On the other hand, for the construction of
the P4, P5, and P6 matrices, the algorithm is terminated when
the objective function value is 0, i.e., when the desired target
is reached.

Cycle counting is the most time and memory consuming
part of the algorithm. However, in practice it is quite manage-
able for small-size cycles. Therefore, QC-LDPC codes without
small-size TSs can be generated with Algorithm 1 even for
large dc and L values, whereas generation of large QC-LDPC
codes with relatively large-sized TSs optimized is not possible.
However, since small TSs are more dominant, the proposed
algorithm can be used for construction of large QC-LDPC
codes as well.

V. CONCLUSION

In this paper, a simulated annealing algorithm is proposed
to generate QC-LDPC codes that avoids small elementary
trapping sets. Among the modern algorithms, the simulated
annealing algorithm generates the best QC-LDPC codes in
terms of the ETS distribution. Some dominant elementary
trappings are completely removed from the Tanner graph by
the simulated annealing algorithm. Moreover, Monte Carlo
simulations clearly show that proposed QC-LDPC codes are
superior to existing designs for QC-LDPC codes.
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