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Abstract In this work, we focus on the integrated planning of the following prob-
lems faced within the context of seaside operations at container terminals: berth
allocation, quay crane assignment, and quay crane scheduling. First, we formulate a
new binary integer linear program for the integrated solution of the berth allocation
and quay crane assignment problems called BACAP. Then we extend it by incorpo-
rating the crane scheduling problem as well, which is named BACASP. Although
the model for BACAP is very efficient and even large instances up to 60 vessels can
be solved to optimality, only small instances for BACASP can be solved optimally.
To be able to solve large instances, we present a necessary and sufficient condition
for generating an optimal solution of BACASP from an optimal solution of BA-
CAP using a postprocessing algorithm. We also develop a cutting plane algorithm
for the case where this condition is not satisfied. This algorithm solves BACAP re-
peatedly by adding cuts generated from the optimal solutions at each trial until the
aforementioned condition holds.

1 Introduction

There has been a considerable growth in the share of containerized trade in the
world’s total dry cargo during the last 30 years. Therefore, the efficient manage-
ment of seaport container terminals has become a crucial issue [2]. In this work,
we concentrate on the integrated planning of seaside operations, which includes the
berth allocation problem (BAP), quay crane assignment problem (CAP) and quay
crane scheduling problem (CSP). Generally, BAP deals with the determination of
the optimal berthing times and positions of vessels in container terminals. The fo-
cus of CSP, on the other hand, is mainly on the problem of determining an optimal
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handling sequence of vessels for the available cranes at the terminal. However, as
can be realized, the assignment of the cranes to vessels has a direct effect on the
processing times of the vessels. As a result, crane assignment decisions can be em-
bedded within either BAP or CSP models.

In this work we formulate two new MILP formulations integrating first BAP and
CAP (BACAP), and then BAP, CAP, and CSP (BACASP). Both of them consider
a continuous berth layout where vessels can berth at arbitrary positions within the
range of the quay and dynamic vessel arrivals where vessels cannot berth before
the expected arrival time. The crane schedule found by solving the BACASP for-
mulation determines the specific crane allocation to vessels for every time period.
These MILP models are the first models solved exactly rather than heuristically in
the literature for relatively large instances.

2 Model Formulation

The underlying assumptions of our models are given as follows. The planning hori-
zon is divided into equal-sized time periods. The berth is divided into equal-sized
berth sections. Each berth section is occupied by no more than one vessel in each
time period. Each quay crane can be assigned to at most one vessel per time pe-
riod. Each vessel has a minimum and maximum number of quay cranes that can
be assigned to it. The service of a vessel by quay cranes begins upon that vessel’s
berthing at the terminal, and it is not disrupted until the vessel departs. The num-
ber of quay cranes assigned to a vessel does not change during its stay at the berth,
which is referred to as a time-invariant assignment [1]. Furthermore, the set of spe-
cific cranes assigned to a vessel is kept the same. By letting i the index of vessels,
g the index of crane groups, j the index of berth sections, k the index of number
of cranes, t the index of time periods, cg

l the index of the leftmost crane in group
g, cg

r the index of the rightmost crane in group g, and C(g) the index set of cranes
in group g, we define the following parameters: B= the number of berth sections,
G= the number of crane groups, N= the number of available quay cranes, T = the
number of time periods in the planning horizon, V = the number of vessels, di= due
time of vessel i, ei= arrival time of vessel i, ki= lower bound on the number of cranes
that can be assigned to vessel i, k

i
= upper bound on the number of cranes that can

be assigned to vessel i, `i= the length of vessel i measured in terms of the number of
berth sections occupied, pk

i = processing time of vessel i if k cranes are assigned to it,
si= desired berth section of vessel i, φi1= cost of one unit deviation from the desired
berth section for vessel i, φi2= cost of berthing one period later than the arrival time
for vessel i, φi3= cost of departing one period later than the due time for vessel i.

Let us define a binary variable Xk
i jt , which is equal to one if vessel i starts berthing

at section j in time period t, and k quay cranes are assigned to it, and zero other-
wise. Constraint (1) ensures that each vessel berths at a unique section and time
period, and the number of quay cranes assigned to it lies between the minimum and
maximum allowed quantities.
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B−`i+1

∑
j=1

ki

∑
k=ki

T−pk
i +1,

∑
t=ei

Xk
i jt = 1 i = 1, . . . ,V. (1)

Constraint set (2) guarantees that each berth section is occupied by at most one
vessel in each time period. To put it differently, there should not be any overlap
among the rectangles representing vessels in the two-dimensional time-berth section
space, which are located between max

(
ei, t− pk

i +1
)

and min
(
T − pk

i +1, t
)

on the
time dimension, and between max(1, j− `i +1) and min(B− `i +1, j) on the berth
section dimension.

V
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min(B−`i+1, j)
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j′=max(1, j−`i+1)

ki

∑
k=ki

min(T−pk
i +1,t)

∑
t ′=max(ei,t−pk

i +1)

Xk
i j′t ′ ≤ 1 j = 1, . . . ,B; t = 1, . . . ,T (2)

We next discuss how quay crane availability can be handled in the BACAP model.
Let us denote the number of available quay cranes by N. Constraint set (3) ensures
that in each time period the number of active quay cranes is less than or equal to the
available number of cranes:

V

∑
i=1

B−`i+1

∑
j=1

ki

∑
k=ki

min(T−pk
i +1,t)

∑
t ′=max(ei,t−pk

i +1)

kXk
i jt ′ ≤ N t = 1, . . . ,T (3)

The objective function (4) of our model minimizes the total cost, whose components
for each vessel are: i) the cost of deviation from the desired berth section, ii) the
cost of berthing later than the arrival time, and iii) the cost of departing later than
the due time. Our integer programming formulation for BACAP can be summarized
as follows:

min
V

∑
i=1

ki

∑
k=ki

B−`i+1

∑
j=1

T−pk
i +1

∑
t=ei

{
φi1| j− si|+φi2 (t− ei)+φi3

(
t + pk

i −1−di

)+
}

Xk
i jt

(4)

subject to constraints (1), (2), (3)

Xk
i jt ∈ {0,1} i = 1, . . . ,V ; j = 1, . . . ,B− `i +1;k = ki, . . . ,k

i
; t = ei, . . . ,T − pk

i +1.

Recall that although the availability of quay cranes is considered in constraint set (3)
in BACAP, a schedule is not generated for each quay crane. To develop a mathemat-
ical programming formulation for BACASP we extend the formulation for BACAP
by including the constraint sets (1)–(3) and defining new variables and constraints
so that feasible schedules are obtained for quay cranes, which do not incur setup due
to the change in the relative order of cranes. We should remark that if quay cranes
i−1 and i+1 are assigned to a vessel in a time period, then quay crane i has to be
assigned to the same vessel as well since quay cranes are located along the berth on
a single railway. Hence, we define a crane group as a set of adjacent quay cranes and
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let the binary variable Y g
it denote whether crane group g assigned to vessel i starts

service in time period t. Constraint set (5) relates the X and Y-variables. It ensures
that if k quay cranes are assigned to vessel i, it must be served by a crane group g
that is formed by |C(g)| = k cranes, where C(g) is the index set of cranes in group
g and | · | denotes the cardinality of a set. Moreover, G is the total number of crane
groups.

B−`i+1

∑
j=1

Xk
i jt −

G

∑
g=1
|C(g)|=k

Y g
it = 0 i = 1, . . . ,V ;k = ki, . . . ,k

i
; t = ei, . . . ,T − pk

i +1 (5)

It should be emphasized that each crane can be a member of multiple crane groups.
However, each crane can operate as a member of at most one group in each time
period. The next set of constraints (6) guarantees that this condition holds:

V

∑
i=1

G

∑
g=1

c∈C(g)

min(T−pk
i +1,t)

∑
t=max(ei,t−pk

i +1)

Y g
it ′ ≤ 1 c = 1, . . . ,N; t = 1, . . . ,T (6)

Even though constraints (5) and (6) make sure that each quay crane is assigned to
at most one vessel in any time period, they do not guarantee that quay cranes are
assigned to vessels in the correct sequence. In particular, let the quay cranes be
indexed in such a way that a crane positioned closer to the beginning of the berth
has a lower index. Since all cranes perform their duty along a rail at the berth, they
cannot pass each other or stated differently their order cannot be changed. The next
four constraint sets help to ensure preserving the crane ordering. Here, Zct denotes
the position of crane c in time period t.

Zct ≤ Z(c+1)t c = 1, . . . ,N−1; t = 1, . . . ,T (7)

ZNt ≤ B t = 1, . . . ,T (8)

Zcg
l t +B(1−Y g

it )≥
B−`i+1

∑
j=1

ki

∑
k=ki

jXk
i jt i = 1, . . . ,V ;g = 1, . . . ,G;

t = ei, . . . ,T − pk
i +1; t ≤ t ≤ t + pk

i −1 (9)

Zcg
r t ≤

B−`i+1

∑
j=1

ki

∑
k=ki

( j+ `i−1)Xk
i jt +B(1−Y g

it ) i = 1, . . . ,V ;g = 1, . . . ,G;

t = ei, . . . ,T − pk
i +1; t ≤ t ≤ t + pk

i −1 (10)

Constraint set (7) simply states that the positions of the cranes (in terms of berth
sections) are respected by the index of the cranes. This means that the position of
crane c is always less than or equal to the position of crane c+1 during the planning
horizon. Constraint set (8) makes sure that the last crane (crane N) is positioned
within the berth. By defining cg

l and cg
r as the index of the crane that is, respectively,
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the leftmost and rightmost member of crane group g, constraint set (9) guarantees
that if crane group g is assigned to vessel i and vessel i berths at section j, then
the position of the leftmost member of crane group g is greater than or equal to j.
Similarly, constraint set (10) ensures that if crane group g is assigned to vessel i and
vessel i berths at section j, then the position of the rightmost member of crane group
g is less than or equal to j+`i−1, which is the last section of the berth occupied by
vessel i.

3 Solution

As can be observed, BACASP formulation is significantly larger than our BACAP
formulation with which we can solve instances up to 60 vessels. Hence, it should
be expected that only small BACASP instances can be solved exactly using CPLEX
12.2. This fact has motivated us to make use of the formulation for BACAP in solv-
ing larger sized BACASP instances to optimality. By carefully analyzing the optimal
solutions of BACAP and BACASP in small sized instances, we have figured out that
an optimal solution of BACASP can be generated from an optimal solution of BA-
CAP provided that the condition given in Proposition 1 is satisfied. This condition is
based on the notion of complete sequence of vessels (with respect to their occupied
berthing positions), which is defined as follows.

Definition 1. A vessel sequence v1,v2, . . . ,vn is complete if (i) v1 is the closest vessel
to the beginning of the berth, (ii) vn is the closest vessel to the end of the berth, (iii)
vi and vi+1 are two consecutive vessels with vi closer to the beginning of the berth,
and (iv) two consecutive vessels in this sequence must be at the berth during at least
one time period.

A complete sequence is said to be proper when the sum of the number of cranes
assigned to vessels in this sequence is less than or equal to N. Otherwise, it is called
an improper complete sequence.

Proposition 1. An optimal solution of BACASP can be obtained from an optimal
solution of BACAP by a post-processing algorithm if and only if every complete
sequence of vessels is proper.

The proof of this proposition can be found in [3]. If there is at least one improper
complete sequence of vessels in an optimal solution of BACAP, then we cannot
apply the post-processing algorithm given as Algorithm 1 to obtain an optimal so-
lution of BACASP from an optimal solution of BACAP. In Algorithm 1, VA (VNA)
denotes the set of vessels to which cranes (no cranes) are assigned yet. Clearly,
VNA ∪VA = {1,2, . . . ,V}. Notice that the way the vessels are picked up from VNA
and added to the set VA implies that the order of the vessels forms one or more com-
plete sequences in the set VA. It is also ensured that these complete sequences are
proper.

If there exists a complete sequence where the sum of the number of cranes as-
signed to vessels is larger than N, then it is possible to add the cut given in (11)
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Algorithm 1 Post-processing algorithm
Initialization: Let VNA←{1,2, . . . ,V}
WHILE VNA 6=∅
Select vessel v ∈ VNA that berths in the leftmost berth section
Find the vessels in VA that are in the berth with v in at least one time period. Among the cranes
assigned to these vessels, find the crane cmax that is in the rightmost berth section.
IF VA =∅ or @ any vessel in VA that is at the berth with v in at least one time period
cmax← 0
ENDIF
Assign cranes indexed from cmax + 1 to cmax + θv to vessel v, where θv is the number of cranes
assigned to vessel v
VNA← VNA \ v
ENDWHILE

corresponding to an improper complete sequence into the formulation of BACAP,
where IS refers to an improper complete sequence and |IS| is the total number of
vessels involved in that complete sequence. Note that this cut is used to eliminate
feasible solutions that involve IS.

∑
i∈IS

Xk(i)
i j(i)t(i) ≤ |IS|−1 (11)

The left-hand side of (11) consists of the sum of the Xk
i jt variables which are set to

one for the vessels involved in IS. In other words, there is only one Xk
i jt = 1 for each

vessel i ∈ IS. The j,k, and t indices for which Xk
i jt = 1 related to vessel i are denoted

as j(i), k(i), and t(i) in (11). Upon the addition of this cut, BACAP is solved again.
The addition of these cuts is repeated until the optimal solution of BACAP does not
contain any improper complete sequences. At that instant, Algorithm 1 can be called
to generate an optimal solution of BACASP from the existing optimal solution of
BACAP.
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