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Abstract

We investigate the problem of finding a maximal matching that has minimum total weight on a given

edge-weighted graph. Although the minimum weight maximal matching problem is NP-hard in general,

polynomial time exact or approximation algorithms on several restricted graph classes are given in the

literature. In this paper, we propose an exact algorithm for solving several variants of the problem on

general graphs. In particular, we develop integer programming formulations for the problem and devise a

decomposition algorithm, which is based on a combination of integer programming techniques and com-

binatorial matching algorithms. Our computational tests on a large suite of randomly generated graphs

show that our decomposition approach significantly improves the solvability of the problem compared to

the underlying integer programming formulation.

Keywords: minimum maximal matching, vertex cover, mixed integer programming, Benders decompo-

sition, Gallai-Edmonds decomposition.

1 Introduction and Literature Survey

A matching on a graph is defined as a set of edges with no common vertex. Vertices that are the end-points

of edges of a matching are said to be saturated by this matching. Non-saturated vertices are called exposed

with respect to the matching under consideration. A maximal matching is a matching M of a graph G with
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the property that if any edge not in M is added to M , M is no longer a matching. The minimum maximal

matching problem (MMM) seeks a maximal matching that has minimum cardinality [15]. In this paper, we

consider a more general version of MMM, where each edge has a weight and the objective is to minimize

the total edge weight in a maximal matching. The resulting problem is called minimum weight maximal

matching (MWMM) [31]. Throughout our solution procedure, we also introduce the problem of finding

a minimum weight maximal matching, where weights are on the vertices and the weight of a matching is

defined as the sum of the weights of the saturated vertices. We call this problem minimum vertex-weight

maximal matching, and abbreviate it as MVWMM.

MMM has been studied extensively in the literature. Most of the existing work concentrates on the

complexity of MMM on special graph classes. While the problem of finding a maximum matching on a

given graph is polynomially solvable by Edmonds’s augmenting path algorithm [11], MMM is NP-hard on

general graphs [15] and on several restricted graph classes. Examples include bipartite or planar graphs

with maximum degree 3 [33], planar bipartite graphs, planar cubic graphs [17] and k-regular bipartite

graphs for any fixed k ≥ 3 [8]. In contrast, MMM is polynomially solvable in certain restricted graph

classes. Examples include trees [24], block graphs [18], series-parallel graphs [26], bipartite permutation

graphs and co-triangulated graphs [29]. Various approximation algorithms for MMM and MWMM have

been proposed in the literature (see for instance [4, 9, 13, 14, 16, 23, 28]). Another line of research on

MMM and MWMM considers the development of exponential time exact combinatorial algorithms [12, 32].

However, these algorithms have only been analyzed from a theoretical point of view, and no experimental

study was conducted to evaluate their performance in practice.

The minimum edge dominating set problem (EDS) is closely related to MMM. We say that an edge in

graph G = (V,E) dominates itself and all edges sharing an end-vertex with it. EDS is defined as the problem

of finding a minimum cardinality set of edges that dominates all edges in E. The relationship between MMM

and EDS can be observed by noting that in a maximal matching of a graph G = (V,E) each edge in E is

necessarily dominated. In fact, it is known that the size of a minimum maximal matching is equal to the size

of a minimum edge dominating set (hence, our algorithm for solving MMM can also be used to solve EDS

optimally). Furthermore, an optimal solution of MMM can easily be generated from an optimal solution of

EDS [33]. However, such a close relationship does not exist between weighted versions of the two problems

[14].

To the best of our knowledge, MMM and MWMM have been addressed from mathematical programming

point of view only in [31], where the authors formulate MWMM as an integer programming problem, derive
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some valid inequalities and variable fixing rules, and test the efficacy of their formulation empirically. Integer

programming formulations have also been used to derive approximation algorithms for weighted EDS [14]

and its generalization, where edges have demands and capacities [3]. However, these methods cannot be

used to solve MWMM due to the presence of edge weights [14].

In this paper, we start with an integer programming formulation of MWMM proposed in [31] and develop a

decomposition algorithm based on Benders decomposition for its solution. Benders decomposition is widely

used for solving large-scale mixed-integer programming problems (MIP). Instead of directly solving the

MIP, Benders decomposition partitions it into a master problem that contains the integer variables, and a

subproblem that contains the continuous variables. It then solves the master problem and the subproblem

iteratively, adding cuts derived from linear programming duality theory to the master problem in each

iteration. We refer the reader to [2] and [30] for details on Benders decomposition, and to [1, 6, 7, 25] for

some applications of Benders decomposition within the context of optimization on graphs and networks. Our

solution procedure decomposes the formulation [31] into a master problem, which seeks a vertex cover on

the graph, and a subproblem, which seeks a perfect matching in the subgraph induced by the vertex cover

selected by the master problem. While a straightforward formulation of our subproblem contains binary

variables, we reformulate it as a linear programming problem having an exponential number of constraints.

We then solve it via a combinatorial matching algorithm, and derive Benders cuts based on the combinatorial

solution of the subproblem.

The rest of this paper is organized as follows. In Section 2 we give the basic integer programming (IP)

formulation of MWMM used in [31] and point out some key observations, which relate maximal matchings

to vertex covers in a graph. Section 3 explains our decomposition procedure developed to solve MMM and

the generation of Benders feasibility cuts using Gallai-Edmonds decomposition. Section 4 is devoted to

the development of our decomposition procedure for MWMM, where not only Benders feasibility cuts but

also Benders optimality cuts are generated. We propose various approaches to improve the efficacy of our

decomposition procedures for MMM and MWMM in Section 5. We present the results of our computational

experiments in Section 6. Finally, we conclude our paper in Section 7 with a brief summary of our study

and some future research directions.
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2 Preliminaries

Let G = (V,E) be a graph with vertex set V and edge set E. For a subset V ′ ⊆ V , we denote the subgraph

induced by V ′ by G[V ′]. Similarly, let y be a |V |-dimensional binary vector. We denote the subgraph

G[{i ∈ V |yi = 1}] by G[y]. For a vertex v ∈ V , let N(v) denote the neighborhood of v, that is the set of

vertices adjacent to v, and for V ′ ⊆ V we have N(V ′) = ∪v∈V ′N(v). An independent set I is a subset of

V such that all vertices in I are pairwise non-adjacent, and a vertex cover S is a subset of V such that all

edges have at least one end-vertex in S.

Let us first introduce the IP formulation used in [31] for MWMM. Let G = (V,E) be an undirected

graph and let cij denote the weight associated with edge (i, j) ∈ E, where edge weights cij can be positive,

negative or zero. Taşkın and Ekim [31] define binary variable xij = 1 if edge (i, j) ∈ E is selected in an

optimal MWMM, and 0 otherwise. They also define binary variable yi = 1 if vertex i ∈ V is saturated by

the matching (that is
∑

j∈N(i) xij = 1), and yi = 0 if i is exposed (that is
∑

j∈N(i) xij = 0). Using these

variables, they formulate MWMM as:

Model 1: Minimize
∑

(i,j)∈E

cijxij (1a)

subject to:
∑

j∈N(i)

xij = yi ∀i ∈ V (1b)

yi + yj − xij ≥ 1 ∀(i, j) ∈ E (1c)

xij ∈ {0, 1} ∀(i, j) ∈ E (1d)

yi ∈ {0, 1} ∀i ∈ V. (1e)

The objective function (1a) minimizes the total weight corresponding to the selected edges. Constraints

(1b) enforce the condition that vertex i is saturated (yi = 1) if some edge emanating from it is selected and

it is exposed (yi = 0) otherwise. Since y-variables are binary variables, (1b) also guarantees that the set of

edges (i, j) such that xij = 1 forms a matching. Constraints (1c) enforce that if xij = 1 for some (i, j) ∈ E,

then yi = yj = 1. Otherwise, if xij = 0 for some (i, j) ∈ E, then at least one of yi and yj still has to be

saturated to ensure maximality of the matching. Note that since the x-variables are binary-valued, then

(1b) will force y-variables to take on binary values. Therefore, y-variables can be relaxed as continuous. In

[31], Model 1 is solved directly by adding some valid inequalities and applying a variable fixing rule. In this

paper, we will focus on developing an efficient decomposition procedure for solving Model 1.
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We first note that constraints (1c) reveal a vertex cover structure of the problem. Our critical observation

is that for any maximal matching M of a given graph G, the set of vertices exposed with respect to M forms

an independent set, and the set of vertices saturated by M forms a vertex cover of G. Therefore, MMM

can be viewed as the problem of finding a vertex cover S of minimum cardinality such that G[S] admits a

perfect matching. Given a vertex cover S, let us denote the weight of a minimum weight perfect matching

in G[S] by w(S), where w(S) = ∞ if G[S] does not admit a perfect matching. Similar to MMM, MWMM

can be seen as the problem of finding a vertex cover S such that w(S) is minimized among all vertex covers

of G. Based on these observations, we will first focus on MMM in Section 3, and postpone our treatment of

the general case of MWMM until Section 4.

3 A Decomposition Approach for MMM

In this section we focus on deriving a decomposition algorithm for solving MMM, which is a special case of

MWMM having cij = 1 for all edges. We first observe that Model 1 can be reformulated in terms of the

y-variables for the case of MMM as follows:

Model 2: Minimize
∑
i∈V

yi (2a)

subject to: yi + yj ≥ 1 ∀(i, j) ∈ E (2b)

G[y] admits a perfect matching (2c)

yi ∈ {0, 1} ∀i ∈ V. (2d)

Note that Model 1 contains |V | + |E| binary variables, while Model 2 contains only |V | binary variables.

Even if the y-variables in Model 1 are relaxed as continuous, Model 1 still has |E| binary variables. Since

|E| = O(|V |2) for dense graphs, Model 2 contains significantly fewer binary variables than Model 1, which is

advantageous from a computational point of view. Also note that Model 2 can be viewed as an integer pro-

gramming formulation of the minimum vertex cover problem with some side constraints. These observations

constitute the basis of our decomposition approach.

3.1 Solution Procedure

Model 2 is not well defined in its present form due to constraint (2c). In order to express (2c) as a set of

linear inequalities, we first observe that given a binary ŷ-vector that represents a vertex cover such that (2b)
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is satisfied, feasibility of (2c) can be checked by solving the following subproblem:

SP(ŷ): Minimize
∑

(i,j)∈E

cijxij (3a)

subject to:
∑

j∈N(i)

xij = ŷi ∀i ∈ V (3b)

xij ∈ {0, 1} ∀(i, j) ∈ E, (3c)

which is obtained from Model 1 for a fixed ŷ-vector. Note that the objective function of SP(ŷ) does not

matter since the role of SP(ŷ) is just to check the existence of a perfect matching; if such a matching exists

for some ŷ then its cardinality is the same for all feasible solutions of SP(ŷ). However, we prefer to use the

minimization of the total weight of the selected edges (recall that cij = 1 for all edges in MMM) since this

objective function will also be valid for MWMM. If SP(ŷ) yields a feasible solution x̂, then ŷ is a feasible

solution of Model 2, and represents the set of saturated vertices in a maximal matching. Furthermore, if ŷ

corresponds to a minimum vertex cover, then ŷ solves Model 2 optimally and hence x̂ represents a minimum

maximal matching. On the other hand, if SP(ŷ) is infeasible for some ŷ, then G[ŷ] does not admit a perfect

matching. In this case, the value of at least one y-variable has to be different in all feasible solutions of

Model 2. Therefore, in principle, (2c) can be written as a collection of inequalities of form

∑
{i∈V |ŷi=1}

(1− yi) +
∑

{i∈V |ŷi=0}

yi ≥ 1, (4)

one for each ŷ such that SP(ŷ) has no feasible solution. Since there is an exponential number of constraints

(4), it is not practical to enumerate them. Instead, they can be generated in a cutting-plane fashion as

follows: we first relax (2c) and solve Model 2 to optimality. Let ŷ denote an optimal solution. If SP(ŷ)

is infeasible, we then add the constraint (4) corresponding to ŷ to Model 2, and re-solve it. Otherwise, if

SP(ŷ) yields a feasible solution x̂, the set of edges (i, j) ∈ E having x̂ij = 1 constitutes a minimum maximal

matching, and we stop. Note that (4) corresponds to Laporte and Louveaux’s feasibility cut for solving

stochastic integer programs [20]. Also note that Model 2 is guaranteed to be feasible since any maximal

matching on G yields a feasible solution of the problem. Furthermore, since a ŷ-vector is never considered

more than once, the naive algorithm described above terminates in a finite number of iterations.
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3.2 Benders Feasibility Cuts Using Gallai-Edmonds Decomposition

The naive algorithm discussed in the previous section can be improved in various ways. We first observe that

SP(ŷ) is an integer programming formulation, whose solution in general can take an exponential amount of

time. However, recall that the role of SP(ŷ) is only to check the existence of a perfect matching, which is a

problem that can be solved in polynomial time [11]. In particular, given a ŷ-vector, we can use Edmonds’s

augmenting path algorithm [11] to seek a perfect matching in G[ŷ]. If G[ŷ] does not admit a perfect matching,

we can add a constraint (4) to Model 2, and re-solve it as before. However, note that each constraint of type

(4) eliminates only a single solution from the feasible region, and hence constraints (4) are very weak. We

next discuss how stronger cuts can be obtained.

At this stage, let us introduce the Gallai-Edmonds decomposition theorem (see [22] for more details).

We first define a few key concepts that will be useful in our discussion. A graph is called factor-critical if it

does not admit a perfect matching, but the removal of any single vertex leaves a graph that admits a perfect

matching. A bipartite graph G with bipartition A and B is said to have positive surplus (as viewed from A)

if the number of neighbors of X is larger than the size of X for any non-empty subset X of A.

Let G = (V,E) be any graph. Let us denote the set of all vertices v ∈ V such that there is a maximum

matching that does not saturate v by D(G). Let A(G) be the set of vertices in V \D(G) that are adjacent

to at least one vertex in D(G). Finally, let C(G) = V \ (A(G) ∪ D(G)) denote the set of all remaining

vertices. The following theorem gives a very important characterization of a graph based on the structure

of its maximum matchings.

Theorem 1. (Gallai-Edmonds decomposition) [22] If G is a graph and D(G), A(G) and C(G) are defined

as above, then:

1. the connected components of the subgraph induced by D(G) are factor-critical,

2. the subgraph induced by C(G) has a perfect matching,

3. the bipartite graph obtained from G by deleting the vertices of C(G) and the edges induced by A(G),

and by contracting each connected component of D(G) to a single vertex has positive surplus (as viewed

from A(G)).

The Gallai-Edmonds decomposition is unique for a given graph, and it can be calculated in polynomial

time [22]. Note that if a graph G admits a perfect matching, then sets A(G) and D(G) are empty. An
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example of the Gallai-Edmonds decomposition of a graph that does not admit a perfect matching is given

in Figure 1.

C(G) 

A(G) 

D(G) 

Figure 1: An example for Gallai-Edmonds decomposition.

Let ŷ denote a vector such that G[ŷ] does not admit a perfect matching. In order to obtain a constraint

that can be used instead of (4) via the Gallai-Edmonds decomposition of G[ŷ], let us first rewrite SP(ŷ) as

follows:

SP1(ŷ): Minimize
∑

(i,j)∈E

cijxij (5a)

subject to:
∑

j∈N(i)

xij = ŷi ∀i ∈ V (5b)

∑
ij∈o

xij ≤ (|o| − 1)/2 ∀o ∈ OC (5c)

xij ≥ 0 ∀(i, j) ∈ E, (5d)

where OC is the set of all odd cardinality subsets of the vertices in G of size at least 3. It is well known that

the x-variables can be relaxed as continuous due to the addition of constraints (5c) [11]. Note that SP1(ŷ)

is a linear program having an exponential number of constraints. Let πi and θo denote the dual variables

associated with constraints (5b) and (5c), respectively. By taking the dual of SP1(ŷ), we obtain DSP1(ŷ)
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where OC(ij) denotes the set of all odd cardinality subsets including both vertices i and j:

DSP1(ŷ): Maximize
∑
i∈V

πiŷi +
∑

o∈OC

((|o| − 1)/2)θo (6a)

subject to: πi + πj +
∑

o∈OC(ij)

θo ≤ cij ∀(i, j) ∈ E (6b)

πi unrestricted ∀i ∈ V (6c)

θo ≤ 0 ∀o ∈ OC. (6d)

We first note that DSP1(ŷ) is feasible for any ŷ since setting πi = minj∈N(i) cij/2 for all i ∈ V and θo = 0

for all o ∈ OC yields a feasible solution. Therefore, if SP1(ŷ) is infeasible then DSP1(ŷ) is necessarily

unbounded. Let ŷ represent a binary vector such that SP1(ŷ) has no feasible solution and consequently

the graph G[ŷ] has no perfect matching. We consider the Gallai-Edmonds decomposition of Ĝ = G[ŷ]. By

definition, D(Ĝ) is not empty. Let us denote the set of factor-critical components in D(Ĝ) by FCD(Ĝ). It

follows from Theorem 1 item 3 that the cardinality of FCD(Ĝ) is strictly greater than the cardinality of

A(Ĝ). Also, it follows from the definition of factor-criticality that every connected component of D(Ĝ) has

odd cardinality.

Proposition 1. The following dual direction (π̄, θ̄) is an unbounded ray for DSP1(ŷ):

π̄i =


1 ∀i ∈ D(Ĝ)

−1 ∀i ∈ N(D(Ĝ)) \D(Ĝ)

0 otherwise

θ̄o =

 −2 ∀o ∈ FCD(Ĝ)

0 otherwise

Proof. We need to show that adding (π̄, θ̄) to any feasible solution with any positive coefficient yields a feasible

solution with an improved objective function value for DSP1(ŷ). To this end, we note that constraints (6c)

and (6d) are trivially satisfied, and the term added by this direction to the left hand side of inequality (6b)

is non-positive for all edges. In fact, the only case where positive terms are involved for edge (i, j) is when

at least one of i and j is in D(Ĝ). If both i and j are in D(Ĝ), then (i, j) belongs to a connected component

of D(Ĝ) and hence π̄i = 1, π̄j = 1 and the corresponding odd cardinality subset containing edge (i, j) has

θ̄o = −2. If i ∈ D(Ĝ) and j /∈ D(Ĝ) then π̄i = 1, π̄j = −1 and all odd cardinality subsets containing edge
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(i, j) have θ̄o = 0 since they are not entirely included in D(Ĝ).

Furthermore, one can observe that the value of the objective function for a solution on this ray can be

increased without bound since the term added to the objective function by this direction is strictly positive.

In particular, the change in the objective function along the ray (π̄, θ̄) is a positive multiple of:

∑
i∈D(Ĝ)

ŷi −
∑

i∈N(D(Ĝ))\D(Ĝ)

ŷi −
∑

o∈FCD(Ĝ)

(|o| − 1)

=
∑

i∈D(Ĝ)

1−
∑

i∈A(Ĝ)

1−
∑

o∈FCD(Ĝ)

(|o| − 1)

=

|D(Ĝ)| −
∑

o∈FCD(Ĝ)

(|o| − 1)

− |A(Ĝ)|

This added term is equal to a positive multiple of (a − b), where a is equal to the number of connected

components in D(Ĝ) and b is the cardinality of A(Ĝ). By Theorem 1 item 3 there are strictly more connected

components in D(Ĝ) than the cardinality of A(Ĝ); therefore (a− b) is strictly positive.

Consider a ŷ-vector such that G[ŷ] does not admit a perfect matching, and let (π̄, θ̄) denote a dual

direction for DSP1(ŷ) as defined in Proposition 1. Since (π̄, θ̄) is an unbounded direction for DSP1(ŷ),∑
i∈V π̄iŷi +

∑
o∈OC((|o| − 1)/2)θ̄o > 0, and SP1(ŷ) is infeasible. Similarly, SP1(y) is infeasible for all y

such that
∑

i∈V π̄iyi +
∑

o∈OC((|o| − 1)/2)θ̄o > 0. Therefore, the following inequality should be satisfied for

feasibility of SP1(y), and hence can be used as the Benders feasibility cut

∑
i∈D(Ĝ)

yi −
∑

i∈N(D(Ĝ))\D(Ĝ)

yi ≤
∑

o∈FCD(Ĝ)

(|o| − 1), (7)

where the right hand side is equal to the number of saturated vertices in D(Ĝ) in a maximum matching

of the subgraph Ĝ. This cut implies that the number of saturated vertices in N(D(Ĝ)) \ D(Ĝ) has to be

greater than or equal to the number of connected components in D(Ĝ) in order for all vertices in D(Ĝ) to

be saturated. This constraint is a necessary condition for saturating all vertices in D(Ĝ) and clearly is not

satisfied by the solution ŷ. Therefore, it can be used instead of (4). Indeed, as shown in what follows, (7)

is stronger than (4) because while (4) eliminates a single y-vector from the solution space, (7) is based on a

precise reason of infeasibility of SP1(ŷ), and eliminates simultaneously many y-vectors.

Proposition 2. Feasibility cuts (7) are stronger than feasibility cuts (4).

Proof. Let us define two polyhedra as follows:
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P4 := {y ∈ [0, 1]|V | | yi + yj ≥ 1,∀(i, j) ∈ E and
∑

{i∈V |ŷi=1}

(1− yi) +
∑

{i∈V |ŷi=0}

yi ≥ 1,

∀ŷ ∈ {0, 1}|V | s.t. G[ŷ] has no perfect matching}

P7 := {y ∈ [0, 1]|V | | yi + yj ≥ 1,∀(i, j) ∈ E and
∑

i∈D(G[ŷ])

yi −
∑

i∈N(D(G[ŷ]))\D(G[ŷ])

yi ≤
∑

o∈FCD(G[ŷ])

(|o| − 1),

∀ŷ ∈ {0, 1}|V | s.t. G[ŷ] has no perfect matching}

To show that P7 ⊆ P4, let us show that ȳ ∈ P4 for any ȳ ∈ P7. Since the vertex cover constraints are common

on both polyhedra ȳi + ȳj ≥ 1,∀(i, j) ∈ E holds automatically. Now, let ŷ ∈ {0, 1}|V | s.t. G[ŷ] has no perfect

matching. For simplicity, denote Ĝ := G[ŷ] and VĜ := {i ∈ V |ŷi = 1}, and let N(D(Ĝ))\D(Ĝ) = A(Ĝ)∪ X̂,

where X̂ := N(D(Ĝ)) \ (D(Ĝ) ∪ A(Ĝ)). We will show that
∑
i∈VĜ

(1− ȳi) +
∑

i∈V \VĜ

ȳi ≥ 1, which can also be

written as
∑
i∈VĜ

ȳi −
∑

i∈V \VĜ

ȳi ≤ |VĜ| − 1. To this end, since ȳi ≥ 0,∀i ∈ V and X̂ ⊆ (V \ VĜ), it suffices to

show that
∑
i∈VĜ

ȳi −
∑
i∈X̂

ȳi ≤ |VĜ| − 1. Consider the unique Gallai-Edmonds decomposition of Ĝ. Note that

the sets D(Ĝ), A(Ĝ), C(Ĝ), X̂ are all disjoint. Since there is no perfect matching in Ĝ and ȳ ∈ P7, we have∑
i∈D(Ĝ)

ȳi −
∑

i∈A(Ĝ)

ȳi −
∑
i∈X̂

ȳi ≤
∑

o∈FCD(Ĝ)

(|o| − 1)

=⇒
∑

i∈D(Ĝ)

ȳi −
∑

i∈A(Ĝ)

ȳi −
∑
i∈X̂

ȳi ≤
∑

o∈FCD(Ĝ)

|o| − |FCD(Ĝ)| = |D(Ĝ)| − |FCD(Ĝ)|

As noted earlier, it follows from Theorem 1 item 3 that |FCD(Ĝ)| > |A(Ĝ)|, i.e., |FCD(Ĝ)| ≥ |A(Ĝ)|+ 1.

=⇒
∑

i∈D(Ĝ)

ȳi −
∑

i∈A(Ĝ)

ȳi −
∑
i∈X̂

ȳi ≤ |D(Ĝ)| − |A(Ĝ)| − 1

=⇒
∑

i∈D(Ĝ)

ȳi −
∑
i∈X̂

ȳi ≤ |D(Ĝ)| − |A(Ĝ)| − 1 +
∑

i∈A(Ĝ)

ȳi

=⇒
∑

i∈D(Ĝ)

ȳi −
∑
i∈X̂

ȳi ≤ |D(Ĝ)| − |A(Ĝ)| − 1 + |A(Ĝ)| since ȳi ≤ 1,∀i ∈ V

=⇒
∑

i∈D(Ĝ)

ȳi −
∑
i∈X̂

ȳi ≤ |D(Ĝ)| − 1 (?)

We also have
∑

i∈C(Ĝ)

ȳi ≤ |C(Ĝ)| and
∑

i∈A(Ĝ)

ȳi ≤ |A(Ĝ)| (??) because ȳi ≤ 1,∀i ∈ V . Then,∑
i∈VĜ

ȳi −
∑
i∈X̂

ȳi =
∑

i∈C(Ĝ)

ȳi +
∑

i∈A(Ĝ)

ȳi +
∑

i∈D(Ĝ)

ȳi −
∑
i∈X̂

ȳi ≤
∑

i∈C(Ĝ)

ȳi +
∑

i∈A(Ĝ)

ȳi + |D(Ĝ)| − 1 from (?)

=⇒
∑
i∈VĜ

ȳi −
∑
i∈X̂

ȳi ≤ |C(Ĝ)|+ |A(Ĝ)|+ |D(Ĝ)| − 1 = |VĜ| − 1 from (??)

Let us next show that this containment is strict, that is, there is at least one point in P4 which is not in

P7. For this purpose, consider the graph G = (V,E) where V = {1, 2, 3} and E = {(1, 3), (2, 3)}, and the

point (0.5, 0.5, 0.5). This point is clearly in P4. Consider the vertex cover ŷ1 = ŷ2 = ŷ3 = 1, for which Ĝ

admits no perfect matching. The related Gallai-Edmonds decomposition has two factor critical components

in D(Ĝ): {1} and {2}. The corresponding constraint of type (7), y1 + y2 − y3 ≤ 0, belongs to P7, and is
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violated by the point (0.5, 0.5, 0.5). Therefore (0.5, 0.5, 0.5) /∈ P7, and P7 ⊂ P4.

Algorithm 1 summarizes our solution procedure for MMM:

Algorithm 1 MMM Benders Decomposition

Ensure: A minimum maximal matching
Require: A graph G = (V,E)

1: Solve Model 2 with (2c) relaxed. Let ŷ be an optimal solution.
2: Find a maximum matching M in G[ŷ] {Use Edmonds’s Maximum Matching Algorithm}
3: if M is a perfect matching of G[ŷ] then
4: M is a minimum maximal matching of G, STOP
5: else
6: Generate feasibility cut (7) for ŷ, add it to Model 2 and go to step 1
7: end if

Remark 1. Algorithm 1 can also be used for solving minimum vertex-weight maximal matching (MVWMM),

which is a generalization of MMM such that there are weights on vertices (but not on edges). Let the weight

of vertex i ∈ V be given by wi. Algorithm 1 can be used to solve MVWMM with the following slight

modification to the objective function of Model 2:

Minimize
∑
i∈V

wiyi. (8)

4 A Decomposition Approach for MWMM

In this section, we extend our analysis to the minimum weight maximal matching (MWMM) problem. Recall

that in MWMM each edge (i, j) ∈ E has a weight cij , and the objective is to minimize the total edge weight

in a maximal matching. MMM is a special case of MWMM where cij = 1 for all (i, j) ∈ E. Furthermore,

an instance of MVWMM can be transformed into an instance of MWMM by setting cij = wi + wj for

all (i, j) ∈ E. After this transformation, an optimal solution of MWMM is also an optimal solution of

MVWMM with the same objective function value. Therefore, MWMM is a generalization of both MMM

and MVWMM.

Similar to our analysis of MMM, we first observe that Model 1 can be reformulated for the case of
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MWMM as:

Model 3: Minimize t (9a)

subject to: yi + yj ≥ 1 ∀(i, j) ∈ E (9b)

G[y] admits a perfect matching with total weight t (9c)

yi ∈ {0, 1} ∀i ∈ V (9d)

t ≥ LB, (9e)

where LB is a lower bound on the weight of any maximal matching. A valid value for LB can be calculated

in polynomial time by finding a minimum weight matching on G; this can be done simply by multiplying all

weights by −1 and finding a maximum weight matching. Note that if all edge weights cij are non-negative,

then the empty matching is a minimum weight matching, and hence LB = 0.

Similar to our solution procedure for MMM, we first need to express (9c) as a set of linear inequalities.

Given a ŷ-vector that represents a vertex cover and a t̂ value, the satisfaction of (9c) can be checked implicitly

by seeking a minimum weight perfect matching on G[ŷ], which can be calculated in polynomial time [22].

If G[ŷ] does not admit a perfect matching, then its Gallai-Edmonds decomposition can be calculated and a

Benders feasibility cut (7) can be generated as before. Otherwise, let t∗[ŷ] denote the weight of a minimum

weight perfect matching in G[ŷ]. If t̂ ≥ t∗[ŷ], then (ŷ, t̂) is a feasible solution of Model 3. Otherwise, the

following constraint is valid:

t ≥ t∗[ŷ]− (t∗[ŷ]− LB)

 ∑
{i∈V |ŷi=1}

(1− yi) +
∑

{i∈V |ŷi=0}

yi

 . (10)

Note that (10) reduces to t ≥ t∗[ŷ] for y = ŷ, and is redundant for all y 6= ŷ. In principle, it is possible

to express (9c) as a combination of (4) or (7) (one for each ŷ that does not admit a perfect matching) and

(10) (one for each ŷ that admits a perfect matching), and generate them as needed. However, since each

constraint (10) is redundant for all y except the ŷ-vector that it is generated for, it may be required to

enumerate all ŷ that yield a perfect matching before solving the problem to optimality. Furthermore, we

observe that (t = LB, yi = 0.5, ∀i ∈ V ) is a fractional solution that satisfies all (10) constraints. Hence,

the linear programming lower bound is not improved by the addition of (10). Note that (10) corresponds

to Laporte and Louveaux’s optimality cut for solving stochastic integer programs [20]. Similar observations

about the weakness of (10) have been made by various authors within the context of stochastic integer
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programming (see [19, 21, 27]). We will next discuss how to extract dual information from the subproblem

to generate cuts that can be used instead of (10).

Let us first write the following equivalent formulation for SP1(ŷ), where we simply reduce the problem

of finding a minimum weight perfect matching to the subgraph G[ŷ] = (V [ŷ], E[ŷ]). We denote by OC[ŷ]

the set of all odd cardinality subsets whose vertices are all included in G[ŷ].

SP2(ŷ): Minimize
∑

(i,j)∈Ê[ŷ]

cijxij (11a)

subject to:
∑

j∈NG[ŷ](i)

xij = 1 ∀i ∈ V [ŷ] (11b)

∑
ij∈o

xij ≤ (|o| − 1)/2 ∀o ∈ OC[ŷ] (11c)

xij ≥ 0 ∀(i, j) ∈ E[ŷ]. (11d)

Now, let πi and θo denote the dual variables associated with (11b) and (11c), respectively. By taking the

dual of SP2(ŷ), we obtain DSP2(ŷ):

DSP2(ŷ): Maximize
∑

i∈V [ŷ]

πi +
∑

o∈OC[ŷ]

((|o| − 1)/2)θo (12a)

subject to: πi + πj +
∑

o∈OC[ŷ](ij)

θo ≤ cij ∀(i, j) ∈ E[ŷ] (12b)

πi unrestricted ∀i ∈ V [ŷ] (12c)

θo ≤ 0 ∀o ∈ OC[ŷ]. (12d)

Let (π∗, θ∗) be an optimal solution of DSP2(ŷ). In principle, such a dual optimal solution can be calculated

by solving SP2(ŷ) or DSP2(ŷ) as linear programming problems. However, an optimal dual solution can also

be calculated by the weighted version of Edmonds’s algorithm [22].

Proposition 3. Let (π∗, θ∗) be an optimal solution of DSP2(ŷ). Then, the following solution (π∗∗, θ∗∗) is

optimal for DSP1(ŷ):

θ∗∗o =

 θ∗o for o ∈ OC[ŷ]

0 for o ∈ OC \OC[ŷ]
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π∗∗i =


π∗i for i ∈ V [ŷ]

min
(i,j)∈E

{cij − π∗j } for i ∈ V \ V [ŷ]

Proof. First we show that (π∗∗, θ∗∗) is a feasible solution for DSP1(ŷ). Constraints (6c) and (6d) are trivially

satisfied due to the feasibility of (θ∗o , π
∗
i ) for DSP2(ŷ) and by definition of θ∗∗o and π∗∗i . So, it is enough to

show that (θ∗∗o , π
∗∗
i ) satisfies constraints (6b). For each edge (i, j) ∈ E, let us examine the following cases:

Case 1: i /∈ V [ŷ], j /∈ V [ŷ]. This case is not possible in any feasible solution of Model 3 because of the vertex

cover constraint (9b).

Case 2: i ∈ V [ŷ], j ∈ V [ŷ]. In this case we have π∗∗i = π∗i and π∗∗j = π∗j by definition. Also, θ∗∗o = θ∗o for

each o ∈ OC(ij). Since (π∗, θ∗) satisfies (12b), (6b) is also satisfied.

Case 3: (WLOG) i /∈ V [ŷ], j ∈ V [ŷ]. In this case, for each odd cardinality subset o ∈ OC containing edge

(i, j), we have θo = 0 since o is not included in OC[ŷ]. In addition, we have π∗∗j = π∗j since j ∈ V [ŷ], and we

have π∗∗i ≤ cij − π∗j since i /∈ V [ŷ]. Therefore, π∗∗i + π∗∗j ≤ cij and hence (6b) holds for edge (i, j).

Now, let us show that (π∗∗, θ∗∗) is an optimal solution of DSP1(ŷ). First of all, note that the objective

function values of DSP1(ŷ) and DSP2(ŷ) are the same. We also know by strong duality that the objective

function values of SP2(ŷ) and DSP2(ŷ) are equal at optimality. Since SP1(ŷ) and SP2(ŷ) are equivalent, we

get the conclusion that the objective values of SP1(ŷ) and DSP1(ŷ) are the same, so we have an optimal

solution of DSP1(ŷ).

Consider a ŷ-vector such that G[ŷ] admits a perfect matching, and let (π∗∗, θ∗∗) denote an optimal dual

solution of DSP1(ŷ) as defined in Proposition 3. Since the feasible region of DSP1(y) does not depend on

y, (π∗∗, θ∗∗) is a feasible dual solution for any value of y, and hence
∑

i∈V π
∗∗
i yi +

∑
o∈OC((|o| − 1)/2)θ∗∗o

yields a lower bound on the optimal objective function value of DSP1(y). Therefore, the following Benders

optimality cut is valid:

t ≥
∑
i∈V

π∗∗i yi +
∑

o∈OC

((|o| − 1)/2)θ∗∗o . (13)

Note that (13) provides a lower bound on t, which is clearly violated by the current (ŷ, t̂) if t̂ < t∗[ŷ] =∑
i∈V π

∗∗
i ŷi +

∑
o∈OC((|o| − 1)/2)θ∗∗o . Although a direct comparison of cuts (10) and (13) is not as straight-

forward as for the cuts (4) and (7), we will show in Section 6 by means of computational experiments that

using optimality cuts (13) instead of optimality cuts (10) is much more efficient in practice.

Whenever G[ŷ] admits a minimum weight perfect matching, it provides an upper bound UB on t, which
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is updated if improved. Then, the corresponding optimality cut (13) is generated and added to Model 3,

which is then re-solved. This procedure is repeated until the objective value of Model 3, which is a lower

bound LB for t, is equal to the weight of a minimum weight perfect matching, which is an upper bound UB

for t. The above solution procedure for MWMM can be summarized as in Algorithm 2.

Algorithm 2 MWMM Benders Decomposition

Require: A graph G = (V,E) with edge weights cij
Ensure: A minimum weight maximal matching

1: Set UB =∞
2: Solve Model 3 with (9c) relaxed. Let (ŷ, t̂) be an optimal solution. Set LB=objective function value of

Model 3
3: Seek a minimum weight perfect matching M in G[ŷ]
4: if M exists then
5: Set UB = min (UB, total weight of M)
6: if LB = UB then
7: M is a minimum weight maximal matching, STOP
8: end if
9: Let (π∗, θ∗) denote an optimal dual solution associated with M

10: Compute an optimal solution (π∗∗, θ∗∗) of DSP1 as described in Proposition 3
11: Add optimality cut (13) generated for (π∗∗, θ∗∗) to Model 3, go to step 2
12: else
13: Generate feasibility cut (7) for ŷ, add it to Model 3 and go to step 2
14: end if

5 Modelling and Algorithmic Improvements

In our preliminary computational tests, we observed that repeatedly re-solving Models 2 and 3 to optimality

in each iteration constitutes the bottleneck of our decomposition approach. This is not surprising since

Models 2 and 3 are integer programming problems, whose solutions require an exponential amount of time.

On the other hand, given a solution ŷ, calculation of a minimum weight perfect matching or identification

of the Gallai-Edmonds decomposition can be performed in polynomial time [22]. In this section we discuss

some approaches for improving the solvability of Models 2 and 3.

5.1 Initial solution

It is well known that the existence of a good initial feasible solution can help to improve the performance of

integer programming solvers because it provides a good upper bound, which allows the solver to prune more

branch-and-bound nodes and allows the solver to apply strategies such as reduced cost fixing. Providing

such an initial solution can have a significant impact on solution performance [5]. To this end, we use the
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greedy MMM and MWMM algorithms described in [31], which are based on choosing at each step an edge

(i, j) ∈ E with the lowest ratio of cij to the total weight of the edges (including itself) that cannot be in the

matching once edge (i, j) is included in it.

5.2 Valid Inequalities

Another improvement in both Algorithms 1 and 2 can be obtained as follows. Recall that given a ŷ-vector

that does not admit a perfect matching in G[ŷ], a Benders feasibility cut (7) can be generated. Now, suppose

that G[ŷ] is disconnected (note that G[ŷ] can be disconnected even though G is connected). In this case,

G[ŷ] admits a perfect matching if and only if each connected component of G[ŷ] admits a perfect matching.

Based on this observation, we first identify connected components of G[ŷ], seek a perfect matching in each

connected component separately, and generate an individual feasibility cut (7) for each connected component

that does not admit a perfect matching.

One can also improve the formulations of Models 2 and 3 by deriving some valid inequalities. These

valid inequalities state some necessary conditions that not only improve the lower bound of Models 2 and

3, but also allow our decomposition approach to converge in a fewer number of iterations by eliminating

ŷ-vectors that cannot admit a perfect matching in G[ŷ]. Our first valid inequality is based on a very simple

observation: an even number of vertices must be saturated in order for G[ŷ] to admit a perfect matching.

Hence, constraint (14) is valid:

∑
i∈V

yi = 2k, where k is an integer variable. (14)

A different set of valid inequalities can be derived as follows: We observe that if a vertex i is saturated,

then at least one of its neighbors should also be saturated (by definition of a matching); and if a vertex i is

not saturated, then all of its neighbors should be saturated in order to ensure maximality of the matching.

Constraints (15), which are valid for both Model 2 and Model 3, are based on this observation.

∑
j∈N(i)

yj + |N(i)− 1| yi ≥ |N(i)| , ∀i ∈ V. (15)

We observe that (15) generalizes the variable fixing rule proposed in [31]. In particular, let i ∈ V be a

vertex having degree 1, and let j ∈ V be its only neighbor. Taşkın and Ekim [31] observe that since at least

one of the vertices i and j has to be saturated in a maximal matching, and since the saturation of vertex i
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implies that vertex j is also saturated by the matching, it follows that vertex j has to be saturated in any

maximal matching. Therefore, they propose the following variable fixing rule:

yj = 1 ∀(i, j) ∈ E, |N(i)| = 1. (16)

Note that (15) simplifies to yj ≥ 1 for each vertex i having N(i) = {j}, which is equivalent to (16) since

y-variables are binary.

5.3 Single branch-and-bound-tree

We note that instead of solving the integer programming problems to optimality in each iteration, we can

interrupt the branch-and-bound solution process each time the solver finds an integer solution ŷ (and t̂), and

check whether a feasibility cut (7) (or optimality cut (13)) that is violated by the current integer solution can

be generated. If no cuts can be generated, we accept the current solution as the new incumbent and resume

the solution process. If some cuts are generated, we reject the current solution, add the newly generated cuts

to the formulation, and again resume the solution process. In our tests, this approach consistently performed

better than solving Models 2 and 3 to optimality in each iteration. This can be explained by noting that

with this approach the problem is solved using a single branch-and-bound tree as opposed to repeatedly

generating a branch-and-bound tree in each iteration.

5.4 Using MVWMM in the solution procedure for MWMM

Consider the initial iteration of Algorithm 2, where no cuts (7) or (13) have been generated. Initially any

vertex cover provides an optimal solution of Model 3. Furthermore, the initial optimal value of t equals its

lower bound LB, which provides a weak lower bound on the optimal objective function value. Therefore, it

may take a long time for Algorithm 2 to converge to an optimal solution. In this section, we will focus on

improving the convergence of Algorithm 2 by guiding it to promising vertex covers and improving its lower

bound.

Recall that any instance of MVWMM can be converted into an instance of MWMM by choosing the edge

weights appropriately (Section 4). In this section, we further investigate the relationship between the two

problems. Let Gc be an instance of MWMM having edge weights cij . Assume that there is a set of vertex

weights wi (of unrestricted sign and possibly fractional) for each vertex i such that for each edge (i, j) ∈ E

we have cij = wi + wj . Then one can solve MWMM on Gc by considering the graph Gw where the weights
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on vertices satisfy the above condition and by solving MVWMM on Gw as described in Remark 1. Note

that in this situation the t-variable and optimality cuts (13) are no longer needed since any perfect matching

in subgraph G[ŷ] has the same total weight (equal to the sum of the weights of saturated vertices), which

is already minimized by the objective function (8). On the other hand, if no set of vertex weights satisfies

the above condition, then one cannot transform MWMM on Gc to an equivalent MVWMM instance. In

this situation, however, we can distribute the edge weights to vertices “as much as possible” and use this

information in the objective function of Model 3. Specifically, given an MWMM instance, we solve the

following linear program, which tries to find weights wi for vertices i ∈ V such that for each edge (i, j) ∈ E

we have wi + wj = cij .

VW: Minimize
∑

(i,j)∈E

sij (17a)

subject to: wi + wj + sij = cij ∀(i, j) ∈ E (17b)

sij ≥ 0 ∀(i, j) ∈ E (17c)

wi unrestricted ∀i ∈ V. (17d)

If an optimal solution (w∗, s∗) of VW has objective function value zero, then the related MWMM instance

can be seen as an MVWMM instance with vertex weights w∗, and hence can be solved using the procedure

described in Remark 1. Otherwise, there is no set of vertex weights satisfying the equality wi + wj = cij

for all edges (i, j) ∈ E. Instead, VW returns a solution (w∗, s∗) such that w∗i + w∗j ≤ cij for all edges

(i, j) ∈ E and s∗ij can be seen as the residual weight of the edge (i, j). This information can be incorporated

by considering the graph Gs∗ and replacing the objective function of Model 3 as follows:

Minimize
∑
i∈V

w∗i yi + t̄, (18)

where t̄ is a non-negative variable representing the contribution of the residual edge weights s∗ij to the weight

of the perfect matching that we seek in Model 3. With this new objective function, Model 3 chooses vertices

to be saturated (vertices i having ŷi = 1) in such a way that their total weight is minimized. If the set of

saturated vertices in Gs∗ admits a perfect matching having total weight t̄, then this matching provides a

maximal matching in G whose total weight is equal to
∑

i∈V wiŷi + t̄.

With this new objective function of Model 3 and the modified version of Algorithm 2, where the weights

are first distributed to the vertices in the best possible way, the initial lower bound of Model 3 is improved
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and hence the algorithm is likely to perform fewer iterations before proving optimality. This fact is also

confirmed with our experiments (see Section 6). Moreover w∗ is used to drive the objective function of

Model 3 to find near-optimal vertex covers.

6 Computational Results

We first conduct a series of experiments to evaluate the efficiency of algorithmic improvements suggested in

Section 5 as well as to evaluate the strength of the optimality cuts (13) as compared to the optimality cuts

(10). These results will guide us to obtain a modified version of Algorithm 1, called MMM Benders Improved,

and Algorithm 2, called MWMM Benders Improved. We will then compare the performance of our improved

algorithms with Algorithms 1 and 2, and with the results obtained by the algorithms presented in [31].

We implemented all algorithms using CPLEX 12.2 for solving the linear and integer programming prob-

lems, and LEMON Graph Library 1.2.1 [10] for finding connected components, seeking minimum weight

perfect matchings and calculating Gallai-Edmonds decompositions. We executed all algorithms (including

the ones proposed in [31]) on a computer with a 2.27 GHz Intel Xeon CPU and 12 GB RAM. Our base

test data set consists of randomly generated problem instances for which the expected edge density of the

graph (measured as D = 2|E|
|V |×(|V |−1) ) takes values 0.3, 0.5 and 0.7. In generating weighted instances, we

first generated random graphs as in the unweighted case, and then assigned an integer weight uniformly

distributed between 1 and 10 to each edge. We generated ten problem instances for each problem size, which

is determined by the expected edge density and the number of vertices. Data sets used in our tests are

available online at http://www.ie.boun.edu.tr/~taskin/research.php.

In Table 1 and Table 2, we measure the effect of the suggested improvements on Algorithm 1 and

Algorithm 2, respectively. We use instances with average density D = 0.3, 0.5, and 0.7 and number of

vertices |V | = 150, . . . , 190. In each column, the following results on ten instances are presented: “Cuts:”

the total number of feasibility and optimality (for MWMM) cuts generated for ten instances, “Gap:” the

average final percentage optimality gap for instances that could not be solved within the allowed time limit

of 1200 seconds (calculated as (UB − LB)/UB where UB denotes the upper bound and LB denotes the

lower bound), “Init Gap:” the average percentage optimality gap of solutions found by the greedy algorithm

described in Section 5.1, “Time:” the average amount of time in seconds spent by each algorithm on the

instances that were solved to optimality within the allowed time limit.

In Table 1, we report the following results; “MMM Benders:” Algorithm 1, “Initial Heuristic:” Algorithm
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Table 1: Effect of proposed improvements on solution performance for solving MMM
MMM Benders Initial Heuristic Valid Inequalities

D |V | Cuts Time Init Gap Cuts Time Cuts Time

0.3

150 14 66.0 6.24 10 81.8 0 35.2
160 15 121.4 5.32 12 147.5 0 69.7
170 17 258.2 5.50 6 296.1 0 124.3
180 10 458.6 5.29 15 521.8 2 207.9
190 16 945.6 5.64 12 896.7 0 385.6

0.5

150 9 44.8 3.36 10 50.8 0 19.7
160 11 68.3 3.80 5 79.6 2 27.4
170 11 131.5 3.80 8 150.7 0 48.2
180 12 227.3 3.35 8 266.8 0 88.0
190 10 315.6 3.92 14 383.0 0 98.1

0.7

150 20 38.7 3.97 11 44.7 0 13.0
160 12 54.6 2.84 8 64.0 0 16.1
170 17 76.8 3.13 8 93.1 0 22.8
180 18 110.3 2.74 5 137.9 0 36.2
190 8 187.4 2.91 3 195.2 0 50.4

Table 2: Effect of proposed improvements on solution performance for solving MWMM
MWMM Benders Optimality Cut (10) Initial Heuristic MVWMM Valid Inequalities

D |V | Cuts Time Cuts Gap Time Init Gap Cuts Time Cuts Time Cuts Time

0.3

150 159 37.5 67466 100 - 28.06 127 40.5 155 26.06 118 18.12
160 95 74.9 66605 100 - 29.62 96 91.9 109 56.64 78 45.05
170 104 122.9 75725 100 - 28.84 103 127.8 121 102.99 68 72.56
180 65 335.6 70471 100 - 25.95 75 347.1 105 239.74 51 163.50
190 64 592.4 72763 100 - 25.72 97 659.9 82 507.63 51 324.78

0.5

150 29 43.3 64755 100 - 21.35 36 48.1 25 33.26 28 18.25
160 22 65.6 61483 100 - 18.19 37 73.9 25 59.57 25 29.35
170 24 107.4 59596 100 - 18.51 32 115.9 32 86.43 27 44.50
180 35 209.7 61932 100 - 16.83 36 253.0 20 201.84 22 78.53
190 25 329.9 58436 100 - 15.61 31 355.8 16 335.89 21 110.45

0.7

150 31 40.1 59407 100 - 13.12 30 45.2 19 35.79 22 13.33
160 22 54.6 59217 100 - 15.85 35 65.5 17 50.37 20 16.35
170 31 77.8 56177 100 - 15.22 39 95.2 25 73.25 20 22.94
180 28 108.2 56438 100 - 14.52 36 128.9 19 92.30 20 35.88
190 18 188.4 50623 100 - 12.44 32 190.5 13 154.34 20 50.49

1 fed with the initial solution obtained by the greedy algorithm described in Section 5.1, “Valid Inequalities:”

Algorithm 1 augmented with valid inequalities (14) and (15) introduced in Section 5.2.

We observe from Table 1 that although the greedy algorithm is able to find solutions within an average

4.1% of optimality, total running time is increased by 9.8% because of the time spent by the heuristic

algorithm at the beginning. In our tests we observed that CPLEX is able to quickly find very good feasible

solutions even if one is not provided initially. It follows that the use of initial heuristic is not justified by

our experiments. On the contrary, the valid inequalities (14) and (15) substantially decreases both the total

number of cuts and the total running time (respectively by 98% and 59.9%). As a result, our improved

algorithm MMM Benders Improved, summarized in Algorithm 3, contains the valid inequalities (14) and
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(15) but not the initial heuristic.

Algorithm 3 MMM Benders Improved

Require: A graph G = (V,E)
Ensure: A minimum maximal matching

1: Run Algorithm 1 with cuts (14) and (15) added to Model 2 and feasibility cuts (7) added for each
connected component of G[ŷ].

Table 2 shows the following results; “MWMM Benders:” Algorithm 2,“Optimality Cut (10):” Algorithm

2 where optimality cuts (13) in line 11 are replaced with optimality cuts (10), “Initial Heuristic”: Algorithm

2 fed with the initial solution obtained by the greedy algorithm described in Section 5.1,“MVWMM:” Algo-

rithm 2 where the edge weights are distributed to the vertices using the procedure described in Section 5.4,

“Valid Inequalities:” Algorithm 2 augmented with valid inequalities (14) and (15) introduced in Section 5.2.

Our first observation is that, when we use cuts (10) instead of cuts (13), none of the instances can be

solved in the given time limit. Therefore, the improved version of our algorithm contains our proposed

optimality cuts (13), which utilize duality information from the solution of the subproblem. The use of

the greedy algorithm to find an initial solution is once again not justified since it increases both the total

number of cuts (by 11.9%) and the total running time (by 10.5%). We also observe that the initial heuristic

gaps are higher than the ones for the unweighted case, in alignment with the results obtained in [31]. As

for the contribution of the weight distribution to the vertices, although the total number of cuts generated

slightly increases (by 4.1%), the total running time is improved by 13.9%. Finally, valid inequalities provide

the most significant improvement as in the unweighted case: 21.4% reduction in the total number of cuts,

56.3% reduction in the total running time. Following these results, we implemented the modified version of

Algorithm 2, called MWMM Benders Improved, which contains all the improvements described in Section 5

except the use of a greedy algorithm to obtain an initial solution. This algorithm is summarized in Algorithm

4.

Now, we compare the performance of our algorithms with the direct solution of the integer programming

formulation proposed in [31], which is enhanced by valid inequalities and variable fixing rules. For this

experiment, we executed our algorithms on the same problem instances as in [31] with average edge density

D = 0.3, 0.5, and 0.7 and number of vertices |V | = 150, . . . , 190. In Table 3, the set of columns titled

“Taşkın and Ekim (2012)” correspond to the results obtained by the algorithm presented in [31] and the

set of columns titled “MMM Benders” and “MMM Benders Improved” correspond to Algorithms 1 and 3,

respectively. Note that all tests were performed on the same hardware and software environment (operating

system, compiler and version of CPLEX). Furthermore, both codes were executed when no other tasks were
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Algorithm 4 MWMM Benders Improved

Require: A graph G = (V,E) with edge weights cij
Ensure: A minimum weight maximal matching

1: Solve VW. Let (w∗, s∗) be an optimal solution. Let Gw be a copy of G where vertex i has weight w∗i
and edge (i, j) has weight s∗ij

2: if the optimal value of VW is zero then
3: Run Algorithm 3 for Gw where Model 2 has objective function min

∑
i∈V wiyi and return its solution.

4: else
5: Run Algorithm 2 for Gw where Model 3 has objective function min

∑
i∈V wiyi + t̄, cuts (14) and

(15) are added and feasibility cuts (7) are added for each connected component of Gw[ŷ]. Return its
solution.

6: end if

Table 3: Comparison of algorithms for solving MMM on medium-sized graphs
Taşkın and Ekim (2012) MMM Benders MMM Benders Improved

D |V | Solved Gap Time Solved Gap Time Solved Gap Time

0.3

150 10 - 129.6 10 - 66.0 10 - 35.2
160 10 - 231.9 10 - 121.4 10 - 69.7
170 10 - 421.2 10 - 258.2 10 - 124.3
180 10 - 712.0 10 - 458.6 10 - 207.9
190 3 2.33 818.0 10 - 945.6 10 - 385.6

0.5

150 10 - 154.5 10 - 44.8 10 - 19.7
160 10 - 215.5 10 - 68.3 10 - 27.4
170 10 - 573.5 10 - 131.5 10 - 48.2
180 9 1.19 857.4 10 - 227.3 10 - 88.0
190 4 2.44 1018.6 10 - 315.6 10 - 98.1

0.7

150 10 - 320.7 10 - 38.7 10 - 13.0
160 10 - 509.5 10 - 54.6 10 - 16.1
170 9 2.47 728.4 10 - 76.8 10 - 22.8
180 6 1.47 1015.8 10 - 110.3 10 - 36.2
190 0 2.89 - 10 - 187.4 10 - 50.4

running on the computer so that results are comparable. For each problem size, we report the following

statistics calculated over ten random instances: (i) “Solved:” the number of problem instances solved to

optimality, (ii) “Gap” and (iii) “Time” defined as previously.

We observe that while MMM Benders and MMM Benders Improved can solve all 150 problem instances

in this data set to optimality within a few minutes, CPLEX can only solve 121 instances to optimality within

the enforced time limit. Comparing the problem instances that all approaches are able to solve to optimality,

we observe that our decomposition algorithms significantly decrease the solution time in all instances. For

instance, note that the integer programming approach can solve D = 0.7, |V | = 160 instances to optimality

within an average of 509.5 seconds, while our improved algorithm is able to solve the same instances within

an average of 16.1 seconds. We observe that while the performance of the integer programming formulation
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given in [31] deteriorates rapidly as the number of vertices increases, the effect of |V | is mitigated in our

algorithms. We also observe that while the integer programming approach gets more difficult to solve as the

graph density increases, perhaps surprisingly, the solution times for our decomposition approach decrease

as D increases. This can be explained as follows: the integer programming formulation of [31] contains a

binary variable and a constraint for each edge, and hence the size of the formulation increases significantly as

D increases for a given |V |. However, our decomposition approach only contains a constraint for each edge

in the master problem. Therefore, the number of variables in our approach is independent of the graph’s

edge density, and the number of constraints increases as D increases for a given |V |, which yields a tighter

formulation that can be solved in a shorter amount of time. We also note that the improvements suggested

in Section 5 significantly improve solution times on all tested instances.

Our second experiment compares our decomposition approach with the integer programming approach

of [31] on graphs having weighted edges. Table 4 summarizes the results of this experiment. As before, we

used the weighted problem instances used in [31] for this experiment. We observe that our decomposition

approach significantly outperforms direct solution of the integer programming formulation in the weighted

case, too. CPLEX is able to solve 133 instances to optimality within the allowed time limit while our

algorithms can solve all 150 problem instances within a few minutes. Similar to the unweighted case,

the performance of MWMM Benders and MWMM Benders Improved deteriorates as |V | increases, and

improves as D increases. Comparing our two decomposition algorithms, we note again that our suggested

improvements have a significant effect on solution times.

Comparing Tables 3 and 4, we observe that the integer programming formulation performs significantly

better for the weighted problem instances. This is explained in [31] by noting that the existence of weights

differentiates edges, hence decreasing the amount of symmetry in the model. On the other hand, the difference

between solution times of unweighted and weighted instances is not very significant for our decomposition

algorithms (with the notable exception of D = 0.3, which can be explained by noting that the effect of

symmetry reduction due to weights becomes more apparent as D decreases). Recall that our master problem

does not contain any variables for edges, and we account for edge weights implicitly via the solution of our

subproblem. However, since we “transfer” as much weight from edges to vertices as possible (see Section

5.4), our approach also benefits indirectly from the existence of edge weights.

Our last experiment is aimed at analyzing the performance of our decomposition approach on larger

graphs. For this experiment, we randomly generated larger graphs with up to |V | = 300 vertices. As before,

we generated ten random problem instances for D = 0.3, 0.5 and 0.7, both with and without edge weights.
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Table 4: Comparison of algorithms for solving MWMM on medium-sized graphs
Taşkın and Ekim (2012) MWMM Benders MWMM Benders Improved

D |V | Solved Gap Time Solved Gap Time Solved Gap Time

0.3

150 10 - 43.4 10 - 37.5 10 - 15.1
160 10 - 107.7 10 - 74.9 10 - 24.9
170 10 - 123.0 10 - 122.9 10 - 57.4
180 9 1.23 329.4 10 - 335.6 10 - 162.7
190 6 2.03 458.3 10 - 592.4 10 - 293.9

0.5

150 10 - 87.0 10 - 43.3 10 - 18.7
160 10 - 171.8 10 - 65.6 10 - 26.9
170 10 - 264.8 10 - 107.4 10 - 40.2
180 10 - 621.6 10 - 209.7 10 - 73.6
190 3 2.09 763.7 10 - 329.9 10 - 111.6

0.7

150 10 - 203.1 10 - 40.1 10 - 11.6
160 10 - 282.7 10 - 54.6 10 - 15.6
170 10 - 498.3 10 - 77.8 10 - 24.5
180 10 - 690.7 10 - 108.2 10 - 34.0
190 5 1.11 934.3 10 - 188.4 10 - 51.4

Table 5 summarizes the results of our experiment on larger unweighted graphs. Note that the effect of our

suggested improvements is clearly visible on this table. In particular, the total number of problem instances

that could be solved to optimality by MMM Benders is 68, while MMM Benders Improved was able to solve

172 instances to optimality. We also observe that optimality gaps for instances that could not be solved to

optimality are reduced as a result of the improvements.

Finally, Table 6 compares MWMM Benders and MWMM Benders Improved on weighted graphs having

up to |V | = 300 vertices. Our observations on the results presented in Table 6 are similar to our previous

observations. In particular: i) as |V | increases, fewer instances can be solved to optimality and the average

optimality gap tends to increase, ii) the performance of our approach increases as D increases for both

cases, and iii) there is no significant difference between the performances of our decomposition algorithms

for solving weighted and unweighted graphs having the same number of vertices.

7 Conclusions and Future Research

In this paper, we described exact solution algorithms for the problem of finding a minimum weight maximal

matching in (edge) weighted graphs, and its unweighted version where each edge has unit weight. Our algo-

rithms are based on Benders decomposition applied to appropriate reformulations of an integer programming

formulation proposed in [31]. The master problem of our decomposition approach seeks an optimal vertex
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Table 5: Comparison of algorithms for solving MMM on large graphs
MMM Benders MMM Benders Improved

D |V | Solved Gap Time Solved Gap Time

0.3

200 5 2.20 1091.8 10 - 443.3
210 0 2.82 - 10 - 656.8
220 0 3.38 - 2 1.00 1137.2
230 0 4.35 - 0 2.38 -
240 0 4.79 - 0 2.73 -
250 0 5.10 - 0 3.48 -
260 0 5.63 - 0 4.17 -
270 0 5.90 - 0 4.65 -
280 0 6.44 - 0 4.70 -
290 0 7.15 - 0 5.11 -
300 0 7.34 - 0 5.51 -

0.5

200 10 - 543.6 10 - 160.6
210 10 - 701.4 10 - 207.0
220 1 1.71 1045.3 10 - 291.5
230 1 2.45 1067.6 10 - 422.5
240 0 3.16 - 10 - 688.9
250 0 3.63 - 9 - 1044.6
260 0 4.13 - 1 0.81 905.9
270 0 4.35 - 0 1.64 -
280 0 4.72 - 0 2.26 -
290 0 4.63 - 0 2.83 -
300 0 5.36 - 0 3.36 -

0.7

200 10 - 270.0 10 - 77.5
210 10 - 371.7 10 - 104.3
220 10 - 596.0 10 - 167.0
230 10 - 849.9 10 - 210.8
240 1 1.06 1094.0 10 - 348.1
250 0 2.00 - 10 - 487.4
260 0 2.48 - 10 - 634.0
270 0 3.08 - 8 0.77 744.9
280 0 3.26 - 9 0.74 941.4
290 0 4.43 - 3 1.29 1055.0
300 0 5.31 - 0 1.13 -
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Table 6: Comparison of algorithms for solving MWMM on large graphs
MWMM Benders MWMM Benders Improved

D |V | Solved Gap Time Solved Gap Time

0.3

200 5 1.76 685.3 10 - 468.3
210 2 2.61 632.8 7 1.40 778.3
220 1 3.19 1178.1 5 1.40 979.8
230 0 3.97 - 2 2.50 822.0
240 0 4.52 - 0 3.17 -
250 0 5.35 - 0 3.81 -
260 0 5.15 - 0 4.40 -
270 0 5.89 - 0 4.72 -
280 0 6.51 - 0 4.84 -
290 0 7.28 - 0 5.25 -
300 0 7.47 - 0 5.51 -

0.5

200 10 - 537.7 10 - 169.7
210 10 - 734.8 10 - 205.1
220 1 1.71 1050.7 10 - 340.7
230 1 2.45 1064.6 10 - 460.0
240 0 3.25 - 10 - 717.8
250 0 3.63 - 8 0.85 1052.8
260 0 4.04 - 1 0.99 865.1
270 0 4.35 - 0 1.72 -
280 0 4.72 - 0 2.18 -
290 0 4.63 - 0 2.97 -
300 0 5.36 - 0 3.50 -

0.7

200 10 - 271.3 10 - 76.0
210 10 - 371.4 10 - 105.6
220 10 - 596.3 10 - 162.1
230 10 - 849.0 10 - 219.5
240 1 1.06 1098.2 10 - 345.9
250 0 2.00 - 10 - 419.7
260 0 2.48 - 10 - 639.0
270 0 3.08 - 9 0.77 764.2
280 0 3.26 - 9 1.48 973.1
290 0 4.43 - 3 1.23 1125.6
300 0 5.31 - 0 1.66 -
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cover, and the subproblem seeks a minimum weight perfect matching in the subgraph induced by the vertex

cover. We showed how Benders feasibility cuts can be derived by using Gallai-Edmonds decomposition, and

how Benders optimality cuts can be generated by solving the subproblem using a combinatorial matching

algorithm. We tested the performance of our algorithms on randomly generated graph instances. Our re-

sults indicate that our decomposition approach clearly outperforms directly solving the underlying integer

programming formulations for both problems.

As future research, one can consider developing exact methods for MMM and MWMM in some specific

graph classes such as bipartite graphs and regular graphs by taking advantage of their structural properties.

Also, developing a combinatorial branch-and-bound algorithm for the minimum weight maximal matching

problem merits further research.
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