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M Gören and Z C Taşkın
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Abstract. Collimator systems used in Intensity Modulated Radiation Therapy

(IMRT) can form different geometric aperture shapes depending on their physical

capabilities. We compare the efficiency of using regular, rotating and dual

multileaf collimator (MLC) systems under different combinations of consecutiveness,

interdigitation and rectangular constraints. We also create a virtual freeform

collimator, which can form any possible segment shape by opening or closing each

bixel independently, to provide a basis for comparison . We formulate the problem of

minimizing beam-on time as a large-scale linear programming problem. To deal with

its dimensionality, we propose a column generation approach. We demonstrate the

efficacy of our approach on a set of clinical problem instances. Our results indicate

that the dual MLC under consecutiveness constraint yields very similar beam-on time

to a virtual freeform collimator. Our approach also provides a ranking between other

collimator technologies in terms of their delivery efficiencies.
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1. Introduction

Intensity Modulated Radiation Therapy (IMRT) is a form of cancer treatment that

delivers radiation beams to the patient from several directions (i.e. beam orientations)

by using a linear accelerator and a collimator (Chen & Wang 2009). While linear

accelerator rotates around the patient, collimator shapes the beams by moving their

leaves to form different segments or apertures. This technique provides a high degree of

control over the dose distribution that is received by a patient (Ehrgott et al. 2008).

IMRT treatment can be delivered either statically or dynamically. In the static

approach, also called “step and shoot” technique, leaves are stationary while the

radiation beam is on. In other words, the linear accelerator stops at a predetermined

beam angle position, an aperture is formed and only then the radiation source is turned

on (Rocha et al. 2010). In the dynamic approach, new apertures are formed while the

radiation is on, so collimator leaves keep moving during the treatment (Jing et al. 2010).

In this study, we focus on the static approach.
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Static IMRT treatment planning process is typically composed of three phases. The

first phase is called beam angle optimization (BAO). Radiation is delivered through

a set of beam angles and the goal of BAO is to determine optimal beam angles

(Zhang & Merritt 2006). BAO is widely studied in the literature (see Craft 2007, Lim

et al. 2008, Wang et al. 2004). The second phase, fluence map optimization (FMO),

aims to find an optimal fluence map (also callued intensity profile) for each beam angle.

The fluence map is a nonnegative integer matrix of intensity values. The objective of

this phase is to find a treatment plan that delivers the required dose of radiation to

malignant tissues while healthy ones are spared (Ehrgott et al. 2008). Some approaches

for solving FMO problem can be found in Zhang & Merritt (2006), Aleman et al. (2010)

and Tuncel et al. (2012). In this paper, we investigate the last phase, called the leaf

sequencing optimization (LSO). In LSO, the intensity matrices are decomposed into

a set of deliverable apertures (i.e. segments or shape matrices) and their associated

intensities so that treatment is delivered efficiently (see Cambazard et al. 2012, Taşkın

et al. 2010, Taşkın & Cevik 2013). There are also some studies on approximate intensity

matrix decomposition. This line of research focuses on creating a suitable treatment

plan by allowing some small deviation from the given intensity matrix (see Dobler

et al. 2007, Kalinowski & Kiesel 2009, Engel & Kiesel 2011, Kalinowski 2011). Dividing

the IMRT treatment plan into stages and dealing with them separately may cause

loss in treatment quality. Hence, some integrated approaches aim to solve multiple

stages of the IMRT problem at once. For instance, direct aperture optimization (DAO)

approaches integrate the FMO and LSO stages and solve the problem as a single but

more complicated optimization problem (see Men et al. 2007, Men et al. 2010, Salari &

Unkelbach 2013, Broderick et al. 2009, Dobler et al. 2007).

Collimator systems used in IMRT can form different geometric shapes of apertures

depending on their physical capabilities. Hence, different collimator systems lead to

changes in the set of feasible aperture shapes. The regular multileaf collimator (MLC)

is a type of collimator that is composed of a set of leaf pairs; left and right leaves with the

same sizes. In the IMRT systems with regular MLC, the linear accelerator rotates around

the patient, stops at a predetermined angle and the radiation is transmitted through the

aperture constructed by the regular MLC (Ahuja & Hamacher 2005). Another collimator

type is the rotating MLC. It is a regular MLC with the ability of head rotation by 90◦.

In this system, apertures are first constructed with left-right pairs of leaves, then the

MLC rotates and apertures are constructed with top-bottom pairs of leaves; or vice

versa (Blin et al. 2014). Dual MLC is a kind of collimator that has two orthogonal pairs

of leaves; one pair operating horizontally and the other pair simultaneously operating

vertically. Hence, it is expected to construct more complex apertures (Webb 2012).

There are some common constraints that appear in collimator systems and further

restrict the set of feasible aperture shapes. Consecutiveness constraint is an important

restriction that applies to many collimator systems. It means that the open area

constructed by the pairs of leaves should be contiguous (Ehrgott et al. 2008, Men

et al. 2007). Rectangles are the simplest aperture shapes that can be formed. IMRT
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can be delivered only using conventional jaws, which are devices that can only form

rectangular apertures. This restriction is named as the rectangular constraint (Men

et al. 2007). Interdigitation constraint is about leaves in adjacent rows. It states that

the left and right leaf pairs of a row cannot overlap with the right and left pairs of

the adjacent row respectively. In other words, opposing leaves of adjacent rows cannot

overlap (Ehrgott et al. 2008, Kalinowski 2008). Minimum leaf separation constraint

forces a minimum leaf opening in each bixel row (Chen & Wang 2009, Engelbeen &

Fiorini 2010). Maximum leaf spread constraint forces a maximum distance between the

edge of leftmost left and rightmost right leaf (Chen & Wang 2009, Wu et al. 2013).

Tongue and groove constraint occurs due to the tongue and groove leaf arrangement

of the MLCs. This arrangement is a special design for reducing the interleaf leakage.

However, it may cause under-dosage. Hence, there are several studies about preventing

tongue and groove effect for minimizing under-dosage (Chen & Wang 2009, Salari

et al. 2011, Kalinowski 2008, Engelbeen & Fiorini 2010).

There are several studies in the literature investigating regular MLC system under

different constraints and different objectives. The LSO problem of the regular MLC

under consecutiveness constraint such that the total beam-on time (BOT) is minimized

is widely studied (Baatar et al. 2005, Boland et al. 2004, Bortfeld et al. 1994, Kamath

et al. 2003). BOT is the total time that radiation source is on and it is proportional to

the sum of the aperture intensities. This problem is known to be polynomially solvable

(Engel 2005, Ahuja & Hamacher 2005, Kamath et al. 2003). However, the same problem

with the objective of minimizing total setup time or total treatment time is strongly

NP-hard (Baatar et al. 2005). Extensive research by several researchers indicates that

such NP-hard problems are very unlikely to be solved efficiently, unless significant

improvements are made in the theory and practice of computational complexity. For

details about NP-hardness, we refer the reader to French (1982) and Garey & Johnson

(1979). Setup time occurs due to the change of apertures. Depending on the similarity

of the consecutive apertures, leaf and head movements, hence setup times, between

apertures change. However, modeling setup time precisely is complicated and leads

to optimization models that cannot be solved within clinically feasible time limits.

Therefore, setup time is usually taken as a constant value per aperture change and

total setup time is estimated as a function of total number of apertures used in the

decomposition (Taşkın et al. 2010, Wake et al. 2009, Langer et al. 2001). Total treatment

time is estimated as the summation of beam-on time and setup time (Boland et al. 2004).

There is a large number of heuristics developed for these problems such as Agazaryan &

Solberg (2003) and Siochi (2007). Exact solution approaches are proposed in Ernst et al.

(2009), Langer et al. (2001) with minimum number of used apertures objective and in

Wake et al. (2009), Taşkın et al. (2010), Mason et al. (2012) with total treatment time

objective. The LSO problem under the rectangular constraint with the minimization of

total number of apertures objective is studied in Taşkın et al. (2012) and Taşkın & Cevik

(2013). LSO problem under interdigitation constraint with minimum BOT objective is

modelled in Kalinowski (2008). The same problem is also studied in Boland et al. (2004).
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Consecutiveness and interdigitation are taken into account in the formulation of Boland

et al. (2004). The BOT value is taken as a performance metric in also Li & Xing (2013).

MLCs are technologically advanced systems which are therefore difficult and

expensive to build, operate and maintain (Taşkın et al. 2012). Additional features

and more flexibility implies additional costs. Hence, the comparison of different MLC

technologies is important to determine the value added by the additional features. There

are some studies in the literature doing this comparison partially by using Monte-Carlo

simulation. Anderson et al. (2006) compare several conceptual collimators, which are

collimators using jaws, leaves, bars or single-bixel attenuators and a virtual freeform

collimator. Freeform collimator constitutes a basis in comparison with other collimators.

It can form any possible segment shape by opening or closing each bixel independently.

Webb (2012) compares the regular, rotating and dual MLCs by using Monte-Carlo

simulation by ignoring all constraints except the consecutiveness. Their results show

that dual MLC is advantageous over the others, and rotating MLC is advantageous over

the regular MLC. Blin et al. (2014) prove the hardness of the decomposition problem

of an intensity matrix using rotating collimator and dual MLC. They show that these

problems are NP-hard when minimizing total number of apertures or BOT.

The contribution of our study can be summarized as: (i) comparing the BOT

performance of different collimator technologies from an optimization point of view,

(ii) extending and unifying MLC comparison efforts present in the literature, and (iii)

developing a common, flexible and adaptable platform for the comparison of collimator

technologies.

The rest of this paper is organized as follows: In Section 2, we construct a large-

scale linear programming formulation of the minimum BOT problem. To deal with

its dimensionality, we revise the formulation in Section 3 and apply column generation

approach. We present the results of our method on clinical data in Section 4. Finally

we provide concluding remarks in Section 5.

2. General LSO Problem with Minimum BOT Objective

The input of LSO stage of IMRT treatment process is a nonnegative integer matrix of

intensity values, which is called intensity matrix A. The number of rows and columns

of A are respectively m and n. A(mxn)= (aij) and aij represents the required intensity

value for bixel (i, j) ∀i = 1, . . . ,m, j = 1, . . . , n. We also have the set of all feasible

shape matrices, S, on hand. The cardinality of this set is represented by κ = |S|. Each

shape matrix can be represented by a (0-1) matrix having the same dimensions as A.

Sijk indicates whether the (i,j)th cell of the kth shape matrix among set S is exposed or

not. In other words, Sijk = 1 if bixel (i,j) is exposed in shape matrix k, and Sijk = 0

otherwise ∀i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , κ. We use Xk to represent the BOT

value for shape matrix k, ∀k = 1, . . . , κ, which is proportional to the number of monitor

units associated with that shape matrix.

From now on, we will refer to the LSO problem with the objective of minimizing
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total beam-on time as master problem (MP). Master problem can be formulated as

follows (see Boland et al. 2004):

MP:

minimize
κ∑
k=1

Xk (2.1)

subject to
κ∑
k=1

SijkXk = aij ∀i = 1, . . . ,m, j = 1, . . . , n (2.2)

Xk ≥ 0 ∀k = 1, . . . , κ (2.3)

The objective function (2.1) minimizes the total beam-on time of the shape

matrices. The constraint (2.2) ensures that the required amount of dosage is delivered

to each bixel. Finally, the constraint (2.3) enforces non-negativity restriction of the

beam-on time values.

Note that MP is a linear programming problem with just one set of constraint and

κ many variables. The number of feasible shapes, κ, varies according to the physical

capabilities of the used collimator system. For example, for the collimator systems that

can only form rectangular shapes, two row and two column indices uniquely identify a

rectangular aperture. Therefore, the number of feasible shapes is
(
m
2

)(
n
2

)
= O(m2n2),

which is a polynomial function of (m,n). However, κ is an exponential function of

(m,n) for other cases. For instance, for Regular MLC with Consecutiveness Constraint,(
n
2

)
possible positions exist for the leaves of each row. Since the leaf position selection

of a row is independent of the others, the exact number of possible shapes is
(
n
2

)m
which is an exponential function of (m,n). To deal with the problem of dealing with

exponentially many variables and create a unified method for all technologies, we apply

column generation approach.

3. Column Generation Approach

The MP formulation is not easy to solve because it typically has vast number of feasible

shape matrices κ. Additionally, many of these feasible shapes will not be used in an

optimal solution. In other words, their intensity values Xk will be zero in an optimal

solution. Thus, we initially generate a subset of this set, and use that subset to solve a

restricted version of the MP. Then we solve a subproblem to identify new useful shape

matrices to add the subset that will improve the current solution, or conclude that the

current solution is optimal. There are some studies using column generation approach

in IMRT context. Boland et al. (2004) propose column generation approach to solve

MP formulation for the case of using a regular MLC under interdigitation constraint.

Men et al. (2007) and Men et al. (2010) use column generation algorithm to solve the

direct aperture optimization problem. We refer the reader to Wolsey (1998) for details

about column generation approach.

Let us first define a restricted master problem (RMP) that has only a subset of

columns, i.e. shape matrices. Let Ŝ ⊆ S and κ̂ ≡ Ŝ. The restricted master problem can
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be formulated as:

RMP:

minimize
κ̂∑
k=1

Xk (3.1)

subject to
κ̂∑
k=1

SijkXk = aij ∀i = 1, . . . ,m, j = 1, . . . , n (3.2)

Xk ≥ 0 ∀k = 1, . . . , κ̂ (3.3)

A feasible subset of shape matrices is needed to start the column generation

approach. In principle such a feasible subset can be identified by running a heuristic to

obtain a feasible set of shapes. However, this approach would require availability of a

heuristic for each collimator type. Therefore, we take a different approach and generate

the initial subset as mxn many unit shape matrices (Sij matrices with a single 1 in bixel

(i, j) and 0 elsewhere, ∀i = 1, . . . ,m, j = 1, . . . , n). Note that this subset always gives

a feasible solution for the collimator types we investigate in this paper, and the BOT

value of that solution equals the sum of the intensities (
∑m

i=1

∑n
j=1 aij).

In linear programming theory, duality provides many important insights into the

structure and solution of linear programming problems. For each linear programming

problem, there exists a dual problem. A dual variable is associated with each original

constraint. Furthermore, each original variable has a reduced cost value, which is the

required amount of change in its objective coefficient in order to include it in an optimal

solution. Reduced costs of all variables can be calculated by using optimal values of dual

variables (Taha 2007, Winston et al. 2003). We denote the dual variables associated

with the constraints (3.2) by λij. By checking the reduced costs, we can find the most

promising shape matrix for our problem to include in the RMP. Hence, a subproblem is

defined to identify the shape matrix with the least reduced cost.

Given an optimal solution of RMP, subproblem (SP(λ)) can be formulated as

follows:

SP(λ):

minimize 1−
m∑
i=1

n∑
j=1

λijSij (3.4)

subject to S is a feasible shape matrix (3.5)

Sij ∈ {0, 1} ∀i = 1, . . . ,m j = 1, . . . , n (3.6)

The subproblem objective function (3.4) aims to find a shape matrix having the

minimum reduced cost. The reduced cost is calculated by the multiplication of the

dual variables λij associated with the constraints (3.2) and the shape matrix Sij
(Taha 2007, Winston et al. 2003). Note that RMP’s structure does not depend on

the collimator system. However, each collimator type leads to a different SP(λ) feasible

region. Hence, constraint (3.5) means ensuring the feasibility of the shape matrix for

the conditions of the investigated case, and needs to be defined precisely for each case.
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If optimal objective value of SP(λ) is nonnegative, then the current solution to the RMP

optimally solves the original formulation MP as well. If optimal objective value of SP(λ)

is negative, we add the new column to the RMP and solve it again (Wolsey 1998). In

the following sections we explain the SP(λ) of the cases of our concern and discuss their

solution procedures.

3.1. Subproblem for Regular MLC with Consecutiveness Constraint

It is known that the LSO problem of regular MLC under consecutiveness constraint

with the objective of minimizing BOT can be solved in polynomial time, and there are

various algorithms for solving that problem as stated in Section 1. Since the aim of our

study is to construct a common basis for comparison, we investigate the use of column

generation method for this case also.

We observe that SP(λ) of this case is decomposable by each bixel row. Hence,

an optimal solution under consecutiveness constraint can be found by first finding an

optimal leaf setting for each row, then combining these leaf settings to form an optimal

aperture shape. An optimal leaf setting for each row can be found by a single pass

algorithm similar to Romeijn et al. (2005). According to the algorithm to find the leaf

positions of a single row i, we sum −λij terms cumulatively over index j. Since our aim is

to minimize the cumulative −λij sum in the SP(λ) objective (3.4), we save the maximum

value of the cumulative sum encountered so far. To eliminate those big −λij terms, we

pull the left leaf to the jth index, where we obtain the maximum cumulative sum value.

In this way, we close the bixels with big −λij values. Then we compare the maximum

with the cumulative sum value. The position that we obtain the minimum difference

between these two values gives the optimal right leaf position. Hence, the algorithm finds

the optimal leaf positions for a row. We apply this single pass algorithm to all rows,

then combine the best leaf settings for each row to obtain an optimal aperture shape.

The complexity of this algorithm for a single row is O(n). Since the algorithm needs to

be executed for each row to form an optimal aperture shape, the overall complexity is

O(mn).

3.2. Subproblem for Regular MLC with Interdigitation Constraint

Interdigitation constraint is related to adjacent rows, therefore the problem is not

separable with respect to rows as the previous case. To solve SP(λ) in this case, we

define a shortest path network as it is done in Men et al. (2007) and Boland et al. (2004).

The nodes are defined by each potential leaf setting in each bixel row, and represented

by (i, c1, c2) where i is the row index (i ∈ {1, . . . ,m}), c1 and c2 are the potential left

and right leaf positions (c1 ∈ {0, . . . , n}, c2 ∈ {1, . . . , n+ 1}). In addition to these, we

add a source and a sink node to represent the top and bottom of the aperture. To satisfy

interdigitation restriction, we define an arc from node (i, c1, c2) to the next layer node

of (i + 1, c′1, c
′
2) if and only if c′1 ≤ c2 − 1 and c′2 ≥ c1 + 1. For example, a complete

shape matrix network of a 2x2 intensity matrix under interdigitation constraint is given
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in Figure 1. Three example shape matrices are given from that complete network in

Figure 1. The complete shape matrix network of a 2x2 matrix.

Figure 2. Shape matrices having leaf positions (a) (1,0,3)-(2,0,3), (b) (1,0,1)-(2,0,3),

(c) (1,0,1)-(2,1,3).

Figure 2. Possible left and right leaf positions are shown respectively as “L” and “R” on

top of the matrices. The example matrix on Figure 2 (a) corresponds to path (Source)→
(1,0,3)→ (2,0,3)→ (Sink). The matrix on Figure 2 (b) represents the path of (Source)

→ (1,0,1)→ (2,0,3)→ (Sink). Both of these paths exist in the network of Figure 1, since

they satisfy the interdigitation restriction. However, the path of (Source) → (1,0,3) →
(2,1,3)→ (Sink) of the matrix (c) does not exist in the network, because second left leaf

overpasses the first right leaf, which violates interdigitation constraint. Furthermore,

we set arc costs as the sum of all objective function coefficients corresponding to the

exposed bixels (−
∑c2−1

j=c1+1 λij) of the shape matrix. With this construction, a shortest

path from source to sink node gives a shape matrix with the least reduced cost.

In each layer of the network, there are
(
n+1
2

)
many nodes. The total number of nodes
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is
[
m(n+1)(n+2)

2
+ 2
]
= O(mn2). The total number of arcs is O(mn3). Thus, complexity

of the overall shortest path algorithm is O(mn3).

3.3. Subproblem for Regular MLC with Rectangular Constraint

To form a rectangle, two row selections (r1, r2) and two column selections (c1, c2)

need to be made among the possible m and n options. Suppose that which rows are

exposed in the rectangle aperture is known in advance, then the SP(λ) under rectangular

constraint becomes equivalent to the SP(λ) under consecutiveness investigated in Section

3.1. There are O(m2) possible row selections. Hence, a rectangular aperture can be

formed by applying a slightly modified single pass algorithm for all O(m2) possible row

selections and selecting the minimum one (Men et al. 2007). New coefficients used in

the algorithm are −
∑r2

i=r1
λij. This version of single pass algorithm has complexity

of O(m2n). However, this can be adjusted carefully by checking min {m,n}. Since a

rectangle is consecutive in terms of both rows and columns, if n < m, then we apply

single pass algorithm for all O(n2) possible column selections. With this point of view,

the complexity of the solution algorithm is O
(
min {m,n}2 max {m,n}

)
.

Note that rotating a rectangular aperture yields another rectangular aperture.

Hence, we do not investigate rotating MLC with rectangular constraint.

3.4. Subproblem for Rotating MLC with Consecutiveness Constraint

In rotating MLC, either a row- or column-consecutive shape matrix is constructed during

the treatment. Hence, either row- or column-consecutiveness constraint must be active

in the feasible region of the SP(λ). To solve that problem, we apply our single pass

algorithm twice; once to find a row-consecutive shape matrix as in Section 3.1 and once

to find a column-consecutive shape matrix. We then compare the two shape matrices

and select the one with the smaller objective value as the SP(λ) optimal solution. The

overall complexity of the algorithm is O(mn).

3.5. Subproblem for Rotating MLC with Interdigitation Constraint

Similar to Section 3.4, we apply interdigitation either row-based or column-based in

rotating MLC. To solve the SP(λ), we define two similar shortest path problems: The

first one is over columns as it is done in Section 3.2, and, the second one is defined over

rows. We solve those two problems and generate two shape matrices. The one having

the minimum objective value among these two shape matrices determines an optimal

solution to the SP(λ). The complexity of this algorithm is O(mn3 + nm3), which is

O(max {mn3, nm3}). mn3 term comes from the row based interdigitation part of the

algorithm as in Section 3.2 and nm3 is adapted for the column based interdigitation

part.
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3.6. Subproblem for Dual MLC with Consecutiveness Constraint

In dual MLC, there are two separate orthogonal layers. We call the left-right leaf setting

as the horizontal layer and top-bottom leaf setting as the vertical layer. Note that LSO

problem of the dual MLC is NP-hard when minimizing BOT (Blin et al. 2014). Hence,

we formulate the SP(λ) corresponding to dual MLC as an integer programming problem.

Since an aperture is formed by the combination of layers, two layers must be

represented in the formulation and the shape matrix must be constructed from their

intersection. We define four types of decision variables to represent the leaf positions.

These decision variables are equal to 1 if bixel (i, j) is covered by the corresponding

leaf, and 0 otherwise, ∀i = 1, . . . ,m, j = 1, . . . , n. Lij represents the left leaf, Rij the

right leaf, Tij the top leaf and Bij the bottom leaf. We also have two more decision

variables to represent whether bixel (i, j) is exposed vertically, Vij, or horizontally, Hij,

∀i = 1, . . . ,m, j = 1, . . . , n.

We formulate the SP(λ) as:

min
m∑
i=1

n∑
j=1

−λijSij (3.7)

s.t. Sij ≥ Vij +Hij − 1 ∀i = 1, . . . ,m ∀j = 1, . . . , n (3.8)

Sij ≤ Vij ∀i = 1, . . . ,m ∀j = 1, . . . , n (3.9)

Sij ≤ Hij ∀i = 1, . . . ,m ∀j = 1, . . . , n (3.10)

Lij +Rij +Hij = 1 ∀i = 1 . . . ,m ∀j = 1, . . . , n (3.11)

Lij ≤ Li(j−1) ∀i = 1, . . . ,m ∀j = 2, . . . , n (3.12)

Rij ≤ Ri(j+1) ∀i = 1, . . . ,m ∀j = 1, . . . , n− 1 (3.13)

Tij +Bij + Vij = 1 ∀i = 1, . . . ,m ∀j = 1, . . . , n (3.14)

Tij ≤ T(i−1)j ∀i = 2, . . . ,m ∀j = 1, . . . , n (3.15)

Bij ≤ B(i+1)j ∀i = 1, . . . ,m− 1 ∀j = 1, . . . , n (3.16)

Lij, Rij, Tij, Bij ∈ {0, 1} ∀i = 1, . . . ,m ∀j = 1, . . . , n (3.17)

Sij, Vij, Hij ≥ 0 ∀i = 1, . . . ,m ∀j = 1, . . . , n (3.18)

The constraint (3.8) ensures that the bixel (i,j) is exposed if it is open in both horizontal

and vertical layers. The constraints (3.9) and (3.10) ensure that if the bixel (i,j)

is blocked in one of the layers, then it must be blocked in the shape matrix. The

constraints (3.11) and (3.14) state that bixel (i,j) can either be exposed horizontally

(resp. vertically) or covered by left (resp. top) or right (resp. bottom) leaf. The

constraints (3.12) and (3.13) enforce that if bixel (i,j) is covered by the left leaf (resp.

right leaf), then the left of that bixel (resp. right of that bixel) must also be covered by

the same leaf. Constraints (3.15) and (3.16) apply the corresponding restrictions on top

and bottom leaves. Finally, constraints (3.17) and (3.18) define variable types. Note

that Sij, Vij and Hij variables do not need to be defined as binary, since they will take

binary values if Lij, Rij, Tij and Bij variables are binary.
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3.7. Subproblem for Freeform Collimator

Freeform collimator is a theoretical collimator that can form any possible aperture shape

by opening or closing each bixel independently. Therefore, the SP(λ) of the freeform

collimator has no constraints. As solution approach, we employ a simple logic. If

−λij < 0, then Sij = 1; meaning that bixel (i,j) is open. Else, Sij = 0; meaning that

bixel (i,j) is closed. Since any segment shape is possible, this simple algorithm gives an

optimal solution to the SP(λ) of freeform collimator in O(mn) time.

4. Results

We have implemented our column generation algorithm for all cases, using CPLEX

12.5, running on a Windows 7 PC with a 3.60 GHz CPU and 32 GB RAM. Our test

problem instances are gathered from the treatment plans of eleven head-and-neck cancer

patients. Each patient is treated using five beam angles. First 25 of this data set have

been used in various articles such as Taşkın et al. (2012), Taşkın & Cevik (2013), Mason

et al. (2012), Taşkın et al. (2010) and Ernst et al. (2009). The maximum intensity value

for all 55 instances is L = 20.

The BOT results for different collimator types can be found at Table 1. The test

instance characteristics are summarized in the first three columns of the table. The

column “Name” shows the instance name. “m” shows the number of rows and “n”

the number of columns of the given intensity matrix. “Free” represents the BOT value

of virtual freeform collimator (Section 3.7), “Dual” represents the BOT value of dual

MLC under consecutiveness constraint (Section 3.6), “Reg Cons” regular MLC under

consecutiveness constraint (Section 3.1), “Reg Int” regular MLC under interdigitation

constraint (Section 3.2), “Rect” collimators that can only form rectangular shapes

(Section 3.3), “Rot Cons” rotating MLC under consecutiveness constraint (Section 3.4)

and “Rot Int” rotating MLC under interdigitation constraint (Section 3.5), respectively.

Freeform collimator always yields the minimum BOT value as expected. Therefore,

for each case we find the ratio of BOT value to freeform BOT value and call those

proportions “τFree, ” “τDual, ” “τReg Cons, ” “τReg Int, ” “τRect, ” “τRot Cons” and “τRot Int, ”

respectively. The last rows of the Table 1, named as “min τ, ” “avg τ” and “max τ, ”

shows the minimum, average and maximum ratios for the collimator technologies to the

freeform collimator.

Table 1 indicates that the virtual freeform collimator yields the smallest BOT results

among all collimators and the minimum possible BOT value is L = 20 as expected.

Furthermore, since rectangles are very simple shapes, it is also not surprising that the

collimators that can only form rectangular shapes have the largest BOT values. On the

average, the closest value to minimum BOT found by rectangular collimators is 8.61

times the minimum BOT value found by freeform collimator. However, it is interesting

to see that the dual MLC matches the freeform BOT values for 51 out of 55 instances.

It is not easy to evaluate the differences in the efficiency of using different collimator
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Table 1. Beam-on time for different collimator types.

Name m n Free τFree Dual τDual Reg Cons τReg Cons Reg Int τReg Int Rect τRect Rot Cons τRot Cons Rot Int τRot Int

case1beam1 15 14 20 1 20.00 1.00 40 2.00 51 2.55 176.00 8.80 25.00 1.25 34.00 1.70

case1beam2 11 15 20 1 20.00 1.00 34 1.70 37 1.85 121.00 6.05 20.00 1.00 21.50 1.08

case1beam3 15 15 20 1 20.00 1.00 31 1.55 36 1.80 147.00 7.35 20.00 1.00 28.00 1.40

case1beam4 15 15 20 1 20.00 1.00 33 1.65 34 1.70 136.00 6.80 24.00 1.20 27.00 1.35

case1beam5 11 15 20 1 20.00 1.00 34 1.70 40 2.00 115.00 5.75 20.00 1.00 25.00 1.25

case2beam1 18 20 20 1 20.00 1.00 34 1.70 40 2.00 194.00 9.70 20.50 1.03 29.00 1.45

case2beam2 17 19 20 1 20.33 1.02 41 2.05 48 2.40 207.00 10.35 20.33 1.02 27.65 1.38

case2beam3 18 18 20 1 20.00 1.00 49 2.45 52 2.60 237.00 11.85 23.00 1.15 32.00 1.60

case2beam4 18 18 20 1 20.00 1.00 51 2.55 52 2.60 258.00 12.90 20.00 1.00 27.88 1.39

case2beam5 17 18 20 1 20.00 1.00 39 1.95 40 2.00 207.00 10.35 21.00 1.05 26.50 1.33

case3beam1 22 17 20 1 20.33 1.02 41 2.05 43 2.15 266.00 13.30 26.50 1.33 27.60 1.38

case3beam2 15 19 20 1 20.00 1.00 46 2.30 49 2.45 151.00 7.55 20.00 1.00 21.43 1.07

case3beam3 20 17 20 1 20.00 1.00 49 2.45 55 2.75 278.00 13.90 27.67 1.38 31.17 1.56

case3beam4 19 17 20 1 20.00 1.00 43 2.15 57 2.85 287.00 14.35 23.00 1.15 28.40 1.42

case3beam5 15 19 20 1 20.00 1.00 34 1.70 51 2.55 182.00 9.10 20.00 1.00 27.78 1.39

case4beam1 19 22 20 1 20.67 1.03 40 2.00 62 3.10 275.00 13.75 23.00 1.15 42.50 2.13

case4beam2 13 24 20 1 20.00 1.00 69 3.45 73 3.65 232.00 11.60 21.50 1.08 27.00 1.35

case4beam3 18 23 20 1 20.00 1.00 39 1.95 40 2.00 189.00 9.45 24.00 1.20 26.00 1.30

case4beam4 17 23 20 1 20.00 1.00 42 2.10 51 2.55 235.00 11.75 20.43 1.02 28.00 1.40

case4beam5 12 24 20 1 20.00 1.00 73 3.65 77 3.85 260.00 13.00 21.50 1.08 27.06 1.35

case5beam1 15 16 20 1 20.00 1.00 26 1.30 41 2.05 158.00 7.90 20.00 1.00 27.50 1.38

case5beam2 13 17 20 1 20.00 1.00 41 2.05 65 3.25 156.00 7.80 20.00 1.00 25.57 1.28

case5beam3 14 16 20 1 20.00 1.00 34 1.70 38 1.90 180.00 9.00 20.00 1.00 25.33 1.27

case5beam4 14 16 20 1 20.00 1.00 40 2.00 42 2.10 145.00 7.25 20.50 1.03 23.33 1.17

case5beam5 12 17 20 1 20.00 1.00 44 2.20 51 2.55 147.00 7.35 20.00 1.00 23.00 1.15

case6beam1 13 15 20 1 20.00 1.00 36 1.80 40 2.00 129.00 6.45 26.00 1.30 27.50 1.38

case6beam2 8 15 20 1 20.00 1.00 33 1.65 45 2.25 94.00 4.70 20.00 1.00 20.00 1.00

case6beam3 10 17 20 1 20.00 1.00 45 2.25 49 2.45 160.00 8.00 23.50 1.18 26.50 1.33

case6beam4 10 16 20 1 20.00 1.00 35 1.75 53 2.65 150.00 7.50 21.33 1.07 28.00 1.40

case6beam5 8 15 20 1 20.00 1.00 35 1.75 40 2.00 88.00 4.40 20.00 1.00 23.00 1.15

case7beam1 16 15 20 1 20.00 1.00 39 1.95 66 3.30 256.00 12.80 25.50 1.28 47.00 2.35

case7beam2 14 17 20 1 20.00 1.00 38 1.90 43 2.15 130.00 6.50 20.00 1.00 22.50 1.13

case7beam3 15 16 20 1 20.00 1.00 48 2.40 49 2.45 161.00 8.05 23.00 1.15 26.00 1.30

case7beam4 15 16 20 1 20.00 1.00 31 1.55 32 1.60 139.33 6.97 20.00 1.00 21.25 1.06

case7beam5 17 17 20 1 20.00 1.00 41 2.05 42 2.10 149.00 7.45 20.00 1.00 23.33 1.17

case8beam1 17 14 20 1 20.00 1.00 30 1.50 34 1.70 173.00 8.65 21.50 1.08 32.00 1.60

case8beam2 15 15 20 1 20.00 1.00 38 1.90 52 2.60 111.00 5.55 20.00 1.00 21.50 1.08

case8beam3 17 14 20 1 20.00 1.00 35 1.75 36 1.80 173.67 8.68 23.50 1.18 26.00 1.30

case8beam4 16 14 20 1 20.00 1.00 33 1.65 39 1.95 144.00 7.20 20.00 1.00 23.50 1.18

case8beam5 15 15 20 1 20.00 1.00 38 1.90 39 1.95 119.00 5.95 21.00 1.05 28.00 1.40

case9beam1 14 13 20 1 20.00 1.00 33 1.65 44 2.20 154.00 7.70 24.50 1.23 26.25 1.31

case9beam2 13 14 20 1 20.00 1.00 35 1.75 51 2.55 135.00 6.75 20.00 1.00 26.00 1.30

case9beam3 14 13 20 1 20.00 1.00 34 1.70 35 1.75 127.00 6.35 20.00 1.00 25.00 1.25

case9beam4 14 14 20 1 20.00 1.00 38 1.90 39 1.95 139.00 6.95 20.00 1.00 23.07 1.15

case9beam5 14 14 20 1 20.00 1.00 42 2.10 47 2.35 134.00 6.70 20.00 1.00 26.00 1.30

case10beam1 17 25 20 1 20.57 1.03 46 2.30 78 3.90 348.00 17.40 25.75 1.29 34.75 1.74

case10beam2 10 26 20 1 20.00 1.00 66 3.30 78 3.90 179.00 8.95 20.67 1.03 29.00 1.45

case10beam3 18 24 20 1 20.00 1.00 45 2.25 47 2.35 184.00 9.20 20.00 1.00 22.00 1.10

case10beam4 15 24 20 1 20.00 1.00 44 2.20 57 2.85 211.00 10.55 20.00 1.00 21.25 1.06

case10beam5 13 27 20 1 20.00 1.00 48 2.40 54 2.70 196.00 9.80 20.00 1.00 23.25 1.16

case11beam1 12 14 20 1 20.00 1.00 39 1.95 39 1.95 168.00 8.40 25.00 1.25 26.50 1.33

case11beam2 12 13 20 1 20.00 1.00 27 1.35 27 1.35 103.50 5.18 20.00 1.00 20.00 1.00

case11beam3 11 13 20 1 20.00 1.00 29 1.45 29 1.45 93.00 4.65 20.00 1.00 20.00 1.00

case11beam4 12 13 20 1 20.00 1.00 27 1.35 27 1.35 106.00 5.30 20.00 1.00 20.00 1.00

case11beam5 9 14 20 1 20.00 1.00 29 1.45 29 1.45 82.00 4.10 20.00 1.00 20.00 1.00

min τ 1 1.00 1.30 1.35 4.10 1.00 1.00

avg τ 1 1.00 1.99 2.33 8.61 1.08 1.32

max τ 1 1.03 3.65 3.90 17.40 1.38 2.35

technologies from Table 1. Therefore, to visualize the results, we compare them by using

a performance profile chart (Dolan & Moré 2002). We use BOT value of the treatment

as the performance metric. Figure 3 shows Ps(τ), which is the percentage of times that

collimator system s can find BOT values that are within factor τ of the minimum BOT.

For example, if we choose τ = 2 from Table 1, for “Rot Int, ” 53 out of 55 instances

have τ ≤ 2, hence Ps(τ = 2) = 0.96. In other words, “Rot Int” can find BOT values

in between 20 and 40 (= 2 × 20) in 96% of the cases. Similarly if we choose τ = 3,

for “Reg Int, ” 48 out of 55 instances have τ ≤ 3, hence Ps(τ = 3) = 0.87. That is

to say that “Reg Int” can find BOT values in between 20 and 60 (= 3 × 20) in 87%
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Figure 3. The performance profile chart for the BOT values used as performance

metric.

of the cases. Note that Ps(1) shows the percentage of times that collimator system s

can find the overall minimum BOT value. From τ = 1 line of the Figure 3, we see

that all of the minimum BOT values are found by the freeform collimator, which is

expected. Dual MLC performs very similar to freeform collimator. Then rotating MLC

under consecutiveness constraint follows them in terms of BOT efficiency. It matches

the minimum for 28 instances. Rotating MLC under interdigitation constraint matches

the minimum for only 5 instances and the rest of the collimator systems could not find

the overall minimum BOT value for any of the instances. The worst performance on the

BOT values is obtained by the regular MLC under rectangular constraint. As it can be

seen from Table 1, its minimum deviation from the minimum BOT value is 4.10, which

is larger than the maximum deviation of other collimators.

To investigate the mean and median behaviour of the results, we create a box plot

in Figure 4. In the box plot, upper and lower edges of the boxes represent the 25%

and 75% quartiles of the data. The lines extending vertically from the boxes indicates

variability outside the quartiles. The top and the bottom of the lines show the maximum

and minimum data value excluding outliers. Outliers are plotted with “x” symbol. If

the distance of the data point from the box exceeds the difference between the 25% and

75% quartiles of the data, the point is labeled as outlier. The circles in the boxes show

the mean values and the lines show the median values of the instance results. Dual

MLC and freeform collimator have the minimum median, and almost identical mean

values. Rotating MLC under consecutiveness gives similar results as them, but it has
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Figure 4. Box plot for the BOT results of the cases.

several outliers. The significant difference between the results of regular MLC under

rectangular constraint and the others is clearly visible in Figure 4. The minimum value

found by the regular MLC under rectangular constraint is larger than the maximum

value found by the others. Additionally, mean value of regular MLC under rectangular

constraint is higher than the median value due to the presence of an extreme outlier

(case10beam1, whose BOT value is 348).

5. Summary and Conclusion

In this paper, we investigated the leaf sequencing optimization problem with minimum

beam-on time objective. We compared the efficiency of using different collimator

technologies under different restrictions. We focused on the testing of regular, rotating

and dual multileaf collimator systems under different combinations of consecutiveness,

interdigitation and rectangular constraints and a virtual freeform collimator. Our aim

was to generate a comparison basis for them and formulate a general leaf sequencing

optimization problem with minimum beam on time objective. We applied column

generation approach to deal with the dimensionality of the formulation. In our

column generation procedure, the subproblem structure changes depending on the used

machinery. Hence, we generated seven different subproblems to solve each collimator

case.

Our tests on clinical data show that the dual MLC under consecutiveness constraint

acts almost as well as a virtual freeform collimator in terms of beam-on time values.

This result is due to the fact that dual MLC is the most flexible collimator system after
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the freeform collimator. Based on our computational study, the efficiency ranking is

as follows; rotating MLC under consecutiveness, rotating MLC under interdigitation,

regular MLC under consecutiveness, regular MLC under interdigitation and, finally,

regular MLC under rectangular constraint. Collimators that can only form rectangular

shapes yield very high results in terms of beam-on time. According to our analysis,

it can be concluded that as the complexity of the collimator system increases and the

restrictions on the system decreases, lower beam-on time results are obtained, and the

dual MLC is very close to the ultimate limit.

Note that our main goal in this paper is to compare various MLCs from a

delivery efficiency point of view. To this end, we focused on the leaf sequencing

optimization stage of IMRT, where we quantified delivery efficiency by calculating the

required BOT to deliver a given fluence map via various MLCs. Our approach can be

extended to compare various MLCs in terms of the plan generated via Direct Machine

Parameter Optimization (DMPO)/Direct Aperture Optimization (DAO), which also

allow the doctor’s objectives to be incorporated into the optimization model. Similarly,

approximate intensity matrix decomposition approaches aim to balance dose delivery

precision and efficiency. Our approach can also be extended to compare MLCs within

an approximate decomposition setting as a future research direction.
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