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We investigate the Maximum Induced Matching problem (MIM), which is the problem of finding an induced

matching having the largest cardinality on an undirected graph. The problem is known to be NP-hard for

general graphs. We first propose a vertex-based integer programming formulation for MIM, which is more

compact compared to an edge-based formulation found in the literature. We also introduce the Maximum

Weight Induced Matching problem (MWIM), which generalizes MIM so that vertices and edges have weights.

We adapt the edge-based formulation to MWIM, and propose a quadratic programming formulation of

MWIM based on our vertex-based formulation. We then linearize our quadratic programming formulation,

and devise a Benders decomposition algorithm that exploits a special structure of the linearized formulation.

We also propose valid inequalities and formulation tightening procedures to improve the efficiency of our

approach. Our computational tests on a large suite of randomly generated graphs show that our vertex-based

formulation and decomposition approach significantly improve the solvability of MIM and MWIM, especially

on dense graphs.

Key words : Integer programming, Benders decomposition, Maximum induced matching, Distance-2

matching, Strong matching

History :

1. Introduction

For a given graph G= (V,E), an induced matching is a matching such that no two edges

in the matching are joined by an edge of G. In other words, an induced matching is a

matching that forms an induced subgraph. In Figure 1, the edge set {{1,5},{6,7},{4,8}}

is an induced matching since no two edges in the set are joined by another edge of G. Each

induced matching in G corresponds to an independent set of vertices in the square of the
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Figure 1 An example of induced matching

line graph of G, denoted by [L(G)]2. Similarly, each independent set of vertices in [L(G)]2

corresponds to an induced matching in G (Cameron 1989).

The size (or cardinality) of an induced matching is defined as the number of edges in

the induced matching. The Maximum Induced Matching problem (MIM) aims to find an

induced matching having the largest cardinality. MIM is also related with strong matching

(Golumbic and Laskar 1993), maximum distance-2 matching (Balakrishnan et al. 2004)

and risk-free marriage problems (Stockmeyer and Vazirani 1982). It is used as a sub-

task in finding a strong edge coloring, an edge-coloring in which each color class is an

induced matching (Duckworth et al. 2002). In practice, induced matchings are heavily

used in communication industry to obtain secure communication channels (Christou and

Vassilaras 2013). It is also applied to model the problem of determining the maximum

number of concurrent transmissions at media access (MAC) layer in an ad-hoc wireless

network (Balakrishnan et al. 2004).

MIM is NP-hard for general graphs (Cameron 1989, Stockmeyer and Vazirani 1982).

However, it is polynomial-time solvable for some special graphs such as trees (Fricke

and Laskar 1992), chordal and interval graphs (Cameron 1989), weakly chordal graphs

(Cameron et al. 2003), and circular arc graphs (Golumbic and Laskar 1993). Various

approximation algorithms for solving MIM in general graphs have been proposed (see,

e.g., Duckworth et al. (2005), Orlovich et al. (2008)). Moser and Sikdar (2009), Dabrowski

et al. (2013), Chang et al. (2015) investigate the parametrized complexity of the prob-

lem for some restricted graph classes. Vassilaras and Christou (2011) develop an integer

programming-based algorithm to solve the problem in unit disk graphs and compare their

exact solutions to solutions obtained by a greedy algorithm by Balakrishnan et al. (2004).

We review their edge-based integer programming formulation in Section 2. Christou and

Vassilaras (2013) show that this formulation can be equivalently converted into maximum

2-packing problem on the line graph of G. In their formulation, the number of decision

variables depends on the number of edges, which is O(|V |2) for dense graphs.



Ahat, Ekim, and Taşkın: Integer Programming Formulations and Benders Decomposition for the Maximum Induced Matching Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (JOC-2016-03-OA-049) 3

In this paper, we first give a vertex-based binary integer programming formulation for

MIM, in which the number of decision variables and constraints depends on the number

of vertices in the graph (O(|V |)). We then generalize the problem to graphs in which

each vertex has a weight, and the objective is to maximize the total weight of saturated

vertices in an induced matching. We call the resulting problem Maximum Vertex-Weighted

Induced Matching problem (MVWIM). Similarly, in the Maximum Edge-Weighted Induced

Matching problem (MEWIM), we assume that edges have weights and the total edge weight

in an induced matching is to be maximized. We adapt Vassilaras and Christou (2011)’s

edge-based formulation and our vertex-based formulation for MIM to solve MVWIM and

MEWIM.

In the Maximum Weight Induced Matching problem (MWIM), we consider graphs hav-

ing both edge and vertex weights. The aim is to maximize the total weight of saturated

vertices and selected edges in an induced matching. We formulate MWIM as a quadratic

programming problem. We then linearize our formulation, and develop a Benders decompo-

sition approach to solve the problem to optimality. Our decomposition strategy explicitly

considers vertex weights and seeks an optimal induced matching by solving a master prob-

lem, and calculates the corresponding edge weight by solving a subproblem. We investigate

the subproblem’s structure and devise an efficient algorithm to generate Benders cuts.

The remainder of this paper is organized as follows. In Section 2, we introduce Vassi-

laras and Christou (2011)’s edge-based formulation and our vertex-based formulation for

MIM. We then adapt these formulations to solve MVWIM, MEWIM and MWIM. Section

3 describes our Benders decomposition approach for solving MWIM. We develop valid

inequalities and formulation tightening procedures to improve the efficiency of our decom-

position algorithm in Section 4. We compare the efficacy of these algorithms in Section 5

on a suite of randomly generated graphs. Finally, we conclude our paper in Section 6.

2. Problem Formulations
2.1. Maximum Induced Matching Problem (MIM)

Vassilaras and Christou (2011) introduced a binary integer programming formulation for

MIM. LetG= (V,E) be an undirected graph with vertex set V and edge set E. In Vassilaras

and Christou (2011)’s formulation, each edge is represented by a binary decision variable

yij, which takes value 1 if edge {i, j} ∈E is selected in a maximum induced matching, and
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0 otherwise. Let Nij ⊆E be the set of edges that are adjacent to edge {i, j}. Then, their

formulation for MIM is as follows:

(VC2011): max
∑
{i,j}

∈Eyij (1a)

s.t. yij +
∑

(k,l)∈Nij

ykl ≤ 1 ∀ {i, j} ∈E (1b)

yij ∈ {0,1} ∀ {i, j} ∈E (1c)

The objective function (1a) maximizes the number of selected edges. Constraints (1b)

enforce the condition that if an edge {i, j} ∈ E is selected (yij = 1), none of its adjacent

edges can be selected (all ykl = 0 for {k, l} ∈Nij), and if it is not selected (yij = 0), at most

one of its adjacent edges can be selected. These constraints guarantee that the selection is

an induced matching in G. The number of binary variables in this formulation is propor-

tional to the number of edges in the graph, which is O(|V |2) for dense graphs. Therefore,

as we demonstrate in Section 5, this formulation cannot be solved efficiently for graphs

having a large number of edges.

Our key observation s that the set of saturated vertices uniquely identifies an induced

matching. Therefore, instead of formulating MIM based on edges, one can focus on the ver-

tices and decide which vertices will be saturated in an optimal induced matching. Selected

edges in the induced matching can easily be deduced from the set of saturated vertices.

In our vertex-based formulation, a binary variable xi takes value 1 if the corresponding

vertex i∈ V is saturated by the induced matching, and 0 otherwise. Let N(i)⊂ V represent

the set of vertices that are adjacent to vertex i∈ V . Then, MIM can be formulated as:

(MIM): max
∑
i∈V

xi/2 (2a)

s.t. xi ≤
∑

j∈N(i)

xj ∀ i∈ V (2b)

∑
j∈N(i)

xj ≤ (|N(i)| − 1)(1−xi) + 1 ∀ i∈ V (2c)

xi ∈ {0,1} ∀ i∈ V . (2d)

The objective function (2a) maximizes the number of saturated vertices (divided by 2 to

obtain the number of edges in the induced matching). Constraints (2b) and (2c) ensure that
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if vertex i ∈ V is saturated (xi = 1), exactly one of its adjacent vertices is also saturated.

Otherwise (xi = 0), (2b) and (2c) are redundant. Note that the number of binary variables

and the number of constraints depend on the number of vertices in the graph (O(|V |)),

and are not affected by the density of the graph in our formulation.

2.2. Maximum Vertex-Weighted Induced Matching Problem (MVWIM)

In this section we extend previous formulations for MIM to solve the maximum vertex-

weighted induced matching problem (MVWIM), in which each vertex i ∈ V has a weight

ci and the objective is to maximize the total weight of saturated vertices in an induced

matching. Note that MIM is a special case of MVWIM where ci = 1/2 for all i ∈ V . Our

vertex-based model (MIM) can be reformulated to solve MVWIM simply by changing the

objective function (2a) as follows:

max
∑
i∈V

cixi. (3)

Vassilaras and Christou’s formulation (VC2011) has no decision variable representing

the saturated vertices. To reformulate their model to solve MVWIM, we define wij = ci +cj

for all {i, j} ∈E, where wij represents weight of edge {i, j}. With this transformation, an

instance of MVWIM becomes an instance of MEWIM, and an optimal solution can be

found using the models given in the following section.

2.3. Maximum Edge-Weighted Induced Matching Problem (MEWIM)

In the maximum edge-weighted induced matching problem (MEWIM), we assume that

each edge {i, j} ∈E has a weight wij and the sum of edge weights in an induced matching

is maximized. Note that MIM is a special case of MEWIM where wij = 1 for all {i, j} ∈E.

Since Vassilaras and Christou (2011) define a decision variable to represent an edge, we

can reformulate their model (VC2011) by replacing the objective function (1a) with (4).

The constraint set remains the same.

max
∑
{i,j}∈E

wijyij (4)

In our formulation (MIM), there is no decision variable representing the selected edges.

To reformulate our model to solve MEWIM instances, we observe that an edge {i, j} ∈E

is selected if and only if both of its end-vertices are saturated (xi = xj = 1). We replace the
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objective function (2a) with (5), which maximizes the total weight of selected edges. With

this transformation, our formulation becomes a quadratic programming problem.

max
∑
{i,j}∈E

wijxixj (5)

2.4. Maximum Weight Induced Matching Problem (MWIM)

In the Maximum Weight Induced Matching problem (MWIM) we consider graphs having

weights on both edges and vertices. As before, let wij represent the weight of edge {i, j} ∈

E, and ci represent the weight of vertex i ∈ V . MWIM seeks an induced matching that

maximizes the total weight of selected edges and saturated vertices. We can reformulate

Vassilaras and Christou’s model (VC2011) as:

(VC2011 MWIM): max
∑
{i,j}∈E

(wij + ci + cj) yij (6a)

s.t. yij +
∑

(k,l)∈Nij

ykl ≤ 1 ∀ {i, j} ∈E (6b)

yij ∈ {0,1} ∀ {i, j} ∈E (6c)

Our vertex-based formulation for MWIM can be obtained by modifying the objective

function of (MIM):

(MWIM QP): max
∑
{i,j}∈E

wijxixj +
∑
i∈V

cixi (7a)

s.t. xi ≤
∑

j∈N(i)

xj ∀ i∈ V (7b)

∑
j∈N(i)

xj ≤ (|N(i)| − 1)(1−xi) + 1 ∀ i∈ V (7c)

xi ∈ {0,1} ∀ i∈ V (7d)

Note that (MWIM QP) is a quadratic programming problem. However, we can linearize

it by defining a new binary decision variable yij, which takes value 1 if edge {i, j} ∈E is

selected in an optimal solution, and 0 otherwise. Our linearized formulation for MWIM is

as follows:

(MWIM): max
∑
{i,j}∈E

wijyij +
∑
i∈V

cixi (8a)
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s.t. xi ≤
∑

j∈N(i)

xj ∀ i∈ V (8b)

∑
j∈N(i)

xj ≤ (|N(i)| − 1)(1−xi) + 1 ∀ i∈ V (8c)

yij ≤ xi ∀ {i, j} ∈E (8d)

yij ≤ xj ∀ {i, j} ∈E (8e)

yij ≥ xi +xj − 1 ∀ {i, j} ∈E (8f)

xi ∈ {0,1} ∀ i∈ V (8g)

yij ∈ {0,1} ∀ {i, j} ∈E (8h)

The objective function (8a) maximizes the sum of total edge and vertex weights. Con-

straints (8b) and (8c) guarantee that the selection is an induced matching in G. Constraints

(8d)–(8f) ensure that an edge {i, j} ∈E is selected in an optimal solution (yij = 1) if and

only if both of its end-vertices are saturated by the matching (xi = xj = 1). We observe

that our formulation is valid even if wij or ci values are negative. We also observe that

y-variables can be relaxed as y ≥ 0 since (8d)–(8g) ensure that y-variables will take on

binary values in an optimal solution.

3. Benders Decomposition for MWIM

Note that model (MWIM) contains |V |+ |E| binary decision variables. Even though the

y-variables can be relaxed as y≥ 0, the number of constraints is O(|V |+ |E|). Thus, it may

be computationally difficult to solve (MWIM) for large or dense graphs. In this section,

we focus on deriving a Benders decomposition algorithm to solve (MWIM).

Our decomposition approach first seeks a feasible induced matching using a master

problem, which contains the x-variables. We then check whether the induced matching

found by the master problem provides an optimal selection of edges using a subproblem,

which only contains the y-variables. Let us first reformulate the problem in terms of x-

variables and an additional continuous variable t, which predicts the maximum edge weight

that can be obtained with the selection of x-variables, as follows:

(MP ): max
∑
i∈V

cixi + t (9a)

s.t. xi ≤
∑

j∈N(i)

xj ∀ i∈ V (9b)
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j∈N(i)

xj ≤ (|N(i)| − 1)(1−xi) + 1 ∀ i∈ V (9c)

t≤UB (9d)

xi ∈ {0,1} ∀ i∈ V , (9e)

where UB is an upper bound on the weight of any induced matching. This formula-

tion contains significantly fewer decision variables and constraints than the original model

(MWIM), which is advantageous in terms of computational effort.

In (MP ), constraints (9b) and (9c) provide a feasible induced matching. Since the deci-

sion variable t predicts the maximum total edge weight in the induced matching, a naive

value for UB can be calculated by summing up all positive edge weights. We discuss ways

of calculating tighter values for UB, and propose some valid inequalities in Section 4.1.

After solving (MP ) and finding a feasible vertex selection x̂, the corresponding edge

selection and the total edge weights of these edges can be found by solving the following

subproblem (SP (x̂)):

(SP (x̂)) : max
∑
{i,j}∈E

wijyij (10a)

s.t yij ≤ x̂i ∀ {i, j} ∈E (αij) (10b)

yij ≤ x̂j ∀ {i, j} ∈E (βij) (10c)

yij ≥ x̂i + x̂j − 1 ∀ {i, j} ∈E (γij) (10d)

yij ∈ {0,1} ∀ {i, j} ∈E (10e)

In this formulation, y-variables can be relaxed as y ≥ 0, which makes the subproblem

a linear programming (LP) problem. Furthermore, we do not need to solve it as an LP

since the solution can be obtained trivially by inspection for any given x̂-vector. Note that

SP (x̂) is always feasible and its feasible region is bounded. Hence, the dual of SP (x̂) is

always feasible and bounded. Let αij, βij and γij be dual multipliers associated with the

constraints (10b), (10c) and (10d) in SP (x̂), respectively. The dual formulation of the

subproblem for a given x̂ is given below:

(DSP (x̂)) : min
∑
{i,j}∈E

(αijx̂i +βijx̂j + γij(x̂i + x̂j − 1)) (11a)

s.t αij +βij + γij ≥wij ∀ {i, j} ∈E (11b)



Ahat, Ekim, and Taşkın: Integer Programming Formulations and Benders Decomposition for the Maximum Induced Matching Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (JOC-2016-03-OA-049) 9

αij ≥ 0 ∀ {i, j} ∈E (11c)

βij ≥ 0 ∀ {i, j} ∈E (11d)

γij ≤ 0 ∀ {i, j} ∈E (11e)

Note that the feasible region of DSP (x̂) does not depend on the value of x̂, since x̂

only appears in the objective function. We observe that DSP (x̂) is separable over E. Let

0≤ θij ≤ 1 be a constant that represents the proportion of wij that is allocated to αij in

an optimal solution. Then, an optimal solution for SP (x̂) and DSP (x̂) can be found using

Algorithm 1 for a given x̂-vector:

Algorithm 1 Solution of SP (x̂) and DSP (x̂)

Require: A graph G= (V,E), a binary vector x̂ of size |V | and 0≤ θij ≤ 1 for all {i, j}

Ensure: A solution of SP (x̂) and DSP (x̂)

1: For each edge {i, j} ∈E,

2: if wij ≥ 0 then

3: if x̂i < x̂j then

4: set yij = x̂i, αij =wij, βij = 0, γij = 0

5: else if x̂i > x̂j then

6: set yij = x̂j, αij = 0, βij =wij, γij = 0

7: else

8: set yij = x̂i, αij = θijwij , βij = (1− θij)wij and γij = 0

9: end if

10: else

11: if x̂i + x̂j < 1 then

12: set yij = 0, αij = βij = γij = 0

13: else

14: set yij = x̂i + x̂j − 1, αij = βij = 0 and γij =wij

15: end if

16: end if

Proposition 1. A solution of SP (x̂) and DSP (x̂) obtained using Algorithm 1 satisfies

linear programming optimality conditions.
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Proof Note that for each (α,β, γ) solution of Algorithm 1, αij +βij +γij ≥wij and they

satisfy non-negativity/non-positivity conditions. Therefore, given an x̂-vector, Algorithm

1 always produces dual feasible (α,β, γ) solutions.

For an edge {i, j} ∈ E, assume wij ≥ 0. If x̂i ≤ x̂j, yij = x̂i satisfies (10b)–(10d), hence it

is primal feasible. In this case, both SP (x̂) and DSP (x̂) have the same objective function

value, namely wijx̂i. If x̂i > x̂j, then yij = x̂j is a primal feasible solution and objective

function values of SP (x̂) and DSP (x̂) are both equal to wijx̂j.

Assume wij < 0. If x̂i + x̂j < 1, yij = 0 satisfies constraints (10b)–(10d). In this case, both

SP (x̂) and DSP (x̂) have objective function value equal to 0. Else, yij = x̂i + x̂j−1 satisfies

primal feasibility conditions, and objective function values of SP (x̂) and DSP (x̂) are both

wij(x̂i + x̂j−1). Thus, all linear programming optimality conditions are satisfied. Q.E.D.

Our Benders decomposition strategy first solves (MP ) to optimality, yielding a feasible

(x̂, t̂). We then solve DSP (x̂) using Algorithm 1 and calculate the total edge weight, which

we denote by t∗. If t̂ = t∗, then x̂ corresponds to an optimal induced matching. On the

other hand, if t̂ > t∗, we need to add a constraint to (MP ). Let (α̂, β̂, γ̂) be optimal dual

multipliers obtained by solving DSP (x̂). We add the following constraint to (MP ), and

re-solve in the next iteration to obtain a new candidate optimal solution:

t≤
∑
{i,j}∈E

(α̂ijxi + β̂ijxj + γ̂ij(xi +xj − 1)) (12)

Constraints (12) are called “Benders optimality cuts” since they are based on optimality

conditions of the subproblem. Since DSP (x̂) can have infinitely many solutions, the selec-

tion of θij parameters results in different cuts. Proposition 2 investigates the relationship

between θij and quality of the corresponding cut.

Proposition 2. For any value of θij and the corresponding (α̂, β̂, γ̂) vector obtained by

Algorithm 1, violation of optimality cut (12) is the same.

Proof For any optimality cut (12), the violation is

t−
∑
{i,j}∈E

(α̂ijx̂i + β̂ijx̂j + γ̂ij(x̂i + x̂j − 1)) = t− t∗, (13)

where t∗ is the current optimal objective function value for DSP (x̂). Thus, all optimality

cuts generated in this way have the same violation regardless of the value of (α̂, β̂, γ̂).

Q.E.D.
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In (MP ), we can create a decision variable ti for each vertex i ∈ V instead of a single

decision variable t. These ti-variables are used to predict the maximum edge weight that

can be obtained if we saturate vertex i. To incorporate this change, we simply replace the

objective function (9a) and constraint (9d) with the following objective function (14) and

constraints (15), respectively:

max
∑
i∈V

(ti / 2 + cixi) (14)

ti ≤UBi, (15)

where UBi is an upper bound on the value of ti. The maximum edge weight emanating

from vertex i constitutes a valid upper bound for ti. We discuss other valid inequalities for

ti-variables in Section 4.1. Our Benders decomposition procedure also needs to be adjusted

accordingly. Optimality cut (12) can also be decomposed so that multiple cuts can be

added in each iteration (one for each vertex i∈ V ):

ti ≤
∑

j∈N(i)

(α̂ijxi + β̂ijxj + γ̂ij(xi +xj − 1)) ∀i∈ V (16)

Our solution procedure for MWIM using Benders decomposition is summarized in Algo-

rithm 2.

4. Algorithmic and Modeling Improvements

4.1. Valid Inequalities

The initial optimal solution to the relaxation of (MP ), in which none of the Benders

optimality cuts (12) have yet been added, will set the t-variable equal its upper bound UB.

By tightening the value of UB and adding valid inequalities that relate x- and t-variables,

we can have smaller upper bound values for the objective function during initial iterations

of Algorithm 2, which can result in faster convergence.

To obtain a tighter upper bound for the t-variable, we will use the following observation:

for a graph G= (V,E), a matching can contain at most b|V |/2c edges. This is also valid

for any induced matching since an induced matching is also a matching in G. Based on

this observation, we can find an upper bound on the value of the t-variable. Since it is used

to predict the maximum edge weight of an induced matching in G, a numerical bound,

denoted by UB1, can be found by sorting all wij values and summing up the greatest
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Algorithm 2 MWIM Benders Decomposition

Require: A graph G= (V,E) having edge weights wij and vertex weights ci

Ensure: A maximum weight induced matching

1: Set LB =−∞ and UB =∞

2: Solve (MP ). Let (x̂, t̂) be a candidate optimal solution. Set UB = t̂ +
∑
i∈V

cix̂i (or set

UB =
∑
i∈V

(t̂i / 2 + cix̂i) for multiple ti version)

3: Obtain sum of weights of selected edges by DSP (x̂) using Algorithm 1, denoted by t∗.

Set LB = t∗+
∑
i∈V

cix̂i.

4: if UB =LB then

5: Current edge selection is a maximum weight induced matching of G, STOP.

6: else

7: Let (α̂, β̂, γ̂) denote an optimal solution of DSP (x̂).

8: Generate optimality cut(s) using (12) (or (16) for multiple ti version) with current

optimal dual solution (α̂, β̂, γ̂), add it (them) to (MP ). Go to step 2.

9: end if

(nonnegative) b|V |/2c of them. Therefore an initial bound on the t-variable can be written

as:

t≤UB1 (17)

Another key observation is that since any induced matching is also a matching, the sum

of edge weights of an induced matching is bounded by the maximum weight matching in

the graph. Therefore, we can find a tighter numerical bound on the t-variable, denoted

by UB2, by finding a maximum weight matching in the graph using Edmonds’ blossom

algorithm (Edmonds 1965). Then, the following inequality is valid for the t-variable and it

dominates (17) :

t≤UB2 (18)

Similarly, if we use multiple ti-variables in (MP ) instead of a single variable t, a numerical

bound for the sum of ti-variables can be written as:∑
i∈V

ti / 2≤UB2 (19)
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Another approach to find a valid inequality for the t-variable is as follows: for any vertex

i∈ V , if xi = 1 (i.e., if it is saturated by an induced matching), it can increase the objective

function value by at most by the maximum edge weight emanating from it and if xi = 0

(i.e., if it is not saturated by an induced matching), there is no increase in the objective

function value. Thus, the following inequality is valid for t:

t≤
∑
i∈V

max
j∈N(i)

{wij} xi / 2 (20)

Similarly, in the multiple ti version of (MP ), the only bound for ti-variable is UBi, which

is the maximum edge weight emanating from vertex i. In the formulation, ti-variables

represent the maximum edge weight that can be obtained by saturating vertex i. With a

similar argument, we observe that the following inequality is valid for ti:

ti ≤ max
j∈N(i)

{wij} xi (21)

4.2. Formulation Tightening

In (MIM) model, constraints (2c) are based on the observation that if a vertex i∈ V is not

saturated (xi = 0), we can saturate at most |N(i)| of its neighbors. However, it may not be

possible to saturate all of its neighbors in an induced matching. To obtain a tighter upper

bound for these constraints, we will use the following method to calculate the maximum

number of neighbors that can be saturated in a matching:

For any vertex i∈ V , let S =N(i) and S
′
=N(S)−{i}. We assign weights to the edges of

G such that all edges {{i, j} : i∈ S, j ∈ S} will have weight 2, {{i, j} : i∈ S, j ∈ S ′} will have

weight 1 and other edges will have weight 0. Figure 2 shows assignment of edge weights for

vertex i. Then, finding the maximum number of vertices in S saturated by a matching is

equivalent to finding a maximum weight matching in G, which can be found by weighted

version of Edmonds’ blossom algorithm (Edmonds 1965). If for each vertex i∈ V , we find

a maximum weight matching Mi and denote the sum of edge weights of this matching by

w(Mi), we can replace |N(i)| in constraints (2c) with w(Mi) and rewrite them as:

∑
j∈N(i)

xj ≤ (w(Mi)− 1)(1−xi) + 1 ∀ i∈ V (G) (22)
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Figure 2 An example of construction of a maximum weighted induced matching problem for vertex i

4.3. Single Branch-and-Bound Tree

In our Benders decomposition approach, we solve (MP ) to optimality at each iteration

and check whether it is an optimal solution or not using a subproblem. If not, we add

an optimality cut and re-solve it. Although new cuts may change the structure of the

branch-and-bound tree, we may need to revisit candidate solutions that were discarded

earlier. Hence, this process can be very expensive from a computational point of view.

Instead, we can interrupt the branch-and-bound solution process of (MP ) each time the

solver finds an integer solution x̂ (and t̂) and check whether an optimality cut (12) (or (16)

for multiple ti version) that is violated by the current integer solution can be generated.

If we can generate such an optimality cut, we reject the current solution, add the newly

generated cuts to the problem and resume the solution process. Otherwise, we accept

the current solution as the new incumbent and again resume the solution process. In our

computational tests, this approach consistently outperformed solving (MP ) to optimality

at each iteration and re-optimizing it. With this approach, we can solve the problem using

a single branch-and-bound tree that is tightened as necessary as opposed to repeatedly

generating a branch-and-bound tree in each iteration. Therefore, we avoid considerable

rework by never revisiting a branch-and-bound node and overlooking a truly superior

solution. A similar approach was also used in (Bodur et al. 2013, Taşkın and Cevik 2013).

5. Computational Results

To test the efficiency of formulations and improvements mentioned in previous sections,

we conducted a series of experiments. We executed all integer programming formulations
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using CPLEX 12.6.3 running on a Windows Server 2012 with a 2 GHz Intel Xeon CPU

and 46 GB RAM. We also used CPLEX’s callback functions to solve our model in a single

branch-and-bound tree as described in Section 4.3. We used LEMON Graph Library 1.2.4

(Dezső et al. 2011) to efficiently implement graph related data structures and algorithms.

Our base test data set contains randomly generated graph instances having expected edge

density (measured as D = 2|E|
|V |×(|V |−1)

) of 0.05, 0.2, 0.5 and 0.8, where |V | is within the

range [25–400]. To generate weighted instances we first generated random graphs as in the

unweighted case, and then assigned an integer weight uniformly distributed between 1 and

10 to each vertex and/or edge. We generated five problem instances for each problem size,

determined by the expected edge density and the number of vertices. Data sets used in

our tests are available online at www.ie.boun.edu.tr/~taskin/data/mwim_graphs.zip

For each problem size, we report the following statistics calculated over five random

instances:

• “Solved:” the number of problem instances solved to optimality within the allowed

time limit of 1800 seconds.

• “Gap:” the average final percentage optimality gap for all instances (calculated as

(UB−LB)/LB where UB denotes the upper bound and LB denotes the lower bound).

• “LP Gap:” the average percentage gap between the objective function value of LP

relaxation solution and the optimal objective function value (measured as ZLP−Z∗
Z∗

).

• “Time:” the average amount of time in seconds spent by each algorithm.

• “BB Node:” the average number of nodes processed within the given time limit in the

active branch-and-bound search.

In Table 1, we compare the performance of Vassilaras and Christou (2011)’s formula-

tion (VC2011) with our vertex-based formulation (MIM) given in Section 2.1. Also, we

investigate the effect of formulation tightening approach described in Section 4.2 (set of

columns titled “(MIM)-modified”). Here, “Time” column in (MIM)-modified also includes

the required time to calculate maximum weight matchings in the graph. In the table, “-”

shows that the corresponding method is unable to solve instances within the given time

limit.

We observe that for low-density instances (D= 0.05 and D= 0.2), (VC2011) has smaller

CPU time than (MIM) and (MIM)-modified. On the other hand, for moderate and high

densities (D = 0.5 and D = 0.8, respectively), (MIM) performs significantly faster and

www.ie.boun.edu.tr/~taskin/data/mwim_graphs.zip
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Table 1 Comparison of formulations for solving MIM
(VC 2011) (MIM) (MIM)-modified

D |V | Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes

0.05

25 5 0% 0% 0.1 0 5 0% 11% 0.1 0 5 0% 5% 0.2 0
50 5 0% 5% 0.2 0 5 0% 24% 0.5 18 5 0% 18% 0.6 0
75 5 0% 14% 1.6 2 5 0% 32% 3.7 962 5 0% 29% 3.9 973
100 5 0% 25% 5.1 153 5 0% 38% 18.9 35421 5 0% 37% 23.7 36900
125 5 0% 28% 47.8 5086 5 0% 34% 715.3 432856 5 0% 32% 786.8 386531
150 5 0% 38% 1187.1 155685 0 14% - 1800.0 329828 0 15% - 1800.0 398863
175 0 22% - 2899.1 282031 - - - - - - - - - -

0.2

25 5 0% 26% 0.1 0 5 0% 26% 0.1 0 5 0% 26% 0.3 0
50 5 0% 63% 0.4 63 5 0% 70% 1.1 2936 5 0% 70% 1.5 2936
75 5 0% 96% 12.7 5343 5 0% 96% 23.4 50346 5 0% 96% 33.7 50346
100 5 0% 129% 848.1 150336 2 5% 117% 1740.0 3442803 2 7% 117% 1729.6 3442930
125 0 22% - 1800.0 370826 0 42% - 1800.0 5435342 0 45% - 1800.0 5435342

0.5

25 5 0% 118% 0.2 0 5 0% 117% 0.1 0 5 0% 117% 0.2 0
50 5 0% 219% 4.1 2992 5 0% 220% 0.6 4468 5 0% 220% 1.0 4468
75 5 0% 280% 116.0 14702 5 0% 280% 7.3 27508 5 0% 280% 8.3 27508
100 4 2% - 1640.8 129672 5 0% 321% 44.1 121631 5 0% 321% 47.3 121631
125 0 423% - 1800.0 82062 5 0% 425% 172.0 345995 5 0% 425% 192.1 345995
150 - - - - - 5 0% 529% 986.8 1369073 5 0% 529% 1054.8 1369073
175 - - - - - 0 26% - 1800.0 1643480 0 27% - 1800.0 1643480

0.8

25 5 0% 221% 0.2 86 5 0% 221% 0.1 0 5 0% 221% 0.3 0
50 5 0% 328% 2.0 903 5 0% 428% 0.3 255 5 0% 428% 0.6 255
75 5 0% 430% 221.6 4249 5 0% 530% 0.9 2017 5 0% 530% 1.5 2017
100 0 538% - 1800.0 2575 5 0% 739% 3.3 5026 5 0% 739% 4.4 5026
125 - - - - - 5 0% 947% 12.5 8309 5 0% 947% 14.0 8309
150 - - - - - 5 0% 1155% 19.6 23272 5 0% 1155% 22.5 23272
175 - - - - - 5 0% 1364% 42.0 37706 5 0% 1364% 48.4 37706
200 - - - - - 5 0% 1572% 81.4 78074 5 0% 1572% 93.7 78074
225 - - - - - 5 0% 1623% 150.2 92436 5 0% 1623% 172.7 92436
250 - - - - - 5 0% 1795% 317.4 104562 5 0% 1795% 343.0 104562
300 - - - - - 5 0% 1949% 846.2 136585 5 0% 1949% 880.4 136585
350 - - - - - 3 43% - 1702.7 126408 3 53% - 1750.2 126408
400 - - - - - 0 313% - 1800.0 146838 0 313% - 1800.0 146838

solves more instances within the given time limit. Another observation is that for D= 0.05,

(MIM)-modified method provides better LP relaxation bounds, but for higher densities,

it does not have a positive effect on the bound. It can be seen that there is no significant

difference between (MIM) and (MIM)-modified. Therefore, usage of the formulation tight-

ening approach suggested in Section 4.2 is not justified. In addition, we implemented a

cutting-plane algorithm to solve (VC2011) in which we add (1b) as lazy constraints. How-

ever, according to our computational tests, this approach does not provide better results

compared to adding all constraints to the formulation.

Recall that in our Benders decomposition approach proposed in Section 3, DSP (x̂) can

have infinitely many solutions. By changing θij values, we can obtain different (α̂, β̂, γ̂),

resulting in different cuts in (12) and (16). To test the impact of θij selection, we solved all

instances by setting all θij values to 0.2, 0.5 and 0.8. We also tried to assign random values

between 0 and 1 to θij in each iteration. Note that regardless of θij values, all possible

optimality cuts (12) or (16) have the same violation (see Proposition 2), therefore there is

no significant difference between these options. Our computational results showed that θij

selection has no clear effect on the total running time and the optimality gap. Therefore,

we set θij = 0.5 in the remaining parts for simplicity.

Our second experiment compares the performances of MWIM formulations given in

Section 3 and investigates the effect of proposed improvements suggested in Section 4.1.
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The results of this experiment are summarized in Tables 2–6. In Table 2, we compare

the performances of Vassilaras and Christou (2011)’s formulation (VC2011 MWIM) with

our formulation quadratic programming formulation (MWIM QP) and its linearization

(MWIM). Our first observation is that (VC2011 MWIM) and (MWIM) significantly out-

perform (MWIM QP). (MWIM QP) is unable to solve even instances with small number of

vertices to optimality within the given time limit. We also observe that (VC2011 MWIM)

can solve more instances to optimality within the given time limit whereas our (MWIM)

model has higher total running times and optimality gaps for all densities.

In Table 3, we measure the effect of the suggested improvements on the decomposition

approach where we have a single t-variable in (MP ). Here, we report the following results:

“Single t” Algorithm 2 with a single t-variable in (MP ), “Single t + (17)” Algorithm

2 where we use (17) as an initial bound on the t-variable in (MP ), “Single t + (18)”

Algorithm 2 with (18) as an initial bound on the t-variable in (MP ), “Single t + (20)”

Algorithm 2 augmented with valid inequality (20) in (MP ). For the model with a single

t-variable in (MP ), it can be observed that inequality (17) yields a slight improvement

in total running time. However, it is unable to solve instances that could not be solved

by (MWIM); it can only decrease the optimality gap for these instances. Inequality (18),

in which we calculate an upper bound on the t-variable by finding a maximum weight

matching in the graph, does not provide better solutions. On the other hand, inequality

(20) has a significant impact on the performance in terms of computational time and allows

us to solve more instances in the enforced time limit.

In Table 4, we investigate the effect of valid inequalities (19) and (21) on the decom-

position approach where we have multiple ti-variables in (MP ). We report the following

results: “Multiple t” Algorithm 2 with multiple ti-variables in (MP ), “Multiple t + (21)”

Algorithm 2 improved with valid inequality (21) in (MP ), “Multiple t + (19) + (21)”

Algorithm 2 with valid inequalities (19) and (21) in (MP ). Here, we note that valid

inequality (21) yields a significant improvement in terms of computational effort. However,

adding inequality (19) into (MP ) slightly increases the total running time. As a result,

our improved algorithm contains the valid inequality (21) but not (19). We also tried to

separate Benders cuts for integer and fractional solutions, but we observed that separating

Benders cuts only for integer solutions is better in terms of computational effort.
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Table 2 Comparison of formulations for solving MWIM
(VC2011 MWIM) (MWIM QP) (MWIM)

D |V | Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes

0.05

25 5 0% 0% 0.1 0 5 0% 12% 7.3 - 5 0% 20% 0.3 0
50 5 0% 3% 1.3 0 0 17% - 1800.0 - 5 0% 59% 1.3 0
75 5 0% 10% 1.9 0 - - - - - 5 0% 106% 8.9 959
100 5 0% 20% 75.5 221 - - - - - 5 0% 154% 878.6 8596
125 5 0% 24% 187.7 3021 - - - - - 0 44% - 1800.0 16214
150 5 0% 33% 419.2 47750 - - - - - - - - - -
175 3 9% - 1774.4 74232 - - - - - - - - - -

0.2

25 5 0% 18% 0.2 0 0 1% - 1800.0 - 5 0% 145% 0.4 0
50 5 0% 59% 0.4 153 - - - - - 5 0% 454% 6.7 13917
75 5 0% 98% 9.9 4635 - - - - - 5 0% 817% 1231.2 55539
100 5 0% 126% 234.3 66082 - - - - - 0 164% - 1800.0 90722
125 0 33% - 1800.0 276523 - - - - - - - - - -

0.5

25 5 0% 94% 0.2 0 0 5% - 1800.0 - 5 0% 692% 0.5 0
50 5 0% 190% 5.0 101 - - - - - 5 0% 1955% 12.0 3418
75 5 0% 288% 70.8 6556 - - - - - 5 0% 3880% 93.0 49988
100 5 0% 394% 1293.8 19423 - - - - - 5 0% 5452% 1463.5 83631
125 0 139% - 1800.0 31329 - - - - - 0 745% - 1800.0 153238

0.8

25 5 0% 191% 0.3 0 0 15% - 1800.0 - 5 0% 1560% 0.7 0
50 5 0% 385% 3.6 0 - - - - - 5 0% 5276% 12.0 420
75 5 0% 580% 47.6 0 - - - - - 5 0% 10957% 51.6 4255
100 5 0% 686% 199.9 1270 - - - - - 5 0% 16724% 263.7 8783
125 5 0% 824% 909.5 7080 - - - - - 5 0% 24120% 934.8 16193
150 0 82% - 1800.0 12999 - - - - - 0 6128% - 1800.0 17180

In Table 5, we summarize the best implementations for solving MWIM. If we compare

the running times of (MWIM), in which we have all decision variables and constraints, and

our Benders decomposition approach, it can be observed that our decomposition approach

outperforms (MWIM) for all instances. Furthermore, comparing the two decomposition

approaches, we note that the use of multiple ti-variables in (MP ) along with valid inequal-

ities (21) significant improve solution times and optimality gaps for all instances. By com-

paring its performance against (VC2011 MWIM), we note that directly solving (VC2011

MWIM) is faster than our decomposition approach for low density graphs. However, our

algorithm performs better for medium and large densities. In our preliminary analysis,

we observed that we can find close-optimal solutions in the first iterations, but it takes

longer to improve the upper bound. Therefore, primal side of the solution process is not

problematic, and there is no need to use a heuristic within our decomposition algorithm.

Detailed results (lower bounds, upper bounds, optimality gaps and solutions times) for

each instance are given in the Appendix A.

In our last experiment, we increase the range of the weights from 10 to 100. In addition,

to incorporate the case where we have some node / edge weights are negative, we kept

range as 100 and assigned an integer weight uniformly distributed in [-20,80]. The result of

this experiment is given in Table 6. If we increase the range of the weights from 10 to 100,

objective function coefficients of variables in the model can be differentiated more easily,

thus reducing symmetry effect. Hence, it gives better results for almost all instances.
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Table 3 Effect of valid inequalities on the decomposition approach with a single t-variable in (MP )
Single t Single t + (17) Single t + (18) Single t + (20)

D |V | Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes

0.05

25 5 0% - 0.5 7 5 0% 49% 0.5 8 5 0% 16% 0.5 9 5 0% 7% 0.3 2
50 5 0% - 7.3 2427 5 0% 80% 7.1 2383 5 0% 46% 7.8 3344 5 0% 27% 3.9 678
75 1 12% - 1734.8 40502 1 11% - 1729.1 361658 0 13% - 1800.0 439859 5 0% 37% 230.4 41007
100 0 93% - 1800.0 19044 0 91% - 1800.0 157573 - - - - - 0 13% - 1800.0 329228

0.2

25 5 0% - 0.5 740 5 0% 101% 0.7 803 5 0% 74% 0.6 888 5 0% 45% 0.4 170
50 3 11% - 1433.6 195075 3 11% - 1226.4 229565 3 16% - 1498.2 22019 5 0% 79% 7.6 10879
75 0 409% - 1800.0 46166 0 183% - 1800.0 49012 0 166% - 1800.0 49748 3 7% - 1552.8 536950
100 - - - - - - - - - - - - - - - 0 29% - 1800.0 2950217

0.5

25 5 0% - 1.2 440 5 0% 222% 1.1 512 5 0% 94% 1.3 509 5 0% 110% 0.3 424
50 5 0% - 237.1 1140 5 0% 296% 240.3 1263 5 0% 138% 238.7 1260 5 0% 149% 8.2 5083
75 0 315% - 1800.0 9476 0 231% - 1800.0 9955 0 224% - 1800.0 9819 5 0% 196% 39.2 7345
100 - - - - - - - - - - - - - - - 5 0% 214% 153.2 13174
125 - - - - - - - - - - - - - - - 5 0% 272% 614.7 18423
150 - - - - - - - - - - - - - - - 0 30% - 1800.0 19535

0.8

25 5 0% - 2.5 251 5 0% 257% 1.5 261 5 0% 229% 1.6 279 5 0% 202% 0.5 185
50 5 0% - 227.5 551 5 0% 459% 167.3 572 5 0% 438% 166.9 571 5 0% 292% 4.5 349
75 5 0% - 814.9 3134 5 0% 635% 829.5 3257 5 0% 646% 889.7 3250 5 0% 492% 12.8 4744
100 0 1179% - 1800.0 4466 0 619% - 1800.0 4790 0 606% - 1800.0 4706 5 0% 528% 25.7 5724
125 - - - - - - - - - - - - - - - 5 0% 665% 83.9 6154
150 - - - - - - - - - - - - - - - 5 0% 828% 257.7 8435
175 - - - - - - - - - - - - - - - 5 0% 965% 414.3 10349
200 - - - - - - - - - - - - - - - 5 0% 1023% 1151.8 12856
225 - - - - - - - - - - - - - - - 0 70% - 1800 13962

Table 4 Effect of valid inequalities on the decomposition approach with multiple ti-variables in (MP )
Multiple t Multiple t + (21) Multiple t + (19) + (21)

D |V | Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes

0.05

25 5 0% 0.6 5 5 0% 7% 0.4 0 5 0% 7% 0.4 0
50 5 0% 2.3 873 5 0% 27% 1.6 110 5 0% 27% 1.9 105
75 5 0% 36.2 102334 5 0% 37% 4.4 2981 5 0% 37% 5.0 3831
100 0 21% 1800.0 6085709 5 0% 51% 118.3 224166 5 0% 51% 184.0 171968
125 - - - - 0 12% - 1800.0 1055447 0 15% - 1800.0 538861

0.2

25 5 0% 0.6 425 5 0% 45% 0.3 120 5 0% 45% 0.4 142
50 5 0% 22.3 61726 5 0% 79% 2.5 9963 5 0% 79% 4.2 10033
75 0 68% 1800.0 1470049 5 0% 113% 424.3 371791 5 0% 113% 476.1 380668
100 - - - - 0 12% - 1800.0 5649446 0 18% - 1800.0 3933845

0.5

25 5 0% 0.7 774 5 0% 110% 0.6 383 5 0% 110% 0.6 372
50 5 0% 89.9 14340 5 0% 199% 3.5 4450 5 0% 199% 4.1 4444
75 0 414% 1800.0 51362 5 0% 246% 23.3 26959 5 0% 246% 29.6 27962
100 - - - - 5 0% 296% 59.4 82384 5 0% 296% 93.5 83484
125 - - - - 5 0% 352% 513.7 113043 5 0% 352% 685.8 109456
150 - - - - 0 14% - 1800.0 107242 0 19% - 1800.0 99437

0.8

25 5 0% 2.1 489 5 0% 122% 0.4 161 5 0% 122% 0.7 163
50 5 0% 121.6 2782 5 0% 292% 3.4 1400 5 0% 292% 3.4 1289
75 0 142% 1800.0 4612 5 0% 386% 7.6 4580 5 0% 386% 8.4 4792
100 - - - - 5 0% 476% 12.9 9434 5 0% 476% 13.1 9672
125 - - - - 5 0% 592% 39.5 16973 5 0% 592% 45.9 18297
150 - - - - 5 0% 668% 71.4 32648 5 0% 668% 80.7 33665
175 - - - - 5 0% 728% 96.4 57453 5 0% 728% 148.2 53972
200 - - - - 5 0% 858% 229.0 89962 5 0% 858% 245.5 82593
225 - - - - 5 0% 945% 458.3 103481 5 0% 945% 502.7 105942
250 - - - - 5 0% 1034% 600.6 146259 5 0% 1034% 792.9 145295
300 - - - - 2 11% - 1643.7 154641 2 13% - 1713.9 129325
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Table 5 Summary of best implementations for solving MWIM
(VC2011 MWIM) (MWIM) Single t + (20) Multiple t + (21)

D |V | Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes

0.05

25 5 0% 0% 0.1 0 5 0% 20% 0.3 0 5 0% 7% 0.3 2 5 0% 7% 0.4 0
50 5 0% 3% 1.3 0 5 0% 59% 1.3 0 5 0% 27% 3.9 678 5 0% 27% 1.6 110
75 5 0% 10% 1.9 0 5 0% 106% 8.9 959 5 0% 37% 230.4 41007 5 0% 37% 4.4 2981
100 5 0% 20% 75.5 221 5 0% 154% 878.6 8596 0 13% - 1800.0 329228 5 0% 51% 118.3 224166
125 5 0% 24% 187.7 3021 0 44% - 1800.0 16214 - - - - - 0 12% - 1800.0 1055447
150 5 0% 33% 419.2 47750 - - - - - - - - - - - - - - -
175 3 9% - 1774.4 74232 - - - - - - - - - - - - - - -

0.2

25 5 0% 18% 0.2 0 5 0% 145% 0.4 0 5 0% 45% 0.4 170 5 0% 45% 0.3 120
50 5 0% 59% 0.4 153 5 0% 454% 6.7 13917 5 0% 79% 7.6 10879 5 0% 79% 2.5 9963
75 5 0% 98% 9.9 4635 5 0% 817% 1231.2 55539 3 7% - 1552.8 536950 5 0% 113% 424.3 371791
100 5 0% 126% 234.3 66082 0 164% - 1800.0 90722 0 29% - 1800.0 2950217 0 12% - 1800.0 5649446
125 0 33% - 1800.0 276523 - - - - - - - - - - - - - - -

0.5

25 5 0% 94% 0.2 0 5 0% 692% 0.5 0 5 0% 110% 0.3 424 5 0% 110% 0.6 383
50 5 0% 190% 5.0 101 5 0% 1955% 12.0 3418 5 0% 149% 8.2 5083 5 0% 199% 3.5 4450
75 5 0% 288% 70.8 6556 5 0% 3880% 93.0 49988 5 0% 196% 39.2 7345 5 0% 246% 23.3 26959
100 5 0% 394% 1293.8 19423 5 0% 5452% 1463.5 83631 5 0% 214% 153.2 13174 5 0% 296% 59.4 82384
125 0 139% - 1800.0 31329 0 745% - 1800.0 153238 5 0% 272% 614.7 18423 5 0% 352% 513.7 113043
150 - - - - - - - - - - 0 30% - 1800.0 19535 0 14% - 1800.0 107242

0.8

25 5 0% 191% 0.3 0 5 0% 1560% 0.7 0 5 0% 202% 0.5 185 5 0% 122% 0.4 161
50 5 0% 385% 3.6 0 5 0% 5276% 12.0 420 5 0% 292% 4.5 349 5 0% 292% 3.4 1400
75 5 0% 580% 47.6 0 5 0% 10957% 51.6 4255 5 0% 492% 12.8 4744 5 0% 386% 7.6 4580
100 5 0% 686% 199.9 1270 5 0% 16724% 263.7 8783 5 0% 528% 25.7 5724 5 0% 476% 12.9 9434
125 5 0% 824% 909.5 7080 5 0% 24120% 934.8 16193 5 0% 665% 83.9 6154 5 0% 592% 39.5 16973
150 0 82% - 1800.0 12999 0 6128% - 1800.0 17180 5 0% 828% 257.7 8435 5 0% 668% 71.4 32648
175 - - - - - - - - - - 5 0% 965% 414.3 10349 5 0% 728% 96.4 57453
200 - - - - - - - - - - 5 0% 1023% 1151.8 12856 5 0% 858% 229.0 89962
225 - - - - - - - - - - 0 70% - 1800.0 13962 5 0% 945% 458.3 103481
250 - - - - - - - - - - - - - - - 5 0% 1034% 600.6 146259
300 - - - - - - - - - - - - - - - 2 11% - 1643.7 154641
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Table 6 Effect of changing weight range as [-20,80]
(VC2011 MWIM) (MWIM) Single t + (20) Multiple t + (21)

D |V | Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes Solved Gap LP Gap Time BB Nodes

0.05

25 5 0% 2% 0.2 0 5 0% 36% 0.2 0 5 0% 16% 0.2 0 5 0% 68% 0.2 0
50 5 0% 9% 1.2 0 5 0% 82% 1.2 0 5 0% 34% 3.5 526 5 0% 104% 1.5 145
75 5 0% 34% 1.7 0 5 0% 140% 8.2 856 5 0% 64% 218.5 53732 5 0% 147% 4.0 1406
100 5 0% 73% 72.6 184 5 0% 215% 819.6 6584 0 11% - 1800.0 242948 5 0% 169% 116.3 28957
125 5 0% 89% 160.9 2863 0 31% - 1800.0 14346 - - - - - 0 10% - 1800.0 104272
150 5 0% 103% 403.5 45238 - - - - - - - - - - - - - - -
175 4 4% - 1742.9 69234 - - - - - - - - - - - - - - -

0.2

25 5 0% 79% 0.2 0 5 0% 675% 0.3 0 5 0% 121% 0.4 145 5 0% 221% 0.3 92
50 5 0% 262% 0.4 109 5 0% 2003% 6.1 12587 5 0% 271% 7.1 18859 5 0% 371% 2.2 10673
75 5 0% 473% 9.0 3718 5 0% 3780% 1185.3 53550 5 0% 283% 1490.0 558444 5 0% 546% 418.7 400601
100 5 0% 535% 226.6 179686 0 161% - 1800.0 84636 0 17% - 1800.0 2941822 0 9% - 1800.0 4904526
125 0 28% - 1800.0 597346 - - - - - - - - - - - - - - -

0.5

25 5 0% 426% 0.2 0 5 0% 3077% 0.6 0 5 0% 519% 0.3 311 5 0% 519% 0.4 279
50 5 0% 975% 4.4 0 5 0% 9621% 11.8 4047 5 0% 1036% 8.1 5342 5 0% 1036% 3.5 4770
75 5 0% 1412% 62.6 7437 5 0% 18455% 85.5 51854 5 0% 1458% 32.6 42964 5 0% 1458% 21.1 37211
100 5 0% 1907% 1127.4 98370 5 0% 29033% 1303.9 205680 5 0% 1950% 155.8 186475 5 0% 1950% 52.5 171567
125 0 83% - 1800.0 145112 0 692% - 1800.0 394224 5 0% 2464% 602.0 188459 5 0% 2457% 466.7 253792
150 - - - - - - - - - - 0 25% - 1800.0 263683 0 12% - 1800.0 207452

0.8

25 5 0% 819% 0.3 0 5 0% 6592% 0.8 0 5 0% 885% 0.4 164 5 0% 885% 0.4 147
50 5 0% 1752% 3.5 0 5 0% 23562% 11.8 999 5 0% 1801% 4.1 1204 5 0% 1101% 3.1 1321
75 5 0% 2913% 41.5 0 5 0% 52935% 48.5 4066 5 0% 2963% 12.7 4384 5 0% 1863% 7.1 4811
100 5 0% 3644% 178.6 2973 5 0% 86168% 213.4 9291 5 0% 3689% 22.8 9013 5 0% 2389% 11.6 8889
125 5 0% 3368% 835.3 11908 5 0% 70917% 761.0 15740 5 0% 3899% 80.4 11418 5 0% 2555% 34.2 19605
150 0 59% - 1800.0 29524 0 5 0% 4927% 237.5 15908 5 0% 2957% 69.3 35837
175 - - - - - - - - - - 5 0% 5283% 411.8 20573 5 0% 3286% 94.2 58206
200 - - - - - - - - - - 5 0% 5926% 1103.9 24891 5 0% 3689% 203.4 72853
225 - - - - - - - - - - 0 61% - 1800.0 23954 5 0% 4035% 424.0 89281
250 - - - - - - - - - - - - - - - 5 0% 4723% 584.9 106343
300 - - - - - - - - - - - - - - - 3 7% - 1656.3 119454
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6. Conclusions and Future Research

In this paper, we studied the Maximum Induced Matching problem (MIM), where the aim

is to find an induced matching with the largest cardinality. Induced matchings can be used

to determine the maximum capacity of MAC layer in wireless ad-hoc networks.

The problem is known to be NP-hard for general graphs, even for bipartite graphs. In

the literature, the problem is studied for some restricted graph classes. It is addressed from

mathematical programming point of view by Vassilaras and Christou (2011). We proposed

a new vertex-based integer programming formulation for MIM, which has fewer number of

binary variables and constraints than the formulation in the literature. Then, we described

vertex-weighted and edge-weighted versions of the problem, and named them Maximum

Vertex-Weighted Induced Matching problem (MVWIM) and Maximum Edge-Weighted

Induced Matching problem (MEWIM), respectively. We reformulated the models in the

literature and our model to solve weighted instances.

In the Maximum Weight Induced Matching problem (MWIM), we considered graphs

with both edge and wertex weights. We formulated MWIM as a quadratic programming

problem and gave its linearized version. As the formulation for MWIM contains many

decision variables and constraints, we applied Benders decomposition to our proposed

formulation (MWIM). Our decomposition algorithm seeks a feasible induced matching

using a master problem and reaches optimality using cuts generated by a subproblem,

which we showed to be solvable by inspection. We proposed upper bounds on variables

and valid inequalities in the master problem to improve the efficiency of our algorithm.

We tested the efficacy of our approach on randomly generated graph instances. Our

computational results show that our decomposition approach performs better than solving

the underlying integer programming formulation. Also, it outperforms the formulations

found in the literature for medium and high densities.

As a future research, one can focus on solving MIM, MVWIM, MEWIM and MWIM

problems in some specific graph classes and consider developing additional valid inequali-

ties, preprocessing rules and heuristics using their structural properties.

References

H. Balakrishnan, C. L. Barrett, V. A. Kumar, M. V. Marathe, and S. Thite. The distance-2 matching

problem and its relationship to the MAC-layer capacity of ad hoc wireless networks. IEEE Journal on

Selected Areas in Communications, 22(6):1069–1079, 2004.
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Appendix A: Detailed Results of Table 5

In Table 7 and Table 8, we gave the detailed results (lower bounds, upper bounds, optimality gaps and

solutions times) of Table 5 for each instance. All instances are available online at www.ie.boun.edu.tr/

~taskin/data/mwim_graphs.zip

Table 7 Detailed results of Table 5
(VC2011 MWIM) (MWIM) Single t + (20) Multiple t + (21)

Graph Name D |V | LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time
Graph0.050000 25 0 0.05 25 102 102.0 0% 0.1 102 102.0 0% 0.3 102 102.0 0% 0.5 102 102.0 0% 0.6
Graph0.050000 25 1 0.05 25 102 102.0 0% 0.1 102 102.0 0% 0.3 102 102.0 0% 0.3 102 102.0 0% 0.2
Graph0.050000 25 2 0.05 25 110 110.0 0% 0.1 110 110.0 0% 0.3 110 110.0 0% 0.4 110 110.0 0% 0.7
Graph0.050000 25 3 0.05 25 108 108.0 0% 0.2 108 108.0 0% 0.2 108 108.0 0% 0.3 108 108.0 0% 0.3
Graph0.050000 25 4 0.05 25 107 107.0 0% 0.2 107 107.0 0% 0.2 107 107.0 0% 0.2 107 107.0 0% 0.1
Graph0.050000 50 0 0.05 50 209 209.0 0% 1.4 209 209.0 0% 1.5 209 209.0 0% 5.5 209 209.0 0% 1.3
Graph0.050000 50 1 0.05 50 205 205.0 0% 1.1 205 205.0 0% 1.3 205 205.0 0% 2.4 205 205.0 0% 1.2
Graph0.050000 50 2 0.05 50 232 232.0 0% 1.7 232 232.0 0% 1.0 232 232.0 0% 3.2 232 232.0 0% 1.5
Graph0.050000 50 3 0.05 50 207 207.0 0% 1.2 207 207.0 0% 1.3 207 207.0 0% 2.1 207 207.0 0% 1.5
Graph0.050000 50 4 0.05 50 247 247.0 0% 1.4 247 247.0 0% 1.2 247 247.0 0% 6.5 247 247.0 0% 2.3
Graph0.050000 75 0 0.05 75 317 317.0 0% 1.8 317 317.0 0% 7.9 317 317.0 0% 268.2 317 317.0 0% 3.9
Graph0.050000 75 1 0.05 75 306 306.0 0% 2.4 306 306.0 0% 9.8 306 306.0 0% 297.4 306 306.0 0% 7.1
Graph0.050000 75 2 0.05 75 322 322.0 0% 1.9 322 322.0 0% 7.4 322 322.0 0% 183.9 322 322.0 0% 3.3
Graph0.050000 75 3 0.05 75 315 315.0 0% 2.5 315 315.0 0% 12.0 315 315.0 0% 236.6 315 315.0 0% 4.5
Graph0.050000 75 4 0.05 75 301 301.0 0% 0.9 301 301.0 0% 7.4 301 301.0 0% 165.7 301 301.0 0% 3.2
Graph0.050000 100 0 0.05 100 382 382.0 0% 71.4 382 382.0 0% 882.9 379 427.2 13% 1800.0 382 382.0 0% 163.2
Graph0.050000 100 1 0.05 100 374 374.0 0% 117.6 374 374.0 0% 872.2 371 444.8 20% 1800.0 374 374.0 0% 129.9
Graph0.050000 100 2 0.05 100 406 406.0 0% 55.7 406 406.0 0% 818.2 401 446.2 11% 1800.0 406 406.0 0% 92.6
Graph0.050000 100 3 0.05 100 396 396.0 0% 81.4 396 396.0 0% 941.0 391 430.2 10% 1800.0 396 396.0 0% 72.1
Graph0.050000 100 4 0.05 100 388 388.0 0% 51.5 388 388.0 0% 878.6 388 422.7 9% 1800.0 388 388.0 0% 133.8
Graph0.050000 125 0 0.05 125 501 501.0 0% 163.2 501 651.9 30% 1800.0 - - - - 501 510.1 2% 1800.0
Graph0.050000 125 1 0.05 125 482 482.0 0% 210.3 468 693.9 48% 1800.0 - - - - 476 557.8 17% 1800.0
Graph0.050000 125 2 0.05 125 512 512.0 0% 171.4 508 647.9 28% 1800.0 - - - - 512 529.6 3% 1800.0
Graph0.050000 125 3 0.05 125 468 468.0 0% 201.0 457 673.0 47% 1800.0 - - - - 457 527.1 15% 1800.0
Graph0.050000 125 4 0.05 125 492 492.0 0% 192.5 477 791.9 66% 1800.0 - - - - 471 571.1 21% 1800.0
Graph0.050000 150 0 0.05 150 569 569.0 0% 395.4 - - - - - - - - - - - -
Graph0.050000 150 1 0.05 150 590 590.0 0% 539.8 - - - - - - - - - - - -
Graph0.050000 150 2 0.05 150 545 545.0 0% 456.3 - - - - - - - - - - - -
Graph0.050000 150 3 0.05 150 596 596.0 0% 352.9 - - - - - - - - - - - -
Graph0.050000 150 4 0.05 150 551 551.0 0% 351.5 - - - - - - - - - - - -
Graph0.050000 175 0 0.05 175 595 636.7 7% 1800.0 - - - - - - - - - - - -
Graph0.050000 175 1 0.05 175 614 661.9 8% 1800.0 - - - - - - - - - - - -
Graph0.050000 175 2 0.05 175 531 598.9 13% 1800.0 - - - - - - - - - - - -
Graph0.050000 175 3 0.05 175 588 648.9 10% 1800.0 - - - - - - - - - - - -
Graph0.050000 175 4 0.05 175 589 629.6 7% 1800.0 - - - - - - - - - - - -
Graph0.200000 25 0 0.2 25 91 91.0 0% 0.1 91 91.0 0% 0.1 91 91.0 0% 0.4 91 91.0 0% 0.2
Graph0.200000 25 1 0.2 25 98 98.0 0% 0.4 98 98.0 0% 0.4 98 98.0 0% 0.4 98 98.0 0% 0.2
Graph0.200000 25 2 0.2 25 126 126.0 0% 0.3 126 126.0 0% 0.6 126 126.0 0% 0.4 126 126.0 0% 0.4
Graph0.200000 25 3 0.2 25 113 113.0 0% 0.2 113 113.0 0% 0.3 113 113.0 0% 0.4 113 113.0 0% 0.3
Graph0.200000 25 4 0.2 25 105 105.0 0% 0.2 105 105.0 0% 0.3 105 105.0 0% 0.4 105 105.0 0% 0.3
Graph0.200000 50 0 0.2 50 152 152.0 0% 0.4 152 152.0 0% 5.0 152 152.0 0% 9.4 152 152.0 0% 2.5
Graph0.200000 50 1 0.2 50 172 172.0 0% 0.4 172 172.0 0% 7.0 172 172.0 0% 9.3 172 172.0 0% 3.8
Graph0.200000 50 2 0.2 50 148 148.0 0% 0.4 148 148.0 0% 7.0 148 148.0 0% 7.2 148 148.0 0% 2.0
Graph0.200000 50 3 0.2 50 155 155.0 0% 0.3 155 155.0 0% 6.5 155 155.0 0% 6.4 155 155.0 0% 1.3
Graph0.200000 50 4 0.2 50 165 165.0 0% 0.4 165 165.0 0% 8.2 165 165.0 0% 5.6 165 165.0 0% 2.9
Graph0.200000 75 0 0.2 75 201 201.0 0% 10.0 201 201.0 0% 943.6 201 211.4 5% 1800.0 201 201.0 0% 390.8
Graph0.200000 75 1 0.2 75 200 200.0 0% 9.8 200 200.0 0% 1330.6 200 200.0 0% 1039.1 200 200.0 0% 532.9
Graph0.200000 75 2 0.2 75 188 188.0 0% 12.0 188 188.0 0% 1316.9 188 188.0 0% 1325.0 188 188.0 0% 307.3
Graph0.200000 75 3 0.2 75 193 193.0 0% 8.4 193 193.0 0% 1328.7 193 209.6 9% 1800.0 193 193.0 0% 467.9
Graph0.200000 75 4 0.2 75 198 198.0 0% 9.2 198 198.0 0% 1236.3 193 230.7 20% 1800.0 198 198.0 0% 422.7
Graph0.200000 100 0 0.2 100 223 223.0 0% 251.5 220 466.3 112% 1800.0 220 298.8 36% 1800.0 223 239.8 8% 1800.0
Graph0.200000 100 1 0.2 100 238 238.0 0% 216.6 210 731.1 248% 1800.0 238 291.8 23% 1800.0 238 268.2 13% 1800.0
Graph0.200000 100 2 0.2 100 255 255.0 0% 312.3 228 578.0 154% 1800.0 255 284.5 12% 1800.0 255 290.2 14% 1800.0
Graph0.200000 100 3 0.2 100 222 222.0 0% 201.9 222 414.7 87% 1800.0 221 301.6 36% 1800.0 222 252.1 14% 1800.0
Graph0.200000 100 4 0.2 100 221 221.0 0% 189.3 206 658.2 219% 1800.0 221 309.0 40% 1800.0 221 251.8 14% 1800.0
Graph0.200000 125 0 0.2 125 230 314.9 37% 1800.0 - - - - - - - - - - - -
Graph0.200000 125 1 0.2 125 248 309.1 25% 1800.0 - - - - - - - - - - - -
Graph0.200000 125 2 0.2 125 222 283.0 27% 1800.0 - - - - - - - - - - - -
Graph0.200000 125 3 0.2 125 239 328.2 37% 1800.0 - - - - - - - - - - - -
Graph0.200000 125 4 0.2 125 232 327.4 41% 1800.0 - - - - - - - - - - - -
Graph0.500000 25 0 0.5 25 55 55.0 0% 0.3 55 55.0 0% 0.6 55 55.0 0% 0.4 55 55.0 0% 0.9
Graph0.500000 25 1 0.5 25 68 68.0 0% 0.2 68 68.0 0% 0.4 68 68.0 0% 0.4 68 68.0 0% 0.9
Graph0.500000 25 2 0.5 25 70 70.0 0% 0.1 70 70.0 0% 0.5 70 70.0 0% 0.4 70 70.0 0% 0.4
Graph0.500000 25 3 0.5 25 63 63.0 0% 0.2 63 63.0 0% 0.5 63 63.0 0% 0.2 63 63.0 0% 0.4
Graph0.500000 25 4 0.5 25 65 65.0 0% 0.3 65 65.0 0% 0.6 65 65.0 0% 0.2 65 65.0 0% 0.5

www.ie.boun.edu.tr/~taskin/data/mwim_graphs.zip
www.ie.boun.edu.tr/~taskin/data/mwim_graphs.zip
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Table 8 Detailed results of Table 5
(VC2011 MWIM) (MWIM) Single t + (20) Multiple t + (21)

Graph Name D |V | LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time
Graph0.500000 50 0 0.5 50 94 94.0 0% 5.3 94 94.0 0% 11.1 94 94.0 0% 8.7 94 94.0 0% 3.5
Graph0.500000 50 1 0.5 50 88 88.0 0% 4.6 88 88.0 0% 11.1 88 88.0 0% 7.1 88 88.0 0% 2.7
Graph0.500000 50 2 0.5 50 95 95.0 0% 5.3 95 95.0 0% 11.6 95 95.0 0% 7.0 95 95.0 0% 3.8
Graph0.500000 50 3 0.5 50 86 86.0 0% 4.7 86 86.0 0% 11.8 86 86.0 0% 10.3 86 86.0 0% 5.1
Graph0.500000 50 4 0.5 50 93 93.0 0% 5.1 93 93.0 0% 14.4 93 93.0 0% 7.9 93 93.0 0% 2.4
Graph0.500000 75 0 0.5 75 107 107.0 0% 81.3 107 107.0 0% 74.4 107 107.0 0% 25.2 107 107.0 0% 20.8
Graph0.500000 75 1 0.5 75 95 95.0 0% 69.7 95 95.0 0% 68.4 95 95.0 0% 61.8 95 95.0 0% 26.9
Graph0.500000 75 2 0.5 75 103 103.0 0% 67.0 103 103.0 0% 125.3 103 103.0 0% 26.4 103 103.0 0% 19.9
Graph0.500000 75 3 0.5 75 101 101.0 0% 62.1 101 101.0 0% 90.0 101 101.0 0% 25.0 101 101.0 0% 23.5
Graph0.500000 75 4 0.5 75 95 95.0 0% 74.0 95 95.0 0% 106.8 95 95.0 0% 57.7 95 95.0 0% 25.4
Graph0.500000 100 0 0.5 100 117 117.0 0% 1319.3 117 117.0 0% 1747.6 117 117.0 0% 138.7 117 117.0 0% 63.5
Graph0.500000 100 1 0.5 100 125 125.0 0% 1054.7 125 125.0 0% 1497.2 125 125.0 0% 136.4 125 125.0 0% 44.1
Graph0.500000 100 2 0.5 100 96 96.0 0% 1587.7 96 96.0 0% 1457.6 96 96.0 0% 156.0 96 96.0 0% 78.8
Graph0.500000 100 3 0.5 100 115 115.0 0% 1464.8 115 115.0 0% 1432.3 115 115.0 0% 189.3 115 115.0 0% 52.8
Graph0.500000 100 4 0.5 100 108 108.0 0% 1042.6 108 108.0 0% 1182.8 108 108.0 0% 145.4 108 108.0 0% 58.1
Graph0.500000 125 0 0.5 125 116 295.9 155% 1800.0 116 1,031.9 790% 1800.0 119 119.0 0% 699.5 119 119.0 0% 601.9
Graph0.500000 125 1 0.5 125 117 267.9 129% 1800.0 117 1,002.9 757% 1800.0 117 117.0 0% 569.3 117 117.0 0% 621.7
Graph0.500000 125 2 0.5 125 120 290.2 142% 1800.0 120 930.2 675% 1800.0 122 122.0 0% 473.3 122 122.0 0% 366.7
Graph0.500000 125 3 0.5 125 119 301.3 153% 1800.0 119 1,048.3 781% 1800.0 119 119.0 0% 664.7 119 119.0 0% 458.3
Graph0.500000 125 4 0.5 125 112 241.2 115% 1800.0 112 921.2 723% 1800.0 115 115.0 0% 666.7 115 115.0 0% 519.8
Graph0.500000 150 0 0.5 150 - - - - - - - - 123 142.4 16% 1800.0 123 136.7 11% 1800.0
Graph0.500000 150 1 0.5 150 - - - - - - - - 121 188.5 56% 1800.0 121 142.6 18% 1800.0
Graph0.500000 150 2 0.5 150 - - - - - - - - 118 155.6 32% 1800.0 119 134.3 13% 1800.0
Graph0.500000 150 3 0.5 150 - - - - - - - - 120 150.8 26% 1800.0 120 140.2 17% 1800.0
Graph0.500000 150 4 0.5 150 - - - - - - - - 121 147.5 22% 1800.0 121 136.3 13% 1800.0
Graph0.800000 25 0 0.8 25 51 51.0 0% 0.3 51 51.0 0% 0.6 51 51.0 0% 0.5 51 51.0 0% 0.2
Graph0.800000 25 1 0.8 25 40 40.0 0% 0.3 40 40.0 0% 0.8 40 40.0 0% 0.3 40 40.0 0% 0.4
Graph0.800000 25 2 0.8 25 39 39.0 0% 0.2 39 39.0 0% 0.8 39 39.0 0% 0.7 39 39.0 0% 0.7
Graph0.800000 25 3 0.8 25 51 51.0 0% 0.3 51 51.0 0% 0.7 51 51.0 0% 0.4 51 51.0 0% 0.3
Graph0.800000 25 4 0.8 25 49 49.0 0% 0.4 49 49.0 0% 0.7 49 49.0 0% 0.5 49 49.0 0% 0.4
Graph0.800000 50 0 0.8 50 52 52.0 0% 3.2 52 52.0 0% 10.5 52 52.0 0% 3.4 52 52.0 0% 2.0
Graph0.800000 50 1 0.8 50 53 53.0 0% 3.6 53 53.0 0% 10.7 53 53.0 0% 2.6 53 53.0 0% 4.3
Graph0.800000 50 2 0.8 50 50 50.0 0% 2.7 50 50.0 0% 17.0 50 50.0 0% 7.7 50 50.0 0% 6.6
Graph0.800000 50 3 0.8 50 58 58.0 0% 4.0 58 58.0 0% 10.7 58 58.0 0% 3.6 58 58.0 0% 1.9
Graph0.800000 50 4 0.8 50 52 52.0 0% 4.2 52 52.0 0% 11.0 52 52.0 0% 5.1 52 52.0 0% 2.2
Graph0.800000 75 0 0.8 75 55 55.0 0% 45.8 55 55.0 0% 67.5 55 55.0 0% 8.9 55 55.0 0% 5.5
Graph0.800000 75 1 0.8 75 57 57.0 0% 48.4 57 57.0 0% 47.8 57 57.0 0% 15.9 57 57.0 0% 8.2
Graph0.800000 75 2 0.8 75 65 65.0 0% 50.6 65 65.0 0% 45.0 65 65.0 0% 6.9 65 65.0 0% 5.2
Graph0.800000 75 3 0.8 75 57 57.0 0% 41.7 57 57.0 0% 46.9 57 57.0 0% 15.8 57 57.0 0% 7.4
Graph0.800000 75 4 0.8 75 55 55.0 0% 51.5 55 55.0 0% 50.8 55 55.0 0% 16.4 55 55.0 0% 11.7
Graph0.800000 100 0 0.8 100 64 64.0 0% 208.6 64 64.0 0% 213.4 64 64.0 0% 38.3 64 64.0 0% 8.2
Graph0.800000 100 1 0.8 100 67 67.0 0% 193.2 67 67.0 0% 275.3 67 67.0 0% 29.1 67 67.0 0% 11.3
Graph0.800000 100 2 0.8 100 69 69.0 0% 224.1 69 69.0 0% 240.9 69 69.0 0% 18.8 69 69.0 0% 23.3
Graph0.800000 100 3 0.8 100 67 67.0 0% 160.2 67 67.0 0% 260.4 67 67.0 0% 22.2 67 67.0 0% 13.1
Graph0.800000 100 4 0.8 100 67 67.0 0% 213.7 67 67.0 0% 328.5 67 67.0 0% 20.1 67 67.0 0% 8.6
Graph0.800000 125 0 0.8 125 72 72.0 0% 932.3 72 72.0 0% 1015.6 72 72.0 0% 56.6 72 72.0 0% 42.1
Graph0.800000 125 1 0.8 125 79 79.0 0% 791.3 79 79.0 0% 1114.3 79 79.0 0% 81.2 79 79.0 0% 45.2
Graph0.800000 125 2 0.8 125 68 68.0 0% 767.3 68 68.0 0% 736.8 68 68.0 0% 93.7 68 68.0 0% 34.9
Graph0.800000 125 3 0.8 125 70 70.0 0% 1234.2 70 70.0 0% 912.0 70 70.0 0% 111.7 70 70.0 0% 26.1
Graph0.800000 125 4 0.8 125 71 71.0 0% 822.5 71 71.0 0% 895.5 71 71.0 0% 76.3 71 71.0 0% 49.1
Graph0.800000 150 0 0.8 150 75 134.1 79% 1800.0 75 4,623.5 6065% 1800.0 75 75.0 0% 265.6 75 75.0 0% 65.4
Graph0.800000 150 1 0.8 150 73 130.8 79% 1800.0 69 4,487.6 6404% 1800.0 73 73.0 0% 358.5 73 73.0 0% 50.7
Graph0.800000 150 2 0.8 150 70 123.9 77% 1800.0 69 4,208.7 6000% 1800.0 70 70.0 0% 210.5 70 70.0 0% 81.7
Graph0.800000 150 3 0.8 150 74 136.2 84% 1800.0 74 4,669.0 6210% 1800.0 74 74.0 0% 208.6 74 74.0 0% 82.2
Graph0.800000 150 4 0.8 150 74 140.0 89% 1800.0 71 4,304.8 5963% 1800.0 74 74.0 0% 245.3 74 74.0 0% 77.2
Graph0.800000 175 0 0.8 175 - - - - - - - - 75 75.0 0% 550.5 75 75.0 0% 94.8
Graph0.800000 175 1 0.8 175 - - - - - - - - 84 84.0 0% 294.6 84 84.0 0% 68.4
Graph0.800000 175 2 0.8 175 - - - - - - - - 75 75.0 0% 365.5 75 75.0 0% 115.0
Graph0.800000 175 3 0.8 175 - - - - - - - - 74 74.0 0% 380.2 74 74.0 0% 114.6
Graph0.800000 175 4 0.8 175 - - - - - - - - 75 75.0 0% 480.7 75 75.0 0% 89.1
Graph0.800000 200 0 0.8 200 - - - - - - - - 75 75.0 0% 965.4 75 75.0 0% 270.7
Graph0.800000 200 1 0.8 200 - - - - - - - - 74 74.0 0% 891.7 74 74.0 0% 226.2
Graph0.800000 200 2 0.8 200 - - - - - - - - 75 75.0 0% 1439.7 75 75.0 0% 242.7
Graph0.800000 200 3 0.8 200 - - - - - - - - 76 76.0 0% 1407.9 76 76.0 0% 247.0
Graph0.800000 200 4 0.8 200 - - - - - - - - 77 77.0 0% 1054.3 77 77.0 0% 158.3
Graph0.800000 225 0 0.8 225 - - - - - - - - 75 131.9 76% 1800.0 75 75.0 0% 446.5
Graph0.800000 225 1 0.8 225 - - - - - - - - 73 134.3 84% 1800.0 79 79.0 0% 409.8
Graph0.800000 225 2 0.8 225 - - - - - - - - 73 96.5 32% 1800.0 77 77.0 0% 578.3
Graph0.800000 225 3 0.8 225 - - - - - - - - 75 126.0 68% 1800.0 78 78.0 0% 371.8
Graph0.800000 225 4 0.8 225 - - - - - - - - 74 139.9 89% 1800.0 80 80.0 0% 485.1
Graph0.800000 250 0 0.8 250 - - - - - - - - - - - - 79 79.0 0% 609.9
Graph0.800000 250 1 0.8 250 - - - - - - - - - - - - 81 81.0 0% 650.8
Graph0.800000 250 2 0.8 250 - - - - - - - - - - - - 81 81.0 0% 739.0
Graph0.800000 250 3 0.8 250 - - - - - - - - - - - - 83 83.0 0% 516.4
Graph0.800000 250 4 0.8 250 - - - - - - - - - - - - 82 82.0 0% 486.8
Graph0.800000 300 0 0.8 300 - - - - - - - - - - - - 83 91.9 11% 1800.0
Graph0.800000 300 1 0.8 300 - - - - - - - - - - - - 84 84.0 0% 1390.0
Graph0.800000 300 2 0.8 300 - - - - - - - - - - - - 76 76.0 0% 1428.5
Graph0.800000 300 3 0.8 300 - - - - - - - - - - - - 76 96.0 26% 1800.0
Graph0.800000 300 4 0.8 300 - - - - - - - - - - - - 76 89.9 18% 1800.0
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Appendix B: Automatic Benders decomposition feature of CPLEX 12.7

CPLEX 12.7, which was released while our paper was under second round of peer review, introduced auto-

matic Benders decomposition feature. We conducted an experiment to test the effect of this new feature on

problem instances used in Table 5. In this experiment we compared direct solution of (MWIM), our proposed

algorithm and automatic Benders decomposition feature of CPLEX’s new version applied to (MWIM). The

first two sets of columns in Table 9 are taken from Table 5 and show the results for CPLEX 12.6.3 whereas

the last set of columns show the results of automatic Benders decomposition algorithm of CPLEX 12.7.

We observe that automatic Benders algorithm yields worse results than direct solution of (MWIM). This is

consistent with our implementation of Benders decomposition with a single t variable and without any addi-

tional valid inequalities (see “Single t” column in Table 3). Our proposed algorithm that contains multiple

t-variables in the master problem along with valid inequalities (21), and generates Benders cuts by utilizing

Algorithm 1 instead of solving a linear programming problem (set of columns titled “Multiple t + (21)”) is

faster than other methods.

Table 9 Effect of automatic Benders decomposition feature of CPLEX 12.7

CPLEX 12.6.3
CPLEX

12.7
(MWIM) Multiple t + (21) (MWIM) + Automated Benders

D |V | Solved Gap Time BB Nodes Solved Gap Time BB Nodes Solved Gap Time BB Nodes

0.05

25 5 0% 0.3 0 5 0% 0.4 0 5 0% 0.4 0
50 5 0% 1.3 0 5 0% 1.6 110 5 0% 1.7 191
75 5 0% 8.9 959 5 0% 4.4 2981 5 0% 12.2 16264
100 5 0% 878.6 8596 5 0% 118.3 224166 5 0% 1266.3 1568173
125 0 44% 1800.0 16214 0 12% 1800.0 1055447 0 49% 1800.0 1350254
150 - - - - - - - - - - - -
175 - - - - - - - - - - - -

0.2

25 5 0% 0.4 0 5 0% 0.3 120 5 0% 1.5 245
50 5 0% 6.7 13917 5 0% 2.5 9963 5 0% 28.1 35283
75 5 0% 1231.2 55539 5 0% 424.3 371791 0 34% 1800.0 748769
100 0 164% 1800.0 90722 0 12% 1800.0 5649446 - - - -
125 - - - - - - - - - - - -

0.5

25 5 0% 0.5 0 5 0% 0.6 383 5 0% 2.2 722
50 5 0% 12 3418 5 0% 3.5 4450 5 0% 25.9 21599
75 5 0% 93 49988 5 0% 23.3 26959 5 0% 778.5 137426
100 5 0% 1463.5 83631 5 0% 59.4 82384 0 309% 1800.0 169870
125 0 745% 1800 153238 5 0% 513.7 113043 - - - -
150 - - - - 0 14% 1800 107242 - - - -

0.8

25 5 0% 0.7 0 5 0% 0.4 161 5 0% 7.6 576
50 5 0% 12 420 5 0% 3.4 1400 5 0% 32.6 4382
75 5 0% 51.6 4255 5 0% 7.6 4580 5 0% 341.3 26340
100 5 0% 263.7 8783 5 0% 12.9 9434 5 0% 877.3 46588
125 5 0% 934.8 16193 5 0% 39.5 16973 5 0% 1466.0 93868
150 0 6128% 1800 17180 5 0% 71.4 32648 0 706% 1800.0 68105
175 - - - - 5 0% 96.4 57453 - - - -
200 - - - - 5 0% 229 89962 - - - -
225 - - - - 5 0% 458.3 103481 - - - -
250 - - - - 5 0% 600.6 146259 - - - -
300 - - - - 2 11% 1643.7 154641 - - - -
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