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Abstract: Multiple instance learning (MIL) aims to classify objects with complex structures and covers a wide range of3

real-world data mining applications. In MIL, objects are represented by a bag of instances instead of a single instance4

and class labels are provided only for the bags. Some of the earlier MIL methods focus on solving MIL problem under5

the standard MIL assumption, which requires at least one positive instance in positive bags and all remaining instances6

are negative. This study proposes a linear programming framework to learn instance level contributions to bag label7

without emposing the standart assumption. Each instance of a bag is mapped to a pseudo-class membership estimate8

and these estimates are aggregated to obtain the bag-level class membership in an optimization framework. A simple9

linear mapping enables handling various MIL assumptions with adjusting instance contributions. Our experiments with10

instance-dissimilarity based data representations verify the effectiveness of the proposed MIL framework. Proposed11

mathematical models can be solved efficiently in polynomial time.12

Key words: Multiple instance learning, classification, linear programming, optimization13

1. Introduction14

Multiple instance learning (MIL) concerns with classifying objects where each object is represented with a bag15

containing multiple instances. The main motivation of MIL is to respect the complete internal structure of an16

object with a collection of multiple instances. Compared to standard supervised learning problems, where each17

instance has a label, only the bags are labeled. For example, images are generally represented by a collection18

of patches in computer vision. This way, certain problems regarding the location or scale invariance can be19

avoided. Moreover, MIL framework is suitable to a diverse domain of applications such as molecule activity20

prediction [1], image categorization [2], web mining [3] and audio recording classification [4]. In MIL, the label21

information is provided for bags and instance labels are unknown. Even when instance labels are known, there22

should be a rule/model providing the bag label information. Suppose in an image classification problem, the23

aim is to classify a person riding a horse. Certain images can have patches labeled as person, some others have24

patches from horse class. An image containing both defines the positive class in this scenario. In any case25

of (labeled/unlabeled) instances, bag-level summary of the instance distribution is required. To resolve this26

problem, most of the existing studies make assumptions regarding the instance labels. For example, standard27

MIL assumption prevails in most of the existing MIL approaches. In standard MIL problem, there is at least28

one positive instance in positive bags and all other instances in given data are negative. Since bag positivity is29

determined by a few instances, standard MIL methods focus on labeling these potentially positive instances.30
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Considering the limited structure of standard MIL, a variety of assumptions on relating instance labels1

with bag labels are introduced in [5] as generalized MIL. In generalized MIL, a certain portion of potentially2

positive instances must be contained in positive bags. Moreover, these positive instances may belong to different3

data regions of the instance-feature space and are effective on the bag labels. As a generalized assumption, [6]4

proposed so called collective assumption [7] in which each instance equally and independently contributes to5

the bag label. A wide range of MIL methods prioritize generalized MIL to embrace different MIL applications6

by managing multi-instance data [8]. Main point of the discussion in [8] is that MIL methods differ from each7

other based on how they managed the instance relationships. To tackle generalized MIL problems, we predict8

bag class labels by aggregation of instance contributions. Instance-level scores are obtained by an appropriate9

mapping function of feature weights. Then, a bag is represented by simply averaging the instance-level scores,10

which is analogous to the collective assumption. This kind of approach deals with a variety of MI assumptions11

by optimizing feature weights to assess contribution of each instance to the bag label.12

Researchers make use of margin maximization based approaches to solve MIL problem [9–11]. Generally,13

inter-bag margin is maximized but the ways of relating instance margin to bag margin differ. More importantly,14

most of the existing optimization-based methods suffer from scalability problems, which is a major challenge15

in MIL problems. Considering the limitations of previous approaches, we propose a novel MIL framework. As16

opposed to margin maximization based MIL models, we build MI classifiers using a simplified optimization17

framework. Our approach models the contributions of instances to the bag labels rather than individually18

labeling them. The instance level contributions are implicitly mapped into a latent variable to obtain the bag19

class membership estimates.20

Figure 1 shows the way of mitigating instance information to obtain a bag-level mapping on an illustrative21

example from UCSB Breast Cancer dataset [12]. Two cellular images belonging to malignant (positive) class22

and benign (negative) class are considered as bags. Instances of the bags are sampled as square patches of the23

images on a grid as exemplified in Figure 1. In classification, the aim is to predict the label of a bag given its24

set of instances. Instance-level estimates between 0 and 1 are calculated by a linear decision function. For each25

bag, scores of corresponding instances are averaged to assess bag-level class probability estimate. Classification26

scores of the bags in Figure 1 are predicted as 0.76 for the positive bag, and 0.22 for the negative bag by simply27

averaging the pseudo-class memberships of corresponding instances.28

In our proposal, we also process all training instances and their relationships to determine bag classes.29

It is shown in [13] that there is weak correlation between bag-level and instance-level performance of MIL30

classifiers. Hence, instance labels are not necessarily to be predicted correctly and true labels of instances are31

not known in most of the datasets. In the described example, only the final bag label estimate is sufficient for32

diagnosis of the disease as shown in Figure 1. This way, instances and corresponding bags are related without33

enforcing any requirements on the binding MIL assumption. Note that certain informative instances from the34

concept regions are prioritized by using a scoring idea to assess bag-level estimates. Similarly, insignificant35

instances are ineffective through proper determination of their scores. Bag class labels are determined based on36

instance level pseudo-membership scores analogical with the collective MI assumption [7].37

Resulting classifiers are linear functions in the given feature space, and have low capability of modeling38

nonlinear decision boundaries. An appropriate transformation of the original features is needed to apply39

classifiers to nonlinear data. As mentioned in [14], bags are not independently identically distributed samples40

of the underlying instance-feature space. Exploiting unsupervised dissimilarities leads to capture the unknown41

and potentially nonlinear relationships between instances from positive and negative bags. An instance selection42
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Figure 1. An example of bag class membership estimation.

method, MILES [2] selects the most important pairwise instance dissimilarities that characterize positive and1

negative classes. To capture nonlinear relationships among all training instance vectors, we consider an instance2

dissimilarity based data representation. The new features are the dissimilarities to all training instances which3

embed bags to a higher dimensional space.4

We compare our learning procedure with state-of-the-art MIL methods on a wide range of MIL benchmark5

datasets to highlight the classification success on different application domains. Section 2 is an overview of6

related works. Section 3 provides the formal description and proposed linear optimization based MIL framework.7

The datasets, computational results and discussions are presented in Section 4. Finally, conclusions and the8

overview of the future research directions are given in Section 5.9

2. Related Work10

Most of the instance-level MIL approaches adopt standard MIL assumption. The first MIL paper [1] introduces11

formal descriptions of both MIL problem and standard MIL assumption whereas [15] presents a survey on12

standard MIL methods. In addition to the first MIL method axis parallel rectangles (APR) [1] and Citation-13

kNN [16], a generative method Diverse Density (DD) [17] and its variant EM-DD [18] also solve standard MIL14

problem. A famous MIL method, MILES [2] performs embedded instance selection iteratively and assumes15

instances in both positive and negative bags belong to the target concept. Aforementioned methods incorporate16

machine learning algorithms and their performance depend on the adaptation process to given data, such as17

fine tuning of parameters and data preprocessing. Hence, it is hard to prove that these methods suit up to a18

wide range of datasets.19

Mathematical programming approaches are also considered to solve MIL problems. MIL formulations in20

the literature are extensions of generic SVM model [9, 11, 19–21] where instance level margin maximization is21

performed for bag classification initially assuming that all instances in positive bags are positive. To compensate22

the impact of this assumption, a witness selection procedure is employed [9, 11, 21]. For each bag from positive23

class, an instance is selected as a witness to represent that bag. However, only standard MIL assumption24

suits this specification. In sparse transductive MIL [19], a Concave Convex Procedure (CCCP) is used to solve25

their non-convex formulation. In mi-SVM and MI-SVM formulations [9], new constraints satisfying existence of26

witnesses are introduced. 1-norm SVM-based formulation in [20] is a linear program with bilinear constraints.27

MIL problem is formulated as a mixed 0−1 quadratic programming problem in [21]. In [11], SVM formulations of28

MIL problem are derived as a hard and soft margin maximization models. Exact solution methods like CCCP in29

[19] are time consuming. Heuristic methods proposed in [11, 21] are considerably fast in problems with moderate30

sized datasets but do not guarantee the quality of final solution [20]. As opposed to quadratic or mixed-integer31
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quadratic programs, we solve models with a linear objective function and constraints. Furthermore, instead of1

repeatedly solving subproblems, we solve a single linear program, which is solvable in polynomial time.2

Discriminative methods Citation-kNN [16], mi-SVM [9], MI-SVM [9] and KI-SVM [22] perform instance3

level learning and permit witness identification. Witness instances selected from positive bags may belong to4

various regions of the instance-feature space, which is the multiple concept assumption. When positivity of bags5

is due to multiple concepts, relationships between instances must be identified to represent the bags. A typical6

way of modeling instance relationships is using the dissimilarities between instances. A subset of instances7

or a representative set selected from the instance-feature space is referred to as prototypes. Dissimilarity8

based MIL methods [2, 14, 23–25] exploit dissimilarities to the prototypes to extract useful information with9

various data representations. MILES [2] and MILD [23] assume that instances from different concepts are10

independently identically distributed, whereas MILDS [24] and Clustering MIL [25] select only some instances11

as prototypes. Differently from the aforementioned methods, we learn representations by processing all instances12

and subsequently model instance contributions to bag labels.13

3. Linear programming for multiple instance learning14

3.1. Problem description15

In multiple instance learning (MIL), a bag, Bj is formed by nj many d -dimensional instances Bj = {xi : xi ∈16

<d , i = 1, 2, . . . , nj} . A bag Bj is also associated with a binary class label yj ∈ {−1, 1} . χ = {Bj : j = 1, ..,m}17

is the set of given bags with their corresponding instance vectors. It is practical to transform the original input χ18

using function φ(xi), which admits to another representation of input data, say χ ′ . For instance, the similarities19

to prototype instances [2], or a graph kernel [14] transforms the original data to discover its underlying structure.20

Given χ or χ ′ with bag labels yj , j = 1, . . . ,m , our MIL task is to predict labels of unseen bags based upon21

a linear decision function. For each bag, instance-level scores are computed to determine the bag class label.22

3.2. The proposed linear programming model of MIL23

To formulate MIL problem as a linear programming (LP) model, we define the sets, parameters and decision24

variables used in the model as follows.25

Indices:26

i = 1, 2, . . . , n : indices for the instances27

j = 1, 2, . . . ,m : indices for the bags28

Sets:29

J+ = {j : yj = 1} : set of positive bags30

J− = {j : yj = −1} : set of negative bags31

J = J+ ∪ J− : set of all bags32

I+ = {i : i ∈ Ij ∧ j ∈ J+} : set of instances in positive bags33

I− = {i : i ∈ Ij ∧ j ∈ J−} : set of instances in negative bags34

I = I+ ∪ I− : set of all instances35

Parameters:36

xi ∈ <d , i = 1, 2, . . . , n : instance vectors37

yj , j = 1, 2, . . . ,m : bag labels38

Decision variables:39

w : d-dimensional feature weight vector40
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b : bias of the linear function1

mi , i = 1, 2, . . . , n : instance pseudo class memberships2

βj , j = 1, 2, . . . ,m : bag class memberships3

σjl , j ∈ J+ , l ∈ J− : bag class membership differences4

5

Our learning approach ranks the bags in a binary classification problem. Namely, a positive bag is ranked

before an arbitrary negative bag after classification. Area under the ROC curve (AUC) is the most commonly

used measure to evaluate the success of ranking problems. Using a least-squares SVM algorithm, [26] solves

AUC maximization problem by comparing positive and negative instance pairs. AUC can be calculated using

Wilcoxon-Mann-Whitney (WMW) statistic [27], which can be written for positive and negative bags as

W =

∑
j∈J+

∑
l∈J− I(βj , βl)

|J+||J−|
,

where I(βj , βl) =

{
1 if βj > βl,

0 otherwise.
6

WMW statistic yields the quantity of positive bags having higher rank compared to the negative bags,7

which is divided by the number of all possible bag pairs. Our LP model minimizes pairwise positive and negative8

bag class differences, which is equivalent to optimization of the bag ranks [28]. Therefore, comparison of positive9

and negative bag pairs can also be casted as solving AUC maximization problem.10

Instead of labeling each instance individually, determination of class membership scores permits contribu-11

tions of instances from multiple concepts with different importance degrees to the bag class. Hence, membership12

values are not assessed by favoring a specific target concept as observed in the standard MIL problem. This13

property emphasizes the superiority of our approach compared to the margin maximization based methods14

where standard MIL assumption is deemed [9, 16, 22]. Finally, a linear binary MIL classifier is built by solving15

the following model:16

(LP) max
w,b,β,m,σ

∑
j∈J+

∑
l∈J−

σjl (1a)

st 〈w,xi〉+ b = mi ∀i ∈ I (1b)

βj =
1

nj

∑
i∈Ij

mi ∀j ∈ J (1c)

βj = βl + σjl ∀j ∈ J+,∀l ∈ J− (1d)

0 ≤mi ≤ 1 ∀i ∈ I (1e)

The values of variables mi,∀i = 1, 2, . . . , n correspond to instance pseudo class memberships which are17

bounded by Constraint (1e). As introduced, w is the feature weight vector, whereas b is the bias parameter18

that are optimized to form an instance level separating hyperplane. This hyperplane decides the instance pseudo19

class memberships in Constraint (1b). Constraint (1c) forms the bag class memberships βj ,∀j = 1, . . . ,m based20

on the summation of instance pseudo class memberships for each bag, which is normalized with the size of the21

corresponding bag, nj . Constraint (1d) characterizes the bag differences for each positive and negative bag22

pair which are imposed by the slack variables σjl , ∀j ∈ J+ and ∀l ∈ J− . Finally, the objective function23
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(1a) maximizes the summation of these slack variables to maximize bag class separation. The resulting model1

is efficient to solve since it has a linear objective function and constraints. All the instances in training bags2

constitute to the classifier during optimization. LP solution provides a classifier 〈w,xi〉 + b which determines3

instance pseudo-class membership value for an arbitrary d -dimensional instance vector xi , i.e. mi = 〈w,xi〉+b .4

For each instance in the dataset, a membership value between 0 and 1 must be decided to map the bag5

level estimates onto the 0 to 1 interval. We regard this membership value as pseudo class label estimate. If6

the membership value is less than a threshold, the instance can be assigned to the negative class. Otherwise,7

the instance is considered to belong to the positive class. The threshold can be selected based on the highest8

accuracy level on training bags. We assess the pseudo-membership values of instances to find bag-level estimates,9

not for instance labeling since the actual instance labels are not known in MIL tasks. Each bag has a10

class membership value which is obtained related to membership values of its instances. Class membership11

estimates for bags are determined by averaging pseudo class membership values of its possessed instances as12

βj = 1
nj

∑
i∈Ij mi, ∀j ∈ J . This representation eliminates single witness instance selection encountered in13

previous proposals and leads to an optimization problem with continuous variables and linear constraints. To14

classify a test bag, instance level scores are calculated and then averaged to find bag class label estimates. Such15

an approach is simple and efficient to implement and optimize and there are no hyperparameters that need to16

be tuned.17

3.3. Data representation18

In MIL, it is not enough to describe objects with multiple instance vectors, the relationships between these19

vectors must also be represented. The researchers conducted MIL experiments on various data representations20

by calculating the dissimilarities to selected prototypes [2, 23, 24, 29, 30]. In our LP-based MIL framework,21

we preprocess the input data to allow learning different characteristics of MIL datasets. Solving LP model22

produces a decision boundary by means of a linear classifier. Most of MIL datasets are formed of complex23

objects with potentially nonlinear instance relationships. The input data can be transformed to carry out24

nonlinear classification in a new, possibly higher dimensional space. A linear classifier is simple to apply and25

capable of nonlinear separation in the new feature space [31].26

Given a set of bags χ = {B1, . . . , Bm} , each bag Bj is composed of nj many instances. The original27

instance-feature space is described with d many features. Initially, both training set and test set are preprocessed28

by standardization using the feature means and standard deviations throughout the experiments. Preliminarily,29

we processed pairwise training instance dissimilarities to learn a MIL classifier. The dissimilarities between30

instances xi and xk are calculated by using the squared Euclidean distance δik = (xi − xk)
T

(xi − xk). In a31

test bag, distances to all training instances are calculated for each instance of that bag. The dimensionality32

of the new space equals to total number of instances in training bags, i.e., n and the new representation is33

referred to as Rinstance . When n is large, there are large number of variables in LP model which introduce34

computational difficulties. Moreover, since the n × n dimensional instance dissimilarity matrix is large and35

dense, the resulting mathematical model also has dense columns. Consequently, the solution time is affected36

from dense columns especially for large datasets. Curse of dimensionality and overfitting due to noisy features37

in the enlarged representation are categorized as the further problems. Thus, alternative representations can38

be considered to avoid solution of large models and prevent overfitting on large datasets.39

To solve LP model on large-scale MIL problems, we offer a simplified version of the first data representa-40

tion using clustering. Clustering instances is conducted in MIL setting either to detect the target concept [25]41
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or to obtain a new bag-level data representation [32, 33]. In our clustering-based data representation, cluster1

centers are selected as prototypes. After clustering the instances using k-means algorithm, instance-to-prototype2

distances build up the input data. Since dimensionality of the input dissimilarity matrix is decreased by clus-3

tering (i.e., there exists κ many clusters), clustering-based data representation is advantageous in datasets4

with large number of instances. We define the dissimilarity between instance xi and cluster center cj as5

rcij = (xi − cj)
T

(xi − cj) where c1, . . . , cκ are the cluster centers. As a result, each instance is described by6

a κ-dimensional feature vector. In the final representation, which is denoted by Rcluster , the total number of7

distance calculations are reduced compared to Rinstance since the selected prototypes are cluster centers instead8

of all training instances.9

Since instance label information and binding MI assumption are the two main ambiguities of MIL10

problems, determination of the informative instance dissimilarities is necessary to remove uncertainty in bag11

classification. The two alternative representations can be tested on a subset of the given data to understand12

the underlying structure of the whole data. Simple calculations are performed by selected Euclidean distance13

metric and no parametrization is required to obtain Rinstance representation. In order to reduce computational14

time, Rcluster representation can be exploited.15

4. Experiments and results16

4.1. Experimental setup and evaluation criteria17

Initially, we transform the data to zero mean and unit variance. We perform 5 repeats of a stratified ten-fold cross18

validation to evaluate the classifier performance on each dataset. LP problems are modeled in Gurobi Python19

interface and solved using Gurobi 7.5 [34]. Input data representations are acquired using scikit-learn [35] library.20

All the experiments are carried out on a Windows 10 system with dual core CPU (i5-3470, 3.2 GHz) and 12 GB21

of RAM. In order to perform a fair comparison over state-of-the-art MIL methods, we use the same train/test22

split indices for each method and experiment. All the scripts, datasets and cross-validation indices are made23

available on our supporting page [36]. Rinstance representation has no parameters to be predetermined whereas24

Rcluster has the input parameter number of clusters κ . The commonly used statistical approach of setting the25

best number of clusters is cross-validation. We simply identify value of κ using the elbow method based on26

total within cluster variance and increase the gain in computational time. After learning the representations,27

LP formulation in Model (1) is solved to obtain the bag classifier. The convergence tolerance for the barrier28

algorithm is set to 0.01 and default values of the solver are used for the other parameters. Finally, state-of-the29

art approaches are experimented via their provided MATLAB [37] implementations. We followed the settings30

proposed by the authors. MInD [29] employs default parameters. The parameters of miFV [38] are PCA energy,31

number of components and cost parameter of linear SVM. These parameters are selected by an inner ten-fold32

cross-validation. PCA energy is selected from the set {0.8, 0.9, 1} and the number of Gaussian components33

alternatives are {1, 2, 3, 4, 5} . The cost parameter levels of the linear SVM classifier are {0.05, 1, 10} .34

Performance of a MIL classifier can be evaluated the area under of the receiver operating characteristic35

curve (ROC) [39]. ROC curve plots the true positive rate versus the false positive rate of a classifier depending36

on all decision thresholds. The area under ROC curve (AUC) is a commonly used metric to compare different37

classification algorithms. AUC is a more discriminative measure than accuracy [40] since a predetermined38

decision threshold is necessary to report accuracy. Besides, AUC maximization is related to maximization of39
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positive and negative bag membership differences in LP model. AUC also improves classification accuracy1

by ranking positive bags ahead the negative bags, and is therefore an appropriate evaluation metric for our2

experiments.3

4.2. Results4

We perform experiments on real world MIL datasets to verify the effectiveness of our approach. MIL datasets5

are described in Table 1 in our webpage [36] and are categorized based on the application domain. To the best of6

our knowledge, this is the largest MIL dataset repository with reported results on a proposed MIL framework.7

Each dataset has different characteristics such as number of bags, number of instances in bags and number8

of features. In addition, minimum and maximum number of instances in bags, number of positive bags and9

number of negative bags are also provided in Table 1 [36]. For some datasets such as Corel [2] and Birds [4],10

class imbalance occurs at bag-level. Another property of the datasets is discussed in [41] is the low proportion11

of positive instances in positive bags, as observed in Newsgroups [14]. As a consequence, we tackled MIL12

problems from different application domains and investigate the utility of our MIL framework across various13

data characteristics.14

To demonstrate the effectiveness and superiority of LP-based approach on real-world datasets, we also15

experimented the following baseline methods: MILES [2] with a radial basis kernel, miFV [38] and dissimilarity-16

based representations (MInD) [29] with Dmeanmin representation. We solve LP problem (Model (1)) on Rinstance
17

and Rcluster representations of the datasets described in Table 1 [36]. At first, the significance of the differences18

are discussed according to the procedure recommended by [42]. A Friedman test [43] is applied to the ranks of19

the algorithms over all datasets. Since the null hypothesis that all methods have equal AUC performance at20

the 0.05 level, we proceed with the Nemenyi test [44] to check whether the pairs of classifiers are significantly21

different from each other. Pairwise differences of the methods are significant if their average ranks differ by at22

least the critical difference (CD). The resulting CD value for four classifiers at significance level 0.05 is 0.561.23

By using the rankings of the algorithms on each dataset and the average ranks, a CD diagram [42] shown in24

Figure 2 is obtained. Performances of LP with Rinstance , MInD with Dmeanmin and miFV are not significantly25

different from each other according to the differences demonstrated in Figure 2. miFV and LP with Rcluster are26

not significantly different from each other since their average rank difference is below the CD. Performance of27

LP model critically differs when either Rinstance or Rcluster representations form the input data.28

Scatter plots in Figure 3 shows the pairwise comparisons of the approaches. Two methods equally perform29

on a dataset if the corresponding point falls on the line x = y . The points falling below the line x = y represent30

the datasets that are more accurately classified by the method on the x axis. Otherwise if a point is above31

the line x = y , the approach on the y axis is more successful on the corresponding dataset. Figure 3(a) shows32

the scatter plot comparison of LP results on Rinstance and Rcluster representations and performance of Rinstance
33

is more successful in 48 datasets. As seen in Figures 3(b) and 3(c), AUC results of LP with Rinstance are34

competitive with the other two methods. However, on a group of datasets performances of both Dmeanmin and35

miFV are superior, which are the text classification datasets. In real-world MIL applications except for text36

classification, LP with Rinstance is the leading method as the ranking results in Figure 4 indicates that and37

its difference with all other methods is larger than the CD 0.733. We also compare LP solutions on Rinstance
38

representation with Dmeanmin and miFV in detail using the scatter plots without Newsgroups and Web datasets39

as shown Figure 5. On the remaining problem categories, LP with Rinstance is slightly better than the other40
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Figure 2. The average ranks for MIL methods on 71 datasets based on mean AUC performance. The critical difference
at 0.05 is 0.561.

(a) AUC comparison of

Rinstance and Rcluster repre-
sentations

(b) AUC comparison of LP

with Rinstance and MInD
with Dmeanmin

(c) AUC comparison of LP

with Rinstance and miFV

Figure 3. Pairwise AUC comparison of various MIL methods on 71 real-world datasets.

Figure 4. The average ranks for MIL methods on 42 datasets based on mean AUC performance. The critical difference
at 0.05 is 0.733.

approaches as shown in the pairwise comparisons in Figure 5.1

AUC results of all methods on 71 datasets are provided in Table 1. LP model has superior performance2

on Musk 1 and Mutagenesis 2 datasets especially with the Rinstance representation. The best AUC result on3

Protein dataset is obtained by LP solution on Rcluster representation. Result of LP with Rinstance representation4

9
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(a) AUC comparison of LP

with Rinstance and MInD
with Dmeanmin

(b) AUC comparison of LP

with Rinstance and miFV

Figure 5. Pairwise AUC comparison of various MIL methods on biology, image categorization and audio recording
classification datasets.

on Protein dataset is not provided due to the memory restrictions. In Musk 2, MInD with Dmeanmin has the1

best classification performance which is followed by miFV. Best average results for Mutagenesis 1 are obtained2

by miFV and LP with Rcluster is the second best method. In most of the Corel image datasets, LP with Rinstance
3

representation is the leading method in addition to its best performance on image datasets UCSB Breast Cancer,4

Elephant, Fox and Tiger. MInD with Dmeanmin also successful on Corel image datasets. MInD with Dmeanmin5

has the best performance on Newsgroups datasets whereas miFV performs better than other methods in Web6

recommendation datasets. Finally, LP with Rinstance representation is quite successful compared to the other7

methods in Birds datasets.8

4.3. Computational time analysis9

Time complexity of obtaining Rinstance representation using Euclidean distances to instances in training bags10

is O(n2d) and no parametrization is required. We use k-means clustering algorithm to form the Rcluster
11

representation. Time complexity of k-means algorithm is O(Inκd) where κ is the number of clusters and12

I is the necessary number of iterations until convergence. After determining the κ many cluster centers, it13

takes O(nκd) times to have the final Rcluster representation. LP problems belong to the complexity class P14

[45]. We solved LP formulations using barrier solver of Gurobi version 7.5, which means that the solutions are15

generated in polynomial time. Besides, the testing times after LP solutions are O(n) for Rinstance and O(κ) for16

Rinstance . The execution times are recorded including the data representation and classifier generation times.17

Specifically, we report training and testing times of data representation learning and the time taken to build a18

classifier which is the model solution time. We also report representation learning times of the leading methods19

miFV [38] and MInD [29] with Dmeanmin . Unlike LP-based MIL, both miFV [38] and MInD [29] represents20

bags using a new bag-level feature vector. Then, bag representation vectors form the input of the linear SVM21

classifier in polynomial time. LibLinear package [46] is employed in miFV [38] to build a linear SVM classifier22

and corresponding time complexity is O(n), whereas MInD [29] uses LiBSVM [47] implementation where the23

linear SVM classifier learning time scales between O(n2) and O(n3). Prediction time of a test bag takes O(h)24

times where h is the dimensionality of the obtained bag representation. Note that the testing times of LP25

solutions and SVM classifiers of miFV [38] and MInD [29] are negligible since only a few vector multiplications26

and arithmetic operations are performed.27
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KÜÇÜKAŞCI et al./Turk J Elec Eng & Comp Sci

Table 1. AUC and standard error (× 100) results of various MIL methods. 10 fold cross-validation is repeated 5 times.
Dataset Algorithm AUC (%)

LP

Rinstance Rcluster MInD (Dmeanmin) miFV
Musk 1 ♣ 95.7 (0.9) 96.8 (0.8) 94.5 (1.2) 94.1 (1.2)
Musk 2 ♣ 93.1 (1.0) 92.7 (1.1) 97.6 (0.8) 94.7 (1.2)
Mutagenesis 1 ♣ 85.2 (1.5) 86.7 (1.3) 85.1 (1.2) 88.7 (1.2)
Mutagenesis 2 ♣ 78.8 (3.9) 78.5 (4.0) 64.7 (5.3) 68.3 (5.0)
Protein ♣ - 83.9 (1.4) 52.3 (3.7) 80.0 (1.9)
Elephant ♥ 94.9 (0.5) 90.5 (1.0) 93.6 (0.9) 91.4 (0.9)
Fox ♥ 68.6 (1.4) 64.2 (1.5) 61.2 (1.7) 67.5 (1.5)
Tiger ♥ 90.5 (0.9) 89.3 (1.0) 85.3 (1.1) 87.5 (1.1)
Corel, African ♥ 94.5 (0.6) 93.2 (0.7) 96.7 (0.4) 94.4 (0.6)
Corel, Antique ♥ 89.4 (0.8) 90.0 (0.5) 92.2 (0.6) 90.8 (0.6)
Corel, Battleships ♥ 93.3 (0.6) 95.2 (0.4) 98.1 (0.2) 92.9 (0.6)
Corel, Beach ♥ 99.5 (0.1) 98.8 (0.2) 98.3 (0.4) 97.4 (0.4)
Corel, Buses ♥ 97.9 (0.2) 96.3 (0.3) 97.3 (0.4) 94.0 (0.7)
Corel, Cars ♥ 94.6 (0.6) 92.6 (0.7) 94.8 (0.5) 91.7 (0.7)
Corel, Desserts ♥ 98.8 (0.1) 95.9 (0.4) 97.4 (0.3) 97.3 (0.4)
Corel, Dinosaurs ♥ 98.5 (0.2) 95.3 (0.3) 98.3 (0.2) 94.4 (0.5)
Corel, Dogs ♥ 92.4 (0.6) 88.6 (0.8) 91.9 (0.7) 86.4 (1.2)
Corel, Elephants ♥ 97.0 (0.2) 96.4 (0.2) 98.2 (0.2) 95.7 (0.4)
Corel, Fashion ♥ 98.9 (0.4) 98.1 (0.1) 99.0 (0.1) 98.9 (0.2)
Corel, Flowers ♥ 96.2 (0.4) 93.8 (0.5) 94.7 (0.6) 93.8 (0.6)
Corel, Food ♥ 99.8 (0.0) 98.3 (0.1) 99.8 (0.1) 98.7 (0.1)
Corel, Historical ♥ 99.8 (0.0) 98.8 (0.1) 99.8 (0.0) 98.5 (0.3)
Corel, Horses ♥ 90.6 (0.6) 89.3 (0.7) 92.0 (0.6) 88.9 (0.8)
Corel, Lizards ♥ 97.1 (0.3) 95.7 (0.5) 98.0 (0.3) 95.8 (0.5)
Corel, Mountains ♥ 99.9 (0.1) 99.7 (0.1) 100 (0.0) 99.9 (0.0)
Corel, Skiing ♥ 96.9 (0.3) 93.1 (0.5) 96.0 (0.3) 95.9 (0.4)
Corel, Sunset ♥ 80.4 (1.2) 83.1 (0.9) 83.7 (1.0) 77.1 (1.3)
Corel, Waterfalls ♥ 97.0 (0.3) 95.4 (0.3) 97.5 (0.2) 93.4 (0.5)
UCSB Breast Cancer ♥ 93.0 (2.0) 90.3 (2.2) 83.1 (2.7) 86.8 (2.5)
Newsgroups 1, alt.atheism ♠ 47.0 (2.5) 66.8 (2.8) 94.1 (1.0) 91.1 (1.2)
N.g. 2, comp.graphics ♠ 61.0 (2.3) 50.4 (3.0) 89.8 (1.6) 57.2 (3.2)
N.g. 3, comp.os.ms-windows.misc ♠ 44.6 (2.8) 63.4 (2.5) 81.0 (2.1) 66.8 (2.2)
N.g. 4, comp.sys.ibm.pc.hardware ♠ 53.0 (2.7) 56.5 (3.2) 85.7 (2.2) 69.5 (2.4)
N.g. 5, comp.sys.mac.hardware ♠ 50.6 (2.2) 64.6 (3.2) 85.2 (1.6) 65.0 (2.6)
N.g. 6, comp.windows.x ♠ 59.5 (2.6) 57.8 (2.8) 89.0 (1.7) 82.2 (2.0)
N.g. 7, misc.forsale ♠ 53.5 (2.3) 56.9 (3.1) 79.0 (2.0) 72.6 (2.5)
N.g. 8, rec.autos ♠ 48.5 (2.5) 43.0 (3.3) 87.0 (1.7) 72.7 (2.5)
N.g. 9, rec.motorcycles ♠ 63.0 (2.8) 43.8 (2.7) 32.6 (3.2) 81.2 (2.4)
N.g. 10, rec.sport.baseball ♠ 64.3 (2.4) 49.8 (3.0) 91.4 (1.4) 86.4 (1.8)
N.g. 11, rec.sport.hockey ♠ 49.0 (2.5) 45.8 (3.2) 95.8 (0.8) 87.9 (1.5)
N.g. 12, sci.crypt ♠ 52.2 (2.6) 55.5 (2.8) 84.0 (1.9) 85.1 (1.8)
N.g. 13, sci.electronics ♠ 45.8 (2.1) 48.8 (4.0) 94.6 (1.0) 61.6 (2.6)
N.g. 14, sci.med ♠ 61.2 (2.5) 46.8 (3.2) 94.2 (0.8) 84.3 (1.7)
N.g. 15, sci.space ♠ 43.0 (2.3) 51.6 (3.1) 90.5 (1.4) 82.9 (1.9)
N.g. 16, soc.religion.christian ♠ 41.6 (2.7) 43.7 (3.0) 89.8 (1.4) 84.9 (1.5)
N.g. 17, talk.politics.guns ♠ 41.6 (2.7) 50.8 (2.8) 87.4 (1.5) 82.7 (2.0)
N.g. 18, talk.politics.mideast ♠ 56.7 (2.5) 49.0 (3.1) 87.4 (1.7) 85.8 (1.9)
N.g. 19, talk.politics.misc ♠ 51.5 (1.9) 50.8 (2.3) 80.2 (1.9) 67.2 (2.9)
N.g. 20, talk.religion.misc ♠ 38.6 (2.3) 61.9 (2.7) 83.4 (2.2) 80.9 (2.3)
Web 1 ♠ 75.9 (3.0) 64.2 (3.2) 63.4 (4.2) 83.2 (2.3)
Web 2 ♠ 46.3 (4.1) 64.7 (3.6) 47.4 (4.2) 37.1 (2.5)
Web 3 ♠ 64.5 (4.2) 62.2 (3.9) 70.8 (4.6) 73.3 (3.6)
Web 4 ♠ 74.1 (3.7) 60.4 (3.8) 79.9 (3.6) 81.2 (3.4)
Web 5 ♠ 73.2 (3.5) 53.4 (4.0) 71.1 (3.7) 68.7 (3.4)
Web 6 ♠ 56.4 (4.4) 41.7 (4.4) 52.5 (4.2) 64.6 (3.6)
Web 7 ♠ 64.3 (2.9) 46.1 (3.2) 69.0 (2.8) 69.7 (3.4)
Web 8 ♠ 50.7 (3.0) 46.9 (2.4) 40.9 (2.6) 53.7 (2.4)
Web 9 ♠ 44.0 (3.2) 45.5 (3.0) 73.5 (2.7) 68.5 (3.1)
Birds, Brown creeper ♦ 99.4 (0.1) 98.4 (0.2) 89.9 (0.5) 98.8 (0.2)
Birds, Chestnut-backed chickadee ♦ 93.9 (0.4) 88.8 (0.7) 85.3 (0.8) 92.3 (0.8)
Birds, Dark-eyed junco ♦ 95.4 (0.6) 93.4 (0.7) 85.6 (1.3) 88.1 (1.2)
Birds, Hammonds flycatcher ♦ 100.0 (0.0) 100 (0.0) 94.4 (0.7) 94.0 (0.7)
Birds, Hermit thrush ♦ 93.9 (1.4) 90.9 (1.0) 57.8 (4.4) 66.2 (3.1)
Birds, Hermit warbler ♦ 98.6 (0.2) 98.2 (0.2) 78.1 (1.5) 94.0 (0.6)
Birds, Olive-sided flycatcher ♦ 97.4 (0.2) 96.2 (0.3) 89.6 (0.6) 95.9 (0.4)
Birds, Pacificslope flycatcher ♦ 96.6 (0.3) 94.5 (0.4) 75.4 (1.0) 98.6 (0.2)
Birds, Red-breasted nuthatch ♦ 98.5 (0.2) 94.7 (0.4) 87.6 (0.7) 94.6 (0.5)
Birds, Swainsons thrush ♦ 98.8 (0.2) 94.5 (0.4) 76.7 (1.7) 91.4 (1.0)
Birds, Varied thrush ♦ 100.0 (0.0) 99.6 (0.1) 84.0 (1.2) 93.0 (0.7)
Birds, Western tanager ♦ 99.2 (0.1) 97.0 (0.3) 84.9 (1.8) 98.9 (0.2)
Birds, Winter wren ♦ 99.2 (0.1) 98.5 (0.2) 93.1 (0.7) 99.7 (0.1)

MIL application categories: ♣ molecular activity prediction, ♥ image annotation, ♠ text classification, ♦ audio recording
classification.
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In order to observe the time complexity, pseudo-synthetic datasets have various properties such as number1

of bags and number of features are generated. All the methods are experimented on pseudo-synthetic datasets2

that originate from Elephant dataset. Proportion of bags δm and proportion of features δd are selected from3

the set {0.2, 0.4, 0.6, 0.8, 1} . We repeat 10 replications of each setting combination and plot the average results.4

Figure 6 shows representation learning times of LP-MIL, miFV [38] and Dmeanmin [29] on the training set.5

Dmeanmin [29] and Rcluster increases linearly in terms of the increase in number of features and number of bags.6

In Rinstance representation and miFV [38], a cubic growth is followed as the number of bags increases. It can be7

seen from Figure 7 that testing times of miFV [38] and Rcluster representation are robust to the changes in the8

data size properties. Effect of distance calculations degrade representation learning times both on training and9

test sets when number of bags and number of features are increased in Rinstance representation and Dmeanmin10

[29]. The performance of LP-based MIL especially depends on the model solution time. Once the LP model is11

built, the elapsed time during optimization is the classifier building time. Figure 8 shows the changes in model12

solution times for Rinstance and Rcluster representations. Since dimensionality of Rinstance is proportional to13

number of the training instances, LP solution times can be challenging in datasets with large number of bags14

or instances as demonstrated in Figure 8(a). Rcluster representation is simple and generally low-dimensional15

compared to Rinstance . Moreover, linear increase in the solution time curve in Figure 8(b) when solving LP16

formulation on Rcluster representation with increasing number of bags promotes this representation on large17

datasets.18

(a) Rinstance (b) Rcluster (c) miFV (d) Dmeanmin

Figure 6. Training times of LP-MIL, miFV and Dmeanmin on Elephant dataset with changing values of δm and δd .

(a) Rinstance (b) Rcluster (c) miFV (d) Dmeanmin

Figure 7. Testing times of LP-MIL, miFV and Dmeanmin on Elephant dataset with changing values of δm and δd .

5. Conclusions19

In this paper, we propose a multiple instance learning framework including a new mathematical model of20

multiple instance classification and enhanced data representations. We efficiently solve the MIL problem without21

12
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(a) Rinstance + LP (b) Rcluster + LP

Figure 8. Solution time of LP on representations Rinstance and Rcluster of Elephant dataset with changing values of δm
and δd .

imposing strict assumptions on object descriptions. Our approach embeds instance relationships via inputting1

various data representations and determines class memberships of the objects. To the best of our knowledge,2

this is the first linear programming based classification approach in MIL. We compare our learning procedure3

with state-of-the-art MIL methods on a wide range of machine learning datasets to highlight the classification4

success on different application domains. Unlike the previous mathematical models of MIL, we do not force5

regular margin maximization. This leads to avoiding quadratic optimization, which is computationally more6

difficult than linear programming. Moreover, a common initialization setting of previous models is that all7

the instances in positive bags are positive and all the instances in negative bags are negative. This strong8

assumption is not required in our approach since we only calculate pseudo-class memberships of instances9

regardless of the class label of their owner bag. We also exploit different data representations to improve success10

of the linear classifier. Instance dissimilarity spaces are constructed to represent the input data to perform11

nonlinear separation. In datasets with large number of instances, it is computationally demanding to form the12

new instance-feature space. In order to reduce amount of distance calculations between pairs of instances, we13

employed data clustering. Instead of instance dissimilarities, distances to the centers of generated clusters are14

the new features.15

In this work, linear programs are solved to perform MI classification. Proposed mathematical models are16

efficient to solve on different input data representations. Processing the instance-level relationships and forming17

the bag label estimates using the instance-level scores deliver promising classification success on diversified18

real world MIL applications. As an extension, MIL can be used in large scale data mining applications19

requiring decentralized data storage. To decrease the solution times and considering the restrictions on data20

availability in such applications, subsets of the original data can be used to form a MI classifier. Inspections21

on the potential loss in classification accuracy due to not being able to process whole data may give rise to a22

reformulation of the proposed model. A commonly seen property in optimization-based data mining approaches23

is overfitting. Both data representation and classifier generation processes may reinforce this situation. Potential24

overfitting problems on some MIL datasets can be recovered by using an ensemble formed by repeatedly solving25

mathematical models on different subsamples of the data.26
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