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Abstract—We focus on the integrated seaside operations in
container terminals, namely the integration of berth allocation,
quay crane assignment and quay crane scheduling problems.
We first develope a mixed-integer linear programming formu-
lation. Then, we propose an efficient cutting plane algorithm
based on a decomposition scheme. Our approach deals with
berthing positions of the vessels and their assigned number of
cranes in each time period in a master problem, and seeks the
corresponding optimal crane schedule by solving a subproblem.
Our computational study shows that our new formulation and
proposed solution method yield optimal solutions for realistic
sized instances with up to sixty vessels.

I. INTRODUCTION

As a consequence of the drastic increase in container traffic,
the efficient management of container terminals has become
a crucial issue and attracted a considerable research effort
from various disciplines, including Operations Research [2],
[3]. This is a difficult task since there is a myriad of inter-
dependent operations, which can be grouped as the seaside,
transfer and yard operations. In this work, we concentrate on
the integrated planning of seaside operations, which includes
the berth allocation problem (BAP), quay crane assignment
problem (CAP) and quay crane scheduling problem (CSP).

Efficient planning of seaside operations has a direct impact
on the dwell time of vessels, which is one of the main perfor-
mance measures at a container terminal. Longer dwell times
can have a negative impact on the competitiveness of both the
port and companies operating terminals there. This explains
the existence of studies in the literature that are concerned
with BAP, CAP, CSP, and their integrated versions; namely
berth allocation and quay crane assignment problem (BACAP),
crane assignment and scheduling problem (CASP) and berth
allocation, quay crane assignment and scheduling problem
(BACASP). The type of integration we aim for here is the
so-called deep integration defined by [4], where subproblems
are combined in the form of a single, unified, monolithic
mathematical optimization model. A recent example is the
work by [5] where the authors make a major assumption: crane
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assignments to vessels are time-invariant; they are realized
when berthing starts, and remain the same until departure.
In this work, we extend this line of integration to the more
realistic situation where the assignment is time-variant and
introduce a formulation that deeply integrates BAP, CAP,
and CSP (BACASP), as our first contribution. Our second
contribution is a new efficient exact algorithm.

The remainder of the paper is organized as follows. The
next section is devoted to the formulation of the new model.
In Section 3 we focus on CSP and propose approaches for
its efficient solution. Computational results demonstrating the
efficiency of the proposed approaches are reported in Section
4. Finally, concluding remarks and future research directions
are listed in Section 5.

II. FORMULATION OF THE INTEGRATED MODEL

The new integrated BACASP formulation is mainly based
on the following eight assumptions:

1) The planning horizon is divided into time periods of
equal length.

2) The berth is continuous and discretized by equal-
sized unit berth sections. They are just as large as
a single crane can fit in.

3) Each berth section is occupied by no more than one
vessel in each time period.

4) The desired berthing sections of the vessels are
known. The preference over a berth section may be
due to its proximity to the portion of the yard where
the containers are to be unloaded (loaded) from (into)
the vessel.

5) Each quay crane can work on at most one vessel per
time period.

6) Each vessel has a minimum and maximum number of
quay cranes that can be assigned to it; and it is long
enough to accept the maximum number of cranes.

7) The service of a vessel by the quay cranes starts right
after its berthing and lasts without disruption until
its departure with possible changes in the number of
allocated cranes.

8) The net amount of work q cranes can produce for one
period is qλ crane-periods. Here, λ is the interference
exponent which can be set to values in (0, 1].



The parameters and decision variables of our BACASP
formulation are listed with their brief descriptions in Table
I and Table II, respectively. There are many summations with
lower and upper limits of the indices, which are long and
difficult to follow in the formulation. We define and organize
them in Table III for the sake of notational convenience.

TABLE I. PARAMETERS USED IN OUR MATHEMATICAL MODEL

Par. Definition
αit Arrival parameter, which is set to 1 if vessel i can start

berthing in period t
βitt′ Departure parameter, which is set to 1 if vessel i that

berths in period t can depart in period t′

δei Upper limit on the deviation of vessel i’s berthing time
from ei

δsi Upper limit on the deviation of vessel i’s berthing position
from si

λ Interference exponent, a real number in (0, 1]
θm Setup cost that corresponds to the mth feasible solution of

the master problem computed by solving CSSP
φei Cost of berthing one period later than the expected arrival

time for vessel i
φri Cost of departing one period later than the due time for

vessel i
φsi Cost of deviating one unit from the desired berthing section

for vessel i
B Number of berthing sections
ei Expected arrival time of vessel i
K Number of quay cranes
ki Maximum number of cranes that can be assigned to vessel i
ki Minimum number of cranes that can be assigned to vessel i
`i Length of vessel i measured in terms of the number of

discretized quay sections
pi Upper bound on the processing time of vessel i, it is set to⌈

wi/k
λ
i

⌉
p
i

Lower bound on the processing time of vessel i, it is set to⌈
wi/k

λ
i

⌉
ri Departure due time of vessel i
si Desired berthing section of vessel i
T Number of time periods
V Number of vessels
wi Workload of vessel i in crane-periods

TABLE II. DECISION VARIABLES USED IN OUR MATHEMATICAL
MODEL

Var. Definition
θ Variable lower bound on the total setup cost
at 1 if there is a berthing vessel in period t, 0 otherwise
dt 1 if there is a departing vessel in period t, 0 otherwise

xijtt′ 1 if vessel i berths at section j in period t and departs
in period t′, zero otherwise

yit 1 if vessel i is in the berth in period t, 0 otherwise
ziqt 1 if the number of cranes assigned to vessel i

in period t is q, zero otherwise

Before we explain the objective function and the constraints
of our model, we would like to introduce several quantities that
are used as lower and upper limits in the summations. Their
usage helps to reduce the number of terms involved. The first
two of these are (si − δsi ) and (si + δsi ). They appear in the

TABLE III. LOWER AND UPPER LIMITS OF THE INDICES

Par. Explanation Original term
σ1
i The smallest index of

the berth section for
vessel i

max (1, si − δsi )

σ2
i The largest index of the

berth section for vessel
i

min (B − `i + 1, si + δsi )

η1i (t) The earliest period in
which vessel i can
depart.Here t is the
berthing time of the
vessel

t+ p
i
− 1

η2i (t) The latest period in
which vessel i can de-
part. Here t is the
berthing time of the
vessel

min (t+ pi − 1, T )

τi The latest period in
which vessel i can
berth

min
(
T − p

i
+ 1, ei + δei

)

summation limits for berth section index j in (1)–(3), provide
lower and upper bounds on the berthing position si of vessel i,
respectively. Here, δsi can be obtained by generating a feasible
solution of BACASP with an objective value Zf . Since each
unit deviation of vessel i’s berthing position from the desired
one contributes φsi units to the objective value, δsi can be set
equal to dZf/φsi e. In a similar fashion, we can set an upper
limit on the tardiness of vessel i with respect to its expected
arrival time ei. It is denoted by δei and can be set to dZf/φei e,
where φei is the cost of vessel i’s berthing one period later than
ei.

We start to explain our formulation with the objective
function (1).

min

V∑
i=1

σ2
i∑

j=σ1
i

τi∑
t=ei

η2i (t)∑
t′=η1i (t)

{φsi |j − si|+ φei (t− ei)

+φri max (0, t′ − ri)}xijtt′ + θ. (1)

It consists of the minimization of the total cost and is basically
the sum of two terms. The first one is obtained by summing
up over the vessels the costs of deviation from the desired
berthing section si, the costs of berthing later than the expected
arrival time ei (i.e. late arrival), and the costs of departing
later than the departure due time ri that marks the time at
which the loading/unloading operation of the vessel should
be finished (i.e. late departure). These three cost components
are formulated by means of the binary variable xijtt′ , which
represents the allocation of berths to vessels for a time interval;
it is set to one if vessel i berths at section j from time t until
its departure time t′, and zero otherwise. The second term
(i.e., the variable θ) is a lower bound on the total setup cost
Q (x, z) associated with crane relocations when feasible x and
z values are given with respect to constraints (2)–(12). It is
obtained by solving the subproblems created via a Benders-
like decomposition scheme [6], as will be explained later in
Section 4.



We use binary variables xijtt′ and adopt the position
assignment approach in formulating BAP constraints (2) and
(3) given below.

σ2
i∑

j=σ1
i

τi∑
t=ei

η2i (t)∑
t′=η1i (t)

xijtt′ = 1 i = 1, . . . , V, (2)

V∑
i=1

min(B−`i+1,ĵ)∑
j=max(1,ĵ−`i+1)

min(τi,t̂)∑
t=ei

η2i (t)∑
t′=max(η1i (t),t̂)

xijtt′ ≤ 1

ĵ = 1, . . . , B; t̂ = 1, . . . , T. (3)

The next three sets of constraints are related to CAP. Let
binary decision variable ziqt equal one if the number of cranes
assigned to vessel i in period t is q, zero otherwise. Constraints
(4) determine the number of cranes assigned to a vessel in
a period, while (5) guarantee that the assignments satisfy
the required workload of the vessels (measured by crane-
periods). Constraints (6) ensure that the number of assigned
cranes does not exceed the number of available ones. Notice
that in (5) we use the interference exponent λ in order to
model the productivity loss due to the interference between
the cranes.The productivity obtained by assigning q cranes to
vessel i in time period t is qλ, which is less than q.

ki∑
q=0

ziqt = 1 i = 1, . . . , V ; t = ei, . . . , T, (4)

T∑
t=ei

ki∑
q=0

qλziqt ≥ wi i = 1, . . . , V, (5)

V∑
i=1
ei≤t

ki∑
q=0

qziqt ≤ K t = 1, . . . , T. (6)

BAP and CAP constraints given above are independent of each
other. To couple them we define a new binary decision variable
yit. It is an auxiliary variable and its value equals one if vessel
i is berthed in period t, zero otherwise. Constraints (7) relate
variables yit with variables xijtt′ . Lower and upper bound
constraints (8) on the number of cranes used for vessel i in
period t form the relationship between yit and ziqt.

yit̂ =

σ2
i∑

j=σ1
i

min(τi,t̂)∑
t=ei

η2i (t)∑
t′=max(η1i (t),t̂)

xijtt′ i = 1, . . . , V ;

t̂ = ei, . . . , T, (7)

kiyit ≤
ki∑
q=0

qziqt ≤ kiyit i = 1, . . . , V ;

t = ei, . . . , T. (8)

We formulate CSP constraints by means of new binary decision
variables at and dt. at equals one if there is an arrival to the
berth in period t, and zero otherwise. Similarly, dt equals one
if there is a departure from the berth in period t, and zero
otherwise. Constraints (9) identify whether or not there is an
arrival in period t. They are followed by constraints (10), which

are their departure-related versions.

at ≤
V∑
i=1

σ2
i∑

j=σ1
i

η2i (t)∑
t′=η1i (t)

αitxijtt′ ≤ V at t = 1, . . . , T, (9)

dt′ ≤
V∑
i=1

σ2
i∑

j=σ1
i

τi∑
t=ei

βitt′xijtt′ ≤ V dt′ t′ = 1, . . . , T, (10)

Notice the use of the arrival and departure coefficients αit and
βitt′ , which determine whether or not vessel i can begin or
end berthing in period t. Their values are set as:

αit =

{
1 if ei ≤ t ≤ τi
0 otherwise

and
βitt′ =

{
1 if η1i (t) ≤ t ≤ η2i (t)
0 otherwise .

The following two sets of constraints relate vessel arrivals
and departures with the number of assigned quay cranes: the
number of cranes assigned to vessel i can change from period
t − 1 to period t only if arrival of another vessel occurs in
period t or departure of another vessel occurs in period t− 1.

ki∑
q=0

qziqt −
ki∑
q=0

qziq(t−1) ≤ ki (at + dt−1) i = 1, . . . , V ;

ei + 1 ≤ t ≤ T, (11)
ki∑
q=0

qziq(t−1) −
ki∑
q=0

qziqt ≤ ki (at + dt−1) i = 1, . . . , V ;

ei + 1 ≤ t ≤ T. (12)

The last set of constraints determines the total crane setup
cost by setting the value of variable θ to the smallest possible
lower bound on it. Since the decision variables in constraints
(2)–(12) are binary, there is only a finite number of values
for variables xijtt′ and ziqt that satisfy these constraints. Let
m = 1, . . . ,M index these feasible solutions. Consider the
following set of inequalities:

θ ≥ θm − θm ×


V − V∑

i=1

∑
{j,t,t′:xm

ijtt′=1}

xijtt′

+

V∑
i=1

(T − ei + 1)−
T∑
t=ei

∑
{q:zmiqt=1}

ziqt

 m = 1, . . . ,M (13)

where θm = Q(xm, zm), denotes the setup cost obtained by
solving the crane scheduling subproblem (CSSP) for given xm

and zm. In other words, θm represents the crane setup cost
corresponding to the mth feasible solution of the problem.

In principle it is possible to generate all constraints of
type (13) since M is a finite number. Then one can solve the
formulation (2)–(13) to find an optimal solution of BACASP.
Since the objective function aims to minimize θ, constraints
(13) ensure that θ equals the setup cost corresponding to an
optimal solution of the subproblem. However, this approach is
not applicable in practice since the number of inequalities (13)
can be very large. In order to solve the above model efficiently
we propose the cutting plane procedure given in Algorithm 1.



Algorithm 1
Initialization UB ←∞, LB ← 0,m← 1
Initialize the master problem with constraints (2)–(12)
loop

Solve the master problem to optimality
Record the optimal objective function value as the current
lower bound LB; optimal x, z as xm, zm

Calculate the setup cost θm corresponding to xm, zm by
solving CSSP.
Compute objective value objm (1) corresponding to
xm, zm, θm

if objm ≤ UB then
UB ← objm,x∗ ← xm, z∗ ← zm, θ∗ ← θm

end if
if LB = UB then

Stop; x∗, z∗, θ∗ are optimal
else

Add constraint (13) corresponding to xm, zm, θm to the
master problem
m← m+ 1

end if
end loop

We initially relax all constraints (13) and solve the relaxed
master problem. The optimal objective function value is a
lower bound (LB) on the optimal value of BACASP. We calcu-
late the optimal setup cost corresponding to the current solution
(xm, zm) by solving the corresponding CSSP. Quantity objm
corresponds to the objective value of the feasible solution
xm, zm, θm of BACASP and thus forms an upper bound (UB)
on its optimal value. We update UB if we obtain a better
upper bound. If LB becomes equal to UB, we terminate the
algorithm as the current solution is optimal. Otherwise, we
add the constraint (13) corresponding to xm, zm to the master
problem and solve it again. The use of optimality cuts such as
(13) is a known solution strategy for intractable mathematical
programming problems ever since Benders’ seminal work [6].

III. DETERMINATION OF THE TOTAL SETUP COST θm

The subproblem considered in this section, which we refer
to as the Crane Scheduling Subproblem (CSSP), focuses on
assigning quay cranes to optimal work positions in each period
given the berth allocations of the vessels and number of cranes
that will serve them (i.e., a feasible solution of BACAP)
with the objective of minimizing the total setup cost due to
crane relocations on the berth over the planning horizon. We
discuss two different solution approaches each of which solves
a different network optimization problem. Both formulations
make the following assumptions:

1) A setup cost incurs if one of the following three
events occurs: a crane starts working on a new vessel
when it was serving another one, a crane is assigned
to a vessel when it was idle, and a crane stops serving
a vessel and becomes idle.

2) Cranes can serve any berthed vessel but are restricted
to move along a single line, and hence cannot pass
each other.

3) Cranes are initially labeled according to their order
along the berth starting from the beginning.

4) In any period, idle cranes wait for their new assign-
ments at the available positions with given capacities
located before and after the vessels.

5) Cranes are identical; the differentiation in the setup
costs is due to the variance in the working conditions.

A. Minimum Cost Flow Formulation and Branch-and-bound

The minimum cost flow problem (MCFP) formulation of
CSSP is based on a directed, layered, single source and single
sink network. The only node of the first layer is the source
node with supply equal to the total number of quay cranes.
Similarly, the last layer consists of a single node as well; it is
the sink node with demand equal to the total number of quay
cranes. The remaining ones belong to internal layers and are
pure transshipment nodes.

Each vessel berthed in layer l is represented by a node,
whose demand is equal to the number of assigned cranes.
These nodes are called vessel nodes and they are ordered
starting from the bottom of the layer to the top in accordance
with their position in the berth from the beginning to the end.
There is a second type of node below and above each vessel
node. They are called wait nodes and represent the waiting
area for idle cranes. In any layer, the number of wait nodes is
one larger than the number of vessel nodes. To summarize, by
letting nl denote the number of berthed vessels in time interval
l, there are nl vessel nodes and nl+1 wait nodes. Hence, the
total number of nodes in layer l is 2nl +1 and nodes with an
even index correspond to a vessel node, while those with an
odd index represent wait nodes.

Each vessel node in layer l has two copies. Therefore, we
name the first one as the original vessel node and the duplicate
as the copy vessel node. The original node il and its copy i′l,
for even il are connected by arc (il, i

′
l). Since the demand of

an original vessel node in layer l is equal to the number of
assigned cranes gil, so is the demand of a copy vessel node.
Therefore, both the lower bound uili′l and upper bound uili′l on
the capacity of the arc (il, i

′
l) are set to gil, which implies that

the flow on the arc (il, i
′
l) for even il is equal to gil. Similar to

the vessel nodes, wait nodes also have duplicates. An original
wait node il and its copy i′l for odd il are connected by an
arc whose capacity has a lower bound uili′l = 0 and an upper
bound uili′l = hil , which is the capacity of the waiting area il
when il is odd.

Let V , V ′, W , and W ′ denote the set of original vessel
nodes, copy vessel nodes, original wait nodes, and copy
wait nodes, respectively. Then, the overall network N has
(V ∪ V ′ ∪W ∪W ′ ∪ {s1, s2}) nodes, where s1 and s2 are
the source and sink nodes, respectively. By generating the
duplicates of the vessel and wait nodes, all the nodes become
pure transshipment nodes except s1 and s2. The supply of s1
and the demand of s2 are equal to K, that is the total number of
cranes. There is an outgoing arc connecting s1 and an original
node of the first layer, and an incoming arc connecting a copy
node of layer L to s2. The capacity of these arcs, as well the
one of arcs (i′l, jl+1), which connect a copy node i′l in layer l
with an original node jl+1 in layer l+1, has zero lower bound
and an upper bound of K.

As can be noticed, the flows on the arcs of this network
correspond to crane relocations or movements from waiting



areas to vessels, from vessels to vessels (this includes the
case where a crane continues serving the same vessel or
starts serving a new vessel at the same berth section), and
from vessels to waiting areas in each time interval. The costs
associated with these relocations are defined as unit flow costs.
The unit flow cost on arc (i′l, jl+1) between two layers, where
1 ≤ i′l ≤ 2nl+1 and 1 ≤ jl+1 ≤ 2nl+1+1 is equal to ci′ljl+1

.
Similarly, the unit flow cost of the arcs between the source
node s1 and the original nodes in the first layer is given as
cs1i1 , while that of the arcs between the copy nodes in layer
L and the sink node s2 is equal to ciLs2 . The arcs (il, i

′
l) in

each layer l = 1, . . . , L have a zero unit flow cost, because
these arcs are only used for treating vessel and wait nodes as
transshipment nodes.

The subproblem becomes an ordinary MCFP on the de-
scribed layered network if crane crossing is allowed, and it
can be solved very efficiently. The objective function

θm =

2n1+1∑
i1=1

cs1i1fs1i1 +

L−1∑
l=2

2nl−1+1∑
i′l−1=1

ci′l−1il
fi′l−1il

+

L−1∑
l=2

2nl+1+1∑
il+1=1

ci′lil+1
fi′lil+1

+

2nL+1∑
iL=1

ciLs2fiLs2 , (14)

which represents the total cost of flows in the network, is
essentially the total setup cost due to the crane relocations.
It is minimized subject to the flow balance equations

2n1+1∑
i1=1

fs1i1 = K (15)

fili′l −
2nl−1+1∑
i′l−1=1

fi′l−1il
= 0 il = 1, . . . , 2nl + 1;

l = 2, . . . , L− 1 (16)
2nl+1+1∑
il+1=1

fi′lil+1
− fili′l = 0 i′l = 1, . . . , 2nl + 1;

l = 2, . . . , L− 1 (17)

−
2nL+1∑
i′L=1

fi′Ls2 = −K, (18)

and lower and upper bounds on the flow variables

0 ≤ fs1i1 ≤ K i1 = 1, . . . , 2n1 + 1 (19)
uili′l ≤ fili′l ≤ uili′l il = i′l = 1, 2, . . . , 2nl + 1;

l = 2, . . . , L− 1 (20)
0 ≤ fi′Ls2 ≤ K i′L = 1, . . . , 2nL + 1, (21)

which are set to uili′l = uili′l = gil for il = i′l = 2, 4, . . . , 2nl,
uili′l = 0 and uili′l = hil for il = i′l = 1, 3, . . . , 2nl + 1,
as mentioned earlier. The determination of θm for the new
optimality cut consists of solving the MCFP when crossing is
not allowed.

Branch-and-bound algorithm essentially corrects the cross-
ings between the paths of the cranes that occur in an optimal
solution of the MCFP. Obviously, the paths of two cranes can
cross more than once. Since path crossings imply arc crossings

TABLE IV. PERFORMANCE OF THE NEW METHOD: REALISTIC
INSTANCES

V Master CSSP with Overall Problem with Tree
Problem BB SP BB SP size

3 2.7 0.01 0.02 10.7 10.8 6
6 35.1 0.01 0.02 1,293.1 1,293.8 13
9 77.9 0.02 0.03 543.5 544.1 19

12 95.2 0.02 0.04 2,951.7 2,954.3 25
15 99.6 0.03 0.04 4,482.3 4,484.8 29
18 119.6 0.03 0.05 4,543.2 4,545.1 32
21 159.2 0.04 0.06 10,493.6 10,496.8 35

Avg. 84.19 0.024 0.037 3,474.01 3,475.67 22.71

between two consecutive layers of the network on the path of
two cranes, it is possible to focus on a single crossing each time
there is need for branching at a node of the branch-and-bound
tree. A summary of the results on minimum cost noncrossing
flow problem can be found in a recent work [7].

B. Dynamic Programming and Shortest Path Formulation

To formulate the CSSP as a shortest path problem we
construct the layered network N =

(
V ∪ {s1, s2},A

)
. The

layers represent again the L intervals during which there is no
change in the berthed vessels. Each node in V in layer l is for
a crane-to-vessel assignment combination and arcs in A are
for the relocations between the layers. The nodes s1 and s2
are, respectively, the source and sink nodes. There is an arc
connecting s1 to the nodes of layer 1 and the nodes of layer L
to s2. Each combination of an interval represents a sequence
of the cranes along the berth after they are allocated to the
vessels subject to the non-crossing constraints. Essentially, the
network N is a representation of the states of Park and Kim’s
dynamic programming (DP) formulation [8]. The recursion
given in Park and Kim’s formulation can be restated as

TSC(l) = min
i=1,2,...,Sl;
j=1,2,...,Sl+1

{SC(i, j) + TSC(l + 1)}

l = 0, 1, . . . , L. (22)

Here, Sl and Sl+1 are the number of non-crossing sequences
at layers l and l + 1, TSC(l) is the minimum total setup
cost for periods l, l+ 1, . . . , L and SC(i, j) is the cost of the
setups required to obtain crane sequence j from sequence i,
which can be calculated by summing up the individual costs
associated with the setups transforming sequence i to sequence
j. Clearly, layers 0 and L+1 have only single nodes, namely
s1 and s2 representing initial and terminal crane sequences.
Hence, TSC(L+ 1) = 0 and TSC(0) = θm.

IV. COMPUTATIONAL STUDY

In this section we perform computational tests in order to
assess the performance of the new model and solution methods.
They can be grouped in two major sets. The first one is realized
with a subset of the test instances given in [9] and belong to a
real container terminal. We select seven of the instances with
V = 3, 6, 9, 12, 15, 18, 21 vessels. The second set consists of
larger test problems. They are generated randomly.



TABLE V. AVERAGE NUMBER OF CUTS PER GROUP OF TEST
INSTANCES

V Num. Iters. Num. Cuts
20 73 70
25 96 92
30 138 133
35 173 168
40 199 194
45 230 224
50 259 252
55 295 290
60 341 335

The cost coefficients associated with berthing away from
the desired berth section, late berthing, and late departure are
selected as φsi = 1000, φei = 1000, and φri = 2000. We assume
that the setup costs related to crane relocations are all equal
and have the value φf = 50. In all instances there are K = 12
cranes, B = 24 berth sections each having a length of 50
meters, and T = 200 periods each corresponding to an hour.
The interference exponent λ is set to 0.95. The experiments are
carried out on a computer with Intel Xeon 3.16 GHz processor
and 32 GB of RAM working under Windows 2003 Server
operating system. We use commercial solver CPLEX 12.6 to
solve linear and integer programming problems.

Table IV shows the average CPU time in seconds per
optimality cut to solve the main model, the CPU time to
solve CSSP by the branch-and-bound (BB) algorithm and the
shortest path algorithm (SP), and the size of the BB tree
averaged over the number of cuts added to the master problem.
Tree size statistics is only for BB and SP are the same.

In order to test the performance of the new approach better
we have generated larger ones randomly. We vary the number
of vessels V from 20 to 60. T is 400, 500, and 600 when V
takes on values between 20 and 40, 41 and 50, and 51 and
60, respectively. The length of the berth, the number of cranes
available and the cost coefficients are the same as before. The
vessel-dependent parameters length (`i), desired berth section
(si), workload (wi), lower bound (ki) and difference between
the bounds (ki − ki) on the crane numbers are generated
from uniform distributions respectively between 3 and 8 berth
sections, 1 and B − `i + 1, 10 and 120, 1 and 5, and 0
and 5. Notice that B = 24 50-meter-sections, which makes
a 1200 meters long berth. The vessel lengths are generated
between 3 and 8 berth sections, which means between 150
and 400 meters. For each number of vessels we generate five
instances. Table V shows the average number of iterations and
cuts generated by Algorithm 1 for each group.

Table VI reports the average CPU times spent for solving
the master problem and the overall problem over five instances,
for each group. We can observe that very large problem
instances with T = 600 and V = 60 can be solved to
optimality. We also observe that BB is slightly faster than SP
in solving CSSP, which causes a slight decrease in the overall
problem’s solution time.

TABLE VI. PERFORMANCE OF THE NEW METHOD: LARGE INSTANCES

V Master CSSP with Overall Problem with Tree
Prob. BB SP BB SP Size

20 124.5 0.04 0.05 8,585.2 8,587.3 42
25 163.2 0.04 0.06 14,845.7 14,847.9 55
30 218.0 0.05 0.06 28,768.2 28,771.1 57
35 226.9 0.06 0.07 37,641.3 37,644.2 66
40 248.3 0.06 0.07 47,893.9 47,897.2 69
45 298.2 0.07 0.08 66,192.6 66,196.4 75
50 349.4 0.07 0.08 87,690.7 87,695.1 79
55 374.5 0.07 0.09 108,223.3 108,228.3 86
60 420.8 0.08 0.09 140,505.5 140,511.2 89

Avg. 346.26 0.089 0.093 77,178.49 77,196.95 88.29

V. CONCLUSIONS

Our computational study demonstrates that the new formu-
lation coupled with the proposed solution method gives optimal
solutions for realistic size problem instances. Also it turns out
that the MCFP relaxations based branch-and-bound method is
more efficient for solving CSP. As a further study, we can work
on integrating storage yard operations into the model. Some
vessels can have large deviations from their desired berthing
positions. Modifying the objective function in such a way that
it evenly distributes the deviations among the vessels may be
another promising research direction.
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