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conventional sum-product algorithm.
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1 Introduction and Literature Review

Low-density parity-check (LDPC) codes are used in the digital communication systems to de-

tect and correct errors that may occur during the data transmission. LDPC codes were first

investigated by Gallager (1962) and rediscovered in the 1990s (MacKay, 1999; MacKay and

Neal, 1997). LDPC codes are now being used in hard disk drive read channels, wireless com-

munication standards (IEEE 802.11n, IEEE 802.11ac, IEEE 802.16e WiMax), digital television

broadcast standard DVB-S2, and more recently in flash solid state drives (Karger et al., 2014).

In a digital communication system, the source encodes the information as the codeword, which

is recognized by its LDPC code as an error-free information. In the case of an erroneously

received information, the sink implements LDPC code-based decoding algorithms to find the

locations of the errors and correct them. Maximum likelihood (ML) decoding aims to find

the nearest codeword to the received vector among the (possibly) exponential-many codewords

of an LDPC code. Alternative integer programming (IP) formulations of the ML decoding

problem are given in Feldman et al. (2005) and Yang et al. (2008), which we introduce in

Section 3.1 as integer programming master (IPM) and exact model (EM), respectively. The

ML decoding problem is NP-hard and the computational complexity of an ML decoder limits

its implemention in the practical applications (Berlekamp et al., 1978). In the literature, there

are two main heuristic approaches to obtain a real-time decoder: iterative decoding algorithms

and linear programming (LP) based decoders. We summarize different decoding approaches in

Table 1.

Gallager A and sum-product (SP) algorithms are commonly used heuristic iterative message-

passing decoding algorithms due to their low complexity and low decoding latency (Tanner,

1981; Kschischang et al., 2001; Richardson and Urbanke, 2001). These heuristic methods can

give close results to the ML decoding on the sparse LDPC codes (Leiner, 2005). However,

they do not ensure the optimality of the decoded vector, and their error correction capability

decreases significantly as the error probability or the code density increases. Besides, they

may fail to decode if the received vector includes multiple errors or there are small cycles

in the bipartite graph representation, namely Tanner graph (TG), of the LDPC code. The

SP algorithm was further investigated in the literature to develop its variants with improved

complexity (Fossorier et al., 1999; Hu et al., 2001; Sarajlić et al., 2014). Vontobel and Koetter

(2007) implement an iterative approach similar to the SP algorithm for low complexity LP
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decoding, and the technique is improved in Burshtein (2009).

Table 1: Comparison of the LDPC decoding approaches

Decoding Article ML Output Effect of the Cycles in TG

Approach (Formulation) Decoding on the Error Correction

IP Decoding This work (IPM) Yes a codeword(*) no impact

Yang et al. (2006)

(IPM)

LP Decoding Feldman et al. (2005) Not a codeword decrease

(Relaxed IPM) guaranteed or a pseudocodeword(**)

Yang et al. (2008)

(Relaxed EM)

Tanatmis et al. (2010)

(Relaxed EM)

Iterative Gallager A (None) Not a codeword decrease

Decoding Sum-Product (None) guaranteed or an infeasible vector

or no solution

(*) a codeword is a binary feasible solution of the IPM or EM formulation.

(**) a pseudocodeword is a (fractional) feasible solution of the Relaxed IPM or Relaxed EM formulation.

The (fractional) extreme vertices of an LP formulation are known as pseudocodewords. Since

the codewords are binary vectors, the error correction capability of an LP decoder highly de-

pends on the pseudocodewords. Feldman et al. (2005) focus on the LP relaxation of the IPM

(LPM) model, which has the codewords as the extreme points if there are no cycles in the TG.

However, a cycle-free LDPC code is not possible in practice, which limits the error correction

capability of their LP decoder. Then, they aim to trim the fractional pseudocodewords by

including their exponential-many valid inequalities to the LPM model without any separation

algorithm. The proposed LP decoder can perform better than the SP algorithm only for the

small codelengths since the exponential-many variables of the LPM model are executed without

any column generation method.

Yang et al. (2006) develop an ML decoder on the IPM formulation with their basic branch-

and-bound algorithm which limits the depth of the search tree to reduce the computational

complexity. Then, they propose a nonlinear Lagrangean relaxation formulation for the LPM

model to design an approximate LP decoder with lower complexity than their ML-decoder.

The decoding performance of the LP decoder is better than SP decoder only for special type

of regular LDPC codes. Barman et al. (2013) and Zhang and Siegel (2013) also investigate LP

decoders which implement Lagrangean relaxation techniques on the LPM formulation.

Chertkov and Stepanov (2008) design an efficient pseudocodeword search heuristic which

iteratively updates the weights of the received information in their LP decoder. Yang et al.
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(2008) reformulate the ML decoding problem as the EM formulation having fewer constraints

than the IPM model proposed in Feldman et al. (2005). In their LP decoder, they consider the

LP relaxation of the EM (LEM) model and decompose a constraint with many-variables into

several subconstraints with fewer-variables by introducing auxiliary variables. They mathemat-

ically show that the LEM model with these new constraints is equivalent to the LPM model in

Feldman et al. (2005).

The exponential-many valid inequalities of the LPM model introduced in Feldman et al. (2005)

are also valid for the LEM formulation. Tanatmis et al. (2010) address the LEM formulation and

they propose a separation algorithm to select a subset of these valid inequalities to improve the

error correction capability of their LP decoder. Zhang and Siegel (2012) define their LP model

only with the box-constraints on the variables and the valid inequalities in Feldman et al. (2005).

In their LP decoder, they eliminate the pseudocodewords with a similar separation algorithm

to Tanatmis et al. (2010).

In this paper, we focus on the ML decoding problem, which finds the optimal decoding for

arbitrary LDPC codes. We utilize the IPM formulation in Feldman et al. (2005) and aim to

find the closest codeword to the received vector with low computational complexity. We make

the following contributions toward this end:

1. We introduce new theoretical results for the EM and IPM formulations (see Section 3.1).

2. We develop a column generation technique to find the required variables among the

exponential-many decision variables of the IPM formulation (see the branch-and-price

(BP) method in Section 3.2).

3. We improve the computational complexity of our BP method by searching for a near-ML

initial codeword (solution) via our RandSum heuristic (see the branch-and-price-random-

sum (BPRS) method in Section 3.3.2).

4. We further propose a separation algorithm to generate the required constraints among

the exponential-many constraints of the IPM formulation (see the branch-cut-and-price

(BCP) method in Section 3.3.3).

5. We compare the performance of our BCP method with two state-of-the-art decoders from

the literature: the EM-based decoder (EMD), which is the IP decoder counterpart of the

LP decoder by Tanatmis et al. (2010), and the iterative decoder SP (see Section 4).
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6. Our BCP decoder solves the ML decoding problem with lower complexity than EMD and

has significantly better error correction capability than SP for the practical code lengths

(approximately n = 4000).

2 Problem Definition

In a digital communication system, information is sent from a source to a sink over a noisy

communication channel as shown in Figure 1. The original information is a k-bits long binary

sequence u = (u1 u2 ... uk) (ui ∈ {0, 1}). The information u is encoded with a k × n generator

matrix G through the operation e = uG (mod 2) in the encoder. That is, (n − k) redundant

parity-check bits are added to u, and n-bits long (n ≥ k) encoded vector e = (e1 e2 ... en)

(ei ∈ {0, 1}) is obtained.

H =

A
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Figure 1: Digital communication system diagram

The encoded vector e is transmitted over a noisy communication channel to the receiver.

Binary symmetric channel (BSC) is generally used in the literature to model a noisy commu-

nication channel (MacKay, 2003). In BSC an error occurs on a bit ei with probability p and

its value flips, i.e., a bit 0 is received as 1, and vice versa. The decoder tests the correctness of

n-bits long received vector v with a (n − k) × n parity-check matrix H. The received vector

v is detected to be erroneous if vHT 6= 0 (mod 2). In this case, the decoder runs decoding

algorithms to fix the errors and estimates the original information as û (Moon, 2005).

One can obtain a generator matrix G, which is not necessarily unique, from the H matrix
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with full row rank by carrying out binary arithmetic (MacKay, 2003). A vector e is a codeword

if eHT = 0 (mod 2). Since GHT = 0 (mod 2) holds for any (G,H) pair, each row of G is a

codeword. That is, the codewords are in the null space of the H matrix and G is a basis for

the null space.

H =

 I1s I2s I3s I4s I5s I6s
I7s I8s I9s I10s I11s I12s
I13s I14s I15s I16s I17s I18s

 H =



1 0 0 1 0 1 1 0 0 1 1 0
0 1 1 0 1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0 0 1 0 1
1 0 0 1 1 0 0 1 1 0 1 0
0 1 0 1 1 0 0 1 1 0 0 1
1 0 1 0 0 1 1 0 0 1 1 0


(a) (b)

Figure 2: A (3, 6)-regular H matrix

(J,K)-regular LDPC codes are the members of linear block codes that can be represented by a

parity-check matrix H having J-many ones at each column and K-many ones at each row. One

can generate a (J,K)-regular H matrix of dimensions (Js ×Ks) by randomly permuting the

columns of an s×s identity matrix Is. Regularity of the matrix is provided through augmenting

identity matrices K times at each row and J times at each column. The generic structure of a

(3, 6)-regular H matrix is given in Figure 2a, where Iis represents the ith randomly permuted

identity matrix. We give an example of a (3, 6)-regular H matrix with s = 2 and dimensions

n− k = 6, n = 12 in Figure 2b.

Hr =


1 0 0 1 0 1 1 0 0 1 1 0
0 1 1 0 1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0 0 1 0 1
1 0 1 0 0 1 1 0 0 1 1 0

 G =



1 1 0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0
1 1 0 0 1 0 1 0 0 0 0 0


(a) (b)

Figure 3: A full row rank Hr and a generator G matrices for the H matrix in Figure 2b

After eliminating the redundant rows from the H matrix in Figure 2b, one can obtain a full

row ranked Hr matrix of dimensions n − k′ = 4, n = 12 as given in Figure 3a. Note that

the row reduction does not change the null space (⊆ Bk), i.e., the set of codewords remains

the same for both of the H and Hr matrices. Figure 3b shows a generator matrix G for the
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null space of Hr. Without loss of generality, we can use the G matrix of dimensions k′ × n to

encode the k-bit (k ≤ k′) original information u after augmenting (k′ − k)-many zero bits. In

our example, having k = 6 and k′ = 8, we update a 6-bit original information u = (0 1 1 0 1 1)

to u′ = (0 1 1 0 1 1 0 0). The encoded vector e = u′G (mod 2) = (0 1 1 1 0 1 0 0 1 0 0 1) is

a codeword since eHT = 0 (mod 2). One can span exponential-many, i.e., O(2k), codewords in

the null space of H with the generator matrix G.

1 2 3 4 5

1 2 3

6 7 8 9 10

4 5

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

c1 c2 c3 c4 c5

1 2 3 4 5

1 2 3

6 7 8 9 10

4 5

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

c1 c2 c3 c4 c5

11

v11

12

v12

6

c6

Figure 4: TG representation of the H matrix in Figure 2b

An LDPC code can alternatively be represented as a TG corresponding to the H matrix

(Tanner, 1981). As shown in Figure 4, on one part of the TG there is a variable node i (vi),

i ∈ {1, ..., n}, for each bit of the received vector v. Each row of the H matrix represents a

parity-check equation and corresponds to a check node j (cj), j ∈ {1, ..., n − k}, in the other

part of the TG. A check node cj is said to be satisfied if its parity-check equation is equal to

zero (mod 2). As an example, the parity-check equation for c4 is c4 = v1 +v4 +v5 +v8 +v9 +v11

(mod 2) as given in Figure 5. The check node c4 is satisfied when vi = 1 for the indices

i ∈ S = {1, 5, 8, 11}, i.e., c4 = 1 + 0 + 1 + 1 + 0 + 1 = 0 (mod 2). The index set of the adjacent

check (variable) nodes to a variable node i (check node j) is represented by N(vi)(N(cj)). Note

that we can satisfy the check node cj by setting vi = 1 for i ∈ S, where S is an even cardinality

subset of N(cj). Moreover, a codeword satisfies all the parity-check equations as in the case of

the encoded codeword e = (0 1 1 1 0 1 0 0 1 0 0 1) by definition. The degree of a vi (cj) is

the number of the adjacent check nodes (variable nodes) on the TG. That is, degree of a vi is

d(vi) = |N(vi)| and cj is d(cj) = |N(cj)|.

An ML decoding algorithm explores exponential-many codewords of the H matrix, i.e., an

exponential-time algorithm, and decodes the received vector v to the nearest codeword by

utilizing a distance function. As an example, assume that we received the encoded codeword
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vHT =



v1 + v4 + v6 + v7 + v10 + v11
v2 + v3 + v5 + v8 + v9 + v12
v2 + v3 + v6 + v7 + v10 + v12
v1 + v4 + v5 + v8 + v9 + v11
v2 + v4 + v5 + v8 + v9 + v12
v1 + v3 + v6 + v7 + v10 + v11

 =



c1
c2
c3
c4
c5
c6

 (mod 2)

Figure 5: The parity-check equations for the H matrix in Figure 2b

e = (0 1 1 1 0 1 0 0 1 0 0 1) as the vector v = (1 1 0 0 0 0 1 1 0 0 0 0) and Figure 6 shows the

codewords of the H matrix in Figure 2b. Let the codewords cw1, ..., cw8 be the rows of the

G matrix in Figure 3b and the Hamming distance function, i.e., Hamming(cwi,v), count the

number of different entries between the ith codeword cwi and the received vector v.

As illustrated in Figure 6, an ML decoder does not choose the original codeword e since

there are closer codewords to the received vector v, such as cw1 with Hamming(cw1,v) = 2.

Assuming that cw1 = (1 1 0 0 0 0 1 1 0 0 0 0) is the closest codeword to v, the estimate for

the original information u = (0 1 1 0 1 1) will be û = (1 1 0 0 0 0). Note that, when there is

high error probability in the channel, the original information u and its estimate û may not be

identical as in this case.

Figure 6: ML decoding of the received vector v in the null space of H
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Bit error rate (BER) is a metric in the telecommunications literature to evaluate the perfor-

mance of a decoding algorithm. Let f be the n-bit long decoded codeword of the received vector

v. As given in equation (1), BER is the rate of the different decoded bits from the original

codeword e (MacKay, 2003). Note that BER is zero, if and only if e = f .

BER =

∑n
i=1 | ei − fi |

n
(1)

For our ML decoding example, the decoded codeword is f = cw1, and BER can be given as

BER =

∑12
i=1 | ei − cw1i |

12
=

8

12
= 0.67.

In this study, we focus on developing ML decoding algorithms using optimization techniques.

We first propose a branch-and-price (BP) algorithm (in Section 3.2) for the IPM formula-

tion in Feldman et al. (2005), and introduce improvement techniques to BP. In particular, we

provide feasible solutions to BP via our RandSum heuristic, which gives rise to our branch-and-

price-random-sum (BPRS) method given in Section 3.3.2. Furthermore, we tighten the node

relaxations with our valid cut separation algorithm, and build our branch-cut-and-price (BCP)

method (explained in Section 3.3.3).

3 Solution Methods

In this section, we introduce the exact model (EM) and integer programming master (IPM)

formulations for the ML decoding problem in the literature, and give the details of our BP,

BPRS, and BCP methods. We summarize the terminology used in this paper in Table 2.
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Table 2: List of the symbols

Parameters

C set of the check nodes k length of the original information

cj check node j n length of the encoded codeword, |V |
V set of the variable nodes number of columns in H

vi variable node i m n− k, |C|, number of rows in H

d(cj)(d(vi)) degree of cj(vi) in TG p error probability in BSC

N(cj)(N(vi)) index set of the variable (check) nodes

adjacent to cj(vi)

u original information

G generator matrix e encoded codeword

H parity-check matrix v received vector

εj set of the feasible local codewords for cj tmax number of trials in RandSum heuristic

γi log-likelihood ratio for the bit i

Decision Variables

fi ith bit of the decoded codeword µj dual variable for the constraints (11)

wjS 1 if the local codeword S of cj is selected,
τij dual variable for the constraints (12)

0 otherwise

`j an auxiliary integer variable ζj optimal objective function value

xi 1 if i ∈ S of cj , 0 otherwise of Subproblem(j)

3.1 Mathematical Formulations

The EM formulation represents the columns and rows of an (n− k)× n parity-check matrix H

with the index sets V = {1, ..., n} and C = {1, ..., n − k}, respectively (Yang et al., 2008). In

EM, Hji is the (j, i)-entry of H matrix, fi is a binary variable denoting the value of the ith

code bit, and `j is an integer variable. Here, v represents the received vector.

Exact Model (EM):

zEM = min
∑
i:vi=1

(1− fi) +
∑
i:vi=0

fi (2)

s.t.
∑
i∈V

Hjifi = 2`j , ∀j ∈ C (3)

fi ∈ {0, 1}, ∀i ∈ V, (4)

`j ≥ 0, `j ∈ Z, ∀j ∈ C. (5)

The constraints (3) guarantee that the decoded vector f satisfies the equality fHT = 0 (mod 2).

The objective (2) minimizes the Hamming distance between the decoded codeword f and the

received vector v, i.e., zEM = minf zEM (f) = minf Hamming(f ,v). That is, the aim is to find
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the nearest codeword f to the received vector v. The constraints (4) and (5) set the binary and

integrality restrictions on the decision variables f and `, respectively.

One can obtain the LP relaxation of EM (LEM) with the objective function value zLEM by

replacing the constraints (4) and (5) with the following:

0 ≤ fi ≤ 1, `j ≥ 0, ∀i ∈ V, j ∈ C. (6)

Note that the EM formulation has (n+m)–variables and (n+2m)–many constraints. Tanatmis

et al. (2010) propose an LP decoder which utilizes the LEM formulation and the valid inequalities

(27) given in Section 3.3.3. In this study, we obtain a benchmark EM decoder (EMD), which is

the IP decoder counterpart of the LP decoder of Tanatmis et al. (2010), by implementing EMD

via a commercial optimization solver (see Section 4).

An alternative objective function is the log-likelihood objective, i.e., minf LogLike(f ,v), which

can be given as

min
∑
i∈V

γifi. (7)

In the LogLike(f ,v) =
∑

i∈V γifi distance function, f is the decoded codeword and the co-

efficient γi is the log-likelihood ratio for the received bit vi, which can be calculated with the

equation (8).

γi = log(Pr(vi|fi=0)
Pr(vi|fi=1)) (8)

In BSC with error probability p, γi = log[p/(1− p)] for the bit vi = 1, and γi = log[(1− p)/p]

for vi = 0 as given in Feldman et al. (2005). Proposition 1 shows the equivalence of the objectives

(2) and (7).

Proposition 1. The Hamming distance objective (2) and the log-likelihood objective (7) have

the same optimal solution set for the decoded codeword f when p < 0.5.

Proof. The log-likelihood objective can be written as

min−
∑
i:vi=1

afi +
∑
i:vi=0

afi (9)

where a = log[(1− p)/p]. Note that a ≥ 0 for 0 < p < 0.5, and it is constant.

Similarly, the Hamming distance objective can be written as
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min−
∑
i:vi=1

fi +
∑
i:vi=0

fi + c̄ (10)

where c̄ =
∑

i:vi=1 1.

Note that, the distance functions are linearly related as Hamming(f ,v) = 1
aLogLike(f ,v) + c̄.

Hence, the corresponding objective functions are equivalent and they have the same optimal

solution set. �

The IPM formulation, an alternative formulation for the ML decoding problem, is based on

the TG representation of an H matrix (Feldman et al., 2005). A local codeword can be formed

by assigning a value in {0, 1} to each variable node i ∈ N(cj). A local codeword is feasible if

the values of the adjacent variable nodes i ∈ N(cj) sum to zero (mod 2). For a node cj , the set

of the feasible local codewords can be given as εj = {S ⊆ N(cj) : |S| even}. We can satisfy cj

if we set each bit in S ∈ εj to 1, and all other bits in N(cj) to 0. One can observe that ∅ ∈ εj

for all cj , since S = ∅ trivially satisfies a check node.

In Figure 7, we give the neighbors of the node c3 in Figure 4 as an example. The parity-check

equation for c3 can be given as c3 = v2 + v3 + v6 + v7 + v10 + v12 (mod 2). We can obtain c3 = 0

by setting an even number of adjacent variable nodes to value 1, and the remainings to 0. For

instance, S = {2, 6, 7, 12} is a feasible local codeword, since c3 = 1 + 0 + 1 + 1 + 0 + 1 = 0 (mod

2). A codeword is a {0, 1} assignment of vi values for i ∈ V that gives cj = 0 for all j ∈ C. One

can obtain a codeword by choosing a feasible local codeword for each cj that conforms with the

feasible local codewords of the other check nodes. For example, (0 1 0 0 0 1 1 1 1 0 0 1) is a

codeword for the TG in Figure 3.

2 3

3

6 7 10

v2 v3 v6 v7 v10

c3

12

v12

Figure 7: Neighbors of the check node c3 in Figure 4, N(c3)
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Integer Programming Master (IPM):

zIPM = min
∑
i∈V

γifi (7)

s.t.
∑
S∈εj

wjS = 1, ∀j ∈ C (11)

fi −
∑

S∈εj :i∈S
wjS = 0, ∀ edge (i, j) (12)

fi ≥ 0, ∀i ∈ V (13)

wjS ∈ {0, 1}, ∀j ∈ C,∀S ∈ εj (14)

In IPM model, the binary decision variable wjS is one if the feasible local codeword S ∈ εj of

the node cj is selected, and zero otherwise. Hence, the decision variables w represent a feasible

solution of the parity-check equations and fi variable represents the decoded value of the bit i.

We can obtain a trivial solution (an upper bound) of IPM with wj∅ = 1 for all j ∈ C and fi = 0

for all i ∈ V . We obtain the LPM model, i.e., the LP relaxation of IPM, with the objective

function value zLPM by relaxing the constraints (14) as

wjS ≥ 0, ∀j ∈ C,∀S ∈ εj . (15)

Proposition 2. In the LPM formulation, the fi values are binary integral for all i ∈ V if and

only if the wjS values are binary integral for all (j, S) pairs j ∈ C and S ∈ εj.

Proof. (⇐) Assume that the wjS values are integral for all (j, S) pairs. The constraints (12)

imply that the fi values are integral for all i ∈ V , since each fi is the sum of the integer numbers.

Besides, we know that fi =
∑

S∈εj :i∈S wjS by the constraints (12). Then, fi =
∑

S∈εj :i∈S wjS ≤∑
S∈εj wjS = 1 by the constraints (11), implying that fi ≤ 1. Hence, the set {0, 1} represents

the possible values of the fi variables.

(⇒) Assume for the contradiction that the fi values are integral but there exists a (j, S) pair

such that wjS is not integral. By the constraints (11), we know
∑

S∈εj wjS = 1. Hence, for at

least two wjS variables, say wj,S1 = α and wj,S2 = β with α, β > 0 and α + β ≤ 1, we have

fractional values. Since S1 6= S2, there exists ı̂ ∈ S2 \ S1 without loss of generality.

For the variable node ı̂ and check node j, we have the constraint f̂ı =
∑

S∈εj :̂ı∈S wjS for the

edge (̂ı, j). The edge (̂ı, j) exists, since ı̂ ∈ S2 ∈ εj which implies that ı̂ ∈ N(cj). We know that

ı̂ 6∈ S1, meaning that wj,S1 = α will not be in the sum. This means f̂ı =
∑

S∈εj :̂ı∈S wj,S ≤ 1 −
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wj,S1 = 1−α < 1. Moreover, wj,S2 will be in the sum, since ı̂ ∈ S2. This gives f̂ı ≥ wj,S2 = β > 0.

As a result, 0 < f̂ı < 1, i.e., f̂ı is a fractional value. This contradicts with our assumption that

all fi values are integral. Hence, we conclude that if fi is integral for all i ∈ V , then the wjS

values are also integral for all (j, S) pairs.

Combining these results, we conclude that the fi values are binary integral for all i ∈ V if

and only if the wjS values are binary integral for all (j, S) pairs j ∈ C and S ∈ εj . �

One can observe that there are exponential number, i.e., (n+
∑

j∈C 2d(cj)−1)–many, of vari-

ables in the IPM formulation. Hence, it cannot be solved optimally in an acceptable amount of

time for the real-sized (approximately n = 4000) LDPC codes (see Section 4). Another obser-

vation is that although the IPM and EM formulations have different objective functions, they

share the same optimal solution set according to Proposition 1.

3.1.1 On the Strength of the LEM and LPM Formulations

In this section, we prove some theoretical results related with the LP relaxations of the EM

and IPM formulations for the ML decoding problem, namely the LEM and LPM formulations,

respectively.

Proposition 3. The optimal objective function value of LEM is zero, i.e., zLEM = 0, for all

(v,H) instances.

Proof. Let (v,H) be an instance of LEM. The objective of LEM is a distance function which

means the optimal objective value is nonnegative, i.e., zLEM ≥ 0.

Assume that we have f = v and `j =
∑

i∈V Hijfi
2 for all j ∈ C. Then, the vector (f , `) is

feasible for LEM since 0 ≤ fi ≤ 1 for all i ∈ V and `j ≥ 0 for all j ∈ C with the objective

value zLEM (f) = Hamming(f ,v) = 0. This solution is optimal since 0 ≤ zLEM = zLEM (f) = 0.

Then, the optimal objective function value zLEM = 0 for all (v,H) instances. �

Proposition 4. The Hamming distance objective (2) of LPM is zero if and only if v is a

codeword.

Proof. As we have explanied in Section 2, the received vector v is binary by definition.

(⇒) Assume zLPM = Hamming(f ,v) = 0. Then, f = v and f is a binary vector. The binary

f vector indicates binary wjS values for all (j, S) pairs by Proposition 2. Then, (f ,w) is an

integral solution of LPM and a feasible solution of IPM. Any feasible f vector of IPM is a

codeword means v is a codeword as well.

14



(⇐) Assume that the received vector v is a codeword. Then, f = v is a feasible solution

of LPM with the objective value zLPM = Hamming(f ,v) = 0. This solution is optimal since

zLPM ≥ 0. �

Example: Let us consider the instance v = (0 1 1) and H =

1 0 1

0 1 1

 where n = 3 and

k = 1. Note that the received vector v is not a codeword since vHT 6= 0 (mod 2).

Figure 8: Tanner graph of the example instance (v,H)

The vectors cw1 = (0 0 0) and cw2 = (1 1 1) are the codewords of H among 2n=3 = 8 binary

vector alternatives. We observe that Hamming(cw1,v) = 2 and Hamming(cw2,v) = 1. Then,

the ML decoding, which can be found by the EM or IPM formulations, of the received vector

v is cw2.

LEM: LPM:

zLEM = min f1 + (1− f2) + (1− f3) zLPM = min f1 + (1− f2) + (1− f3)

s.t. f1 + f3 = 2`1 s.t. w1,S1 + w1,S2 = 1

f2 + f3 = 2`2 w2,S1 + w2,S2 = 1

f1, f2, f3 ∈ [0, 1] f1 = w1,S2 , f2 = w2,S2

`1, `2 ≥ 0. f3 = w1,S2 , f3 = w2,S2

f1, f2, f3 ≥ 0

w1,S1 , w1,S2 , w2,S1 , w2,S2 ≥ 0.

For the LEM formulation, f = (0 1 1) and ` = (0.5 1) is an optimal solution with objective

value zLEM = 0. For the LPM formulation, the set of feasible local codewords for the check

node c1 is ε1 = {S1 = ∅, S2 = {1, 3}} and for the check node c2 is ε2 = {S1 = ∅, S2 = {2, 3}}

as given in Figure 8. Note that, v = (0 1 1) is not a feasible solution of LPM, and the optimal

solution of LPM is f = (1 1 1) with zLPM = 1. In this example, LPM finds the ML decoding

which is not necessarily true in general. �
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As Propositions 3 and 4 claim and the above example illustrates, the LEM formulation is

a decision problem, i.e., zLEM = 0, and the LPM formulation provides strictly positive lower

bound when there are errors in the received vector, i.e., zLPM > 0. In the following sections,

we discuss the details of our BP, BPRS, and BCP algorithms, which can effectively solve an

IPM instance by gradually generating columns as needed.

3.2 Branch-and-Price Algorithm

In our BP algorithm for the IPM formulation, we aim to find the nearest codeword to the

received vector v. We start with a restricted LPM (RLPM) which contains a subset of wjS

variables. As mentioned before, wj∅ = 1 for all j ∈ C constitutes a feasible solution for LPM.

Hence, wj∅ variables for all j ∈ C are the initial columns in RLPM. We solve the node relaxations

in the B&B tree by solving a column generation subproblem.

We obtain dual LPM (DLPM) model by defining the dual variables µj for the constraints

(11), and τij for the constraints (12). The column generation algorithm adds the wjS variables

with positive reduced cost (µj −
∑

i∈S τij > 0) to RLPM. Such wjS columns correspond to the

violated constraints (17) in DLPM.

Dual LPM (DLPM):

max
∑
j∈C

µj (16)

s.t.
∑
i∈S

τij ≥ µj , ∀j ∈ C, S ∈ εj (17)

∑
j∈N(vi)

τij ≤ γi, ∀i ∈ V (18)

µj free, ∀j ∈ C, (19)

τij free, ∀ edges (i, j). (20)

If ζj = max{µj−
∑

i∈S τij : S ∈ εj} > 0 for some j ∈ C, then we add the column

[
0
ej
Al

]
for the

variable wjS . Here, ej is an m-column vector, which has a 1 at jth row and 0 otherwise, and

Al is a (
∑n

i=1 d(vi))-column vector, which has −1 at lth row if lth edge is the edge (i, j) with

i ∈ S. Thus, we seek a local codeword S for the node cj by solving the following subproblem

for each j ∈ C:
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jth Subproblem (SPj):

min
∑

i∈N(cj)

τijxi − µj (21)

s.t.
∑

i∈N(cj)

xi = 2`, (22)

xi ∈ {0, 1}, ` ∈ Z+. (23)

The binary variable xi indicates whether i ∈ S or not. We generate the new columns by

solving SPj to optimality with ColGen (see Algorithm 1), which runs in O(n log n) time due to

the sorting step. We solve LPM to optimality by introducing the columns to RLPM until we

have ζj = 0 for all j ∈ C.

Algorithm 1: (ColGen)

Input τij values

1. Sort the τij values in nondecreasing order.

Let τ tij be the tth smallest τij value.

2. Set xi = 0 ∀i ∈ N(cj), set t = 1.

3. If τ ti1,j + τ t+1
i2,j

< 0, Then set xi1 = xi2 = 1, Else STOP.

4. t← t+ 2, go to Step 3.

Output SPj is solved.

3.2.1 Branching in the BP Algorithm

In the case of a fractional optimal solution of LPM, we have either fi or wjS variables fractional.

According to Proposition 2, integral fi (or integral wjS) values ensure that all the decision

variables are integral. That is, branching on either the fi or wjS variables is sufficient to obtain

an integral solution of LPM.

Branching on the fi variables: We consider the case that the B&B tree branches on the

fractional fi variables in the node solutions of LPM. Since fi is a binary variable in IPM, we

fix fi = 0 in one branch and fi = 1 in the other branch for a fractional fi. In a branch of the

B&B tree, let fi = 0 for i ∈ N0 and fi = 1 for i ∈ N1, where N0 ∪ N1 ⊆ V and N0 ∩ N1 = ∅.

For such a branch, we have the following subproblem for each j ∈ C:
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jth Branch Subproblem (BSPj):

min
∑

i∈N(cj)

τijxi − µj (21)

s.t.
∑

i∈N(cj)

xi = 2`, (22)

xi = 0, for i ∈ N(cj) ∩N0, (24)

xi = 1, for i ∈ N(cj) ∩N1, (25)

xi ∈ {0, 1}, ` ∈ Z+. (23)

In order to solve the BSPj , we eliminate the xi variables for i ∈ N(cj) ∩N0 and we plug in

xi = 1 values for i ∈ N(cj) ∩ N1 to obtain a constant term in the objective (21). We solve

the remaining problem to optimality by applying ColGenBranch (see Algorithm 2), which is a

modified version of ColGen. ColGenBranch is a polynomial algorithm and runs in O(n log n)

time.

Algorithm 2: (ColGenBranch)

Input: Sets N0 and N1, where fi = 0 for i ∈ N0 and fi = 1 for i ∈ N1.

0. Set xi = 0, if i ∈ N(cj) ∩N0, and xi = 1, if i ∈ N(cj) ∩N1.

Let Ij = N(cj) \ (N0 ∪N1).

1. Sort the τij values in nondecreasing order for i ∈ Ij .
Let τ tij be the tth smallest τij value.

2. Set xi = 0 ∀i ∈ Ij , set t = 1.

3. If |N(cj) ∩N1| is even

4. Then set xi1 = xi2 = 1 if τ ti1,j + τ t+1
i2,j

< 0, otherwise STOP.

5. t← t+ 2, go to Step 4.

6. Else set xi = 1 for τ tij

7. If τ tij < 0, Then t← t+ 1 and go to Step 4, Else STOP.

8. End If

Output: A local codeword S with objective value

ζj =
∑

i∈Ij τijxi +
∑

i∈N(cj)∩N1
τij − µj .

We observe that branching on the fi variables does not change the structure of the subprob-

lems and ensures the integrality of the wjS variables due to Proposition 2. On the other hand,

the subproblems cannot be solved in polynomial time when one branches on the wjS variables.

Hence, we branch on the closest fi variable to the fractional value 0.5 in our computational

experiments.
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3.2.2 Repairing Infeasibility in the Node Relaxations

In the application of our BP algorithm, we observe that a branch can be pruned although there

exists a feasible solution on that branch. This may happen if the currently generated columns

are not sufficient to construct a feasible solution on the branch. As an example, consider the

f2 = 1 and f4 = 1 branch of the TG in Figure 9.

1 2 3 4 5

1 2 3

6 7 8 9 10

4 5

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

c1 c2 c3 c4 c5

1 2 3 4 5

1 2 3

6 7 8 9 10

4 5

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

c1 c2 c3 c4 c5

11

v11

12

v12

6

c6

1 2 3 4

1 2

0 1 0 1 d

c

Figure 9: An example TG

The set of all feasible local codewords for the node c1 is ε1 = {∅, {1, 2}, {1, 4}, {2, 4}} and for

the node c2 is ε2 = {∅, {2, 3}, {2, 4}, {3, 4}}. On the f2 = 1 and f4 = 1 branch, one can see that

(0 1 0 1) is a codeword with local codewords {2, 4} of c1 and {2, 4} of c2. However, we cannot

find this feasible solution on the branch if we have only generated the local codewords ∅, {1, 2}

and {1, 4} for c1, and the local codeword ∅ for c2. Moreover, we cannot find any other feasible

solution on this branch with these limited number of local codewords.

In such a case, the f2 = 1 and f4 = 1 branch is pruned by infeasibility although there is

a feasible solution for IPM on the branch. In order to overcome this situation, we developed

a column generation method based on the dual formulation. Let P be the primal problem

representing RLPM, and D be the dual of RLPM.

Proposition 5. P is infeasible if and only if D is unbounded.

Proof. From the duality theory, we know that infeasible P implies D is unbounded or infea-

sible. We know that LPM is bounded since the variables fi and wjS ∈ [0, 1] and it is feasible

since the 0-codeword is a trivial solution. Then the dual of LPM is also feasible.

D (the dual of RLPM) is feasible since it contains the feasible region defined by LPM dual.

This means P is infeasible =⇒ D is unbounded. Moreover, unbounded D implies P is infeasi-

ble from the duality theory. As a result, we conclude that P is infeasible ⇐⇒ D is unbounded.

�
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At an infeasible branch, either the current P is permanently infeasible or it temporarily

appears to be infeasible since we have not yet generated the columns that are necessary to

construct a feasible solution. Farkas’ lemma states either
[
f w

]
A = c and f ≥ 0,w ≥ 0 is

feasible or there is a ray d with Ad ≤ 0 and cd > 0, where A is the coefficient matrix for the

constraints and c =
[
1 0

]
is the right-hand-side vector of P . In case P is infeasible, we aim to

add a variable wjS to P and the corresponding coefficient column aT satisfying ad > 0 to A

matrix to fulfill feasibility. This corresponds to finding a dual constraint (dashed line) that can

bound the unbounded objective function value of D as shown in Figure 10. An LP solver can

provide a dual ray d in which the dual objective cd is unbounded when P is infeasible.

Figure 10: Dual constraint generation

Note that there can be multiple dual constraints (dashed line in Figure 10) that can bound

the dual objective. Hence, we search for the vector a which has the largest positive ad value.

Here, a is the coefficient vector of the desired dual constraint µj −
∑

i∈S τij ≤ 0 for some j ∈ C

and S ∈ εj among the constraints (17). Adding the columns to P using the dual ray obtained

by solving the dual Farkas system is known as Farkas pricing in the literature (Lübbecke and

Desrosiers, 2005; Lübbecke, 2010).

The vector a has (m + η)-many entries where m is the number of check nodes and η is the

number of edges in TG. The first m entries of a vector are the coefficients of µ variables, and

jth entry is the only nonzero one. The following η entries are the coefficients of τ variables, and

they are all zero except for the −1 entries corresponding to the check nodes j ∈ C and i ∈ S.

We can decompose the ray d as
[
dµ

dτ

]
, where dµ and dτ are the entries of d corresponding to
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the indices of the variables µ and τ , respectively. We have ad = dµ−
∑

i∈S dτ , and maximizing

ad is equivalent to maximizing dµj −
∑

i∈S d
τ
ij for each check node cj . Hence, we have to solve

the following direction subproblem for each j ∈ C:

jth Direction Subproblem (DSPj):

min
∑

i∈N(cj)

dτijxi − d
µ
j (26)

s.t.
∑

i∈N(cj)

xi = 2`, (22)

xi ∈ {0, 1}, ` ∈ Z+. (23)

We observe that DSPj and SPj are the same problem except the objective function coeffi-

cients. Hence, we can solve DSPj in O(n log n) time with ColGenBranch after replacing τij and

µj with dτij and dµj , respectively. We summarize our dual constraint (primal column) generation

method with DualConsGen (see Algorithm 3).

Algorithm 3: (DualConsGen)

Input: An infeasible restricted primal problem, P

0. isFeasible← true

1. Solve the dual Farkas system and obtain a dual ray d

that D is unbounded.

2. Solve DSPj for each check node j.

Add generated local codewords, i.e., columns, to P .

3. If no columns generated, Then conclude P is infeasible.

isFeasible← false and STOP.

4. Solve problem P .

5. If P is feasible, Then STOP.

6. Else go to Step 1.

7. End If

Output: isFeasible

3.3 Improvements to the BP Algorithm

SolveIPM (see Algorithm 4) shows the main steps of our BP algorithm. We utilize a new

pruning rule (see Section 3.3.1) to improve the performance of BP in terms of the solution

quality and computation time. (RS) and (C) steps are our improvements to BP. We name

the improved version of BP with (RS) step as the BPRS method, and with the (RS) and (C)

steps as the BCP method. In the (RS) step, we generate an initial feasible solution with the

RandSum heuristic (see Algorithm 5 in Section 3.3.2). In the (C) step, the FracSep algorithm

adds valid cuts to separate the fractional solutions of RLPM (see Algorithm 6 in Section 3.3.3).
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3.3.1 A Pruning Strategy

There are three rules to prune a branch of a B&B tree: optimality, infeasibility, and value

dominance. In this section, we introduce a new pruning rule which is based on the difference

between the objective function values of two feasible integral solutions.

Proposition 6. Let f be a feasible integral solution of LPM with the objective function value

z. Then, there is no feasible integral solution of LPM with objective function value in the range

(z − a, z) with the log-likelihood objective (9), where a = log[(1− p)/p].

Proof. Since f is integral, the value z of the objective (9) is an integral multiple of a, i.e.,

z = δa and δ ∈ Z. Let f ′ be another integral feasible solution of LPM. Then, its objective

value z′ is also an integral multiple of a, say z′ = δ′a and δ′ ∈ Z. The difference between the

objectives is z−z′ = (δ−δ′)a. From here, we conclude that the nearest objective function value

to z can be either z′ = z + a or z′ = z − a. Hence, there is no feasible integral solution of LPM

with objective function value in the range (z − a, z). �

In other words, the minimum difference between two feasible integral solutions is a with the

log-likelihood objective (9) and 1 with the Hamming distance objective (2).

Proposition 7. Let z be the optimum objective value of RLPM at a branch. The branch can

be pruned if z > zUB − a, where zUB is the best upper bound on IPM and a is the minimum

difference between two feasible integral solutions.

Proof. A branch can be pruned by value dominance if z > zUB. Besides, as shown in

Proposition 6, there cannot be an integral feasible solution in the range (zUB − a, zUB). Hence,

we can prune the branch if z > zUB − a. �
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Algorithm 4: (SolveIPM )

Input: A set of feasible local codewords that constitutes RLPM (∅ ∈ εj , ∀j).

0. Set LIST = {RLPM}, let z̄ =∞ and z = −∞.

(RS). Apply RandSum to generate an initial feasible solution.

1. While LIST 6= ∅ Do

2. Select the last problem in LIST , say problem P .

3. Solve P to optimality by adding the columns with ColGenBranch.

Obtain the optimal primal (f∗,w∗) and the dual (µ∗, τ ∗) solutions with value zi.

Pruning /* delete P from the LIST*/

4. If P is infeasible, Then prune by infeasibility if DualConsGen returns false.

Go to Step 1.

5. End If

6. If zi ≥ z̄, Then prune by bound and go to Step 1.

7. If P has an integer optimal solution, Then z̄ = zi,

prune by optimality and go to Step 1.

8. End If

Branching /* add P to the LIST*/

9. If P has a fractional optimal solution,

Then choose the closest fractional fi to 0.5

Left Branch

10. Let RLPM0 = P ∩ {(f ,w) : fi = 0}, add xi = 0 to subproblem j, if i ∈ N(cj).

Add RLPM0 to LIST .

Right Branch

11. Let RLPM1 = P ∩ {(f ,w) : fi = 1}, add xi = 1 to subproblem j, if i ∈ N(cj).

Add RLPM1 to LIST .

12. Go to Step 1.

(C). Apply FracSep for adding cuts (27) to RLPM .

13. End If

14. End While

Output: An integral solution (f∗,w∗) to IPM with objective value z̄.

3.3.2 Random Sum Heuristic

As we explained in Section 2, each row of G is a codeword (feasible solution). We can rewrite a

parity-check H matrix as H = [A|In−k] by carrying out elementary row operations under binary

arithmetic. Here, A is a (n− k)× k binary matrix, and In−k is the (n− k)× (n− k) identity

matrix. Then a k×n generator matrix G = [Ik|AT] can be obtained using this A matrix. Note

that, one can obtain different A matrices and the generator matrix G is not unique.

Since G is a basis for the solution space of EM, any feasible solution can be written as a

binary combination u′ of the rows of G. There are 2k different u′ combinations, where k is the

number of the rows of G. We try tmax random u′ combinations and update the upper bound

with the best solution found as given in the Random Sum (RandSum) heuristic (see Algorithm

5).
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Algorithm 5: (RandSum)

Input: A generator matrix G

0. Initialize z∗ =∞, e∗, tmax.

1. While t < tmax

2. Randomly set u′i from {0, 1} for i = 1, ..., k.

3. Obtain a feasible solution by e = u′G.

4. Calculate the objective function value ze of solution e.

5. If ze < z∗, Then

6. z∗ = ze, e∗ = e

7. End If

8. t = t+1

9. End While

Output: A codeword e∗ with objective value z∗.

The BPRS method implements the RandSum heuristic in (RS) step of SolveIPM in order

to tighten the upper bound. Moreover, we add the columns corresponding to the best known

solution to RLPM.

3.3.3 Fractional Solution Separation

As given in Feldman et al. (2005), for a check node cj and all S ⊆ N(cj) with |S| odd, the

following inequalities are valid for IPM:∑
i∈N(cj)\S

fi +
∑
i∈S

(1− fi) ≥ 1. (27)

Since there are m check nodes in a TG and 2d(cj)−1 many odd cardinality S ⊆ N(cj), there

are exponential-many valid cuts (27), i.e., m2d(cj)−1. We can trim a fractional solution of

RLPM, which is found by BP, if it violates the inequality (27) for some check node cj and odd

cardinality S ⊆ N(cj). We propose the FracSep algorithm (see Algorithm 6) that searches for

such violated inequalities to separate a given fractional solution. Notice that the valid cuts (27)

do not include wjS variables. Hence, the formulations of SPj , BSPj , and DSPj are not affected

by the valid cuts (27), which allows us to use the same solution methods for the subproblems.

FracSep is an exact separation algorithm, since it generates all violated inequalities (27) by a

given fractional solution. FracSep runs in O(n log n) time due to the sorting step. The BCP

method introduces the valid cuts (27) in (C) step of SolveIPM .
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Algorithm 6: (FracSep)

Input: A fractional solution f of RLPM

1. Sort f values in nonincreasing order. Let Is be sorted indices.

2. For Each check node cj and odd cardinality ω ≤ d(cj)

3. Construct S ⊆ N(cj) using first ω neighbors of cj in Is.

4. If inequality (27) is violated by f with S,

5. Then add cut (27) to RLPM .

6. End If

7. End For Each

Output: Cuts added to RLPM .

4 Computational Results

The computations have been carried out on a computer with 2.6 GHz Intel Core i7-9750H proces-

sor and 16 GB of RAM working under Windows 10 Professional. We compare the performances

of the methods summarized in Table 3. We implemented all methods in C# programming

language. In the BP method, we apply our branch-and-price algorithm for IPM without any

improvements (see Section 3.2). The BPRS method is an extension of the BP method with

the RandSum heuristic, and implements the (RS) step in SolveIPM . The BCP method is our

branch-cut-and-price algorithm, which utilizes the (RS) step and adds the valid cuts to RLPM

with the (C) step in SolveIPM . We solve the RLPM models at the nodes of the B&B tree with

CPLEX 12.10. We compare the performance of our BP, BPRS, and BCP decoders with two

state-of-the-art decoders from the literature: an iterative heuristic decoder SP and the bench-

mark ML decoder EMD, which is the IP decoder counterpart of the LP decoder of Tanatmis

et al. (2010) (see Section 3.1). In EMD, we solve the the EM formulation with CPLEX 12.10

by adding the valid cuts (27) with the separation algorithm of Tanatmis et al. (2010).

Table 3: Summary of the methods

Method Formulation (RS) (C)

BP IPM – –

BPRS IPM
√

–

BCP IPM
√ √

EMD EM –
√

SP – – –

A summary of the parameters used in the computational experiments is given in Table 4. We

try eight different code lengths from n = 300 to n = 8400 for three error probability p levels. We

randomly construct (5, 10)-regular H permutation code for each n (see Section 2). We ensure

that the length of the smallest cycle in the TGs of the generated codes is at least 6. We test the
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quality of the upper bounds obtained by the RandSum heuristic with two different tmax values.

In order to speed up the row sums and the objective function calculation, we utilize BitArray

data structure in RandSum. We set a time limit of 600 seconds for all methods in Table 3.

Table 4: List of the computational parameters

Parameters

n 300, 600, 1200, 1800, 2400, 3000, 6000, 8400

p 0.05, 0.07, 0.10

tmax 1000, 10000

Time Limit 600 secs

In our first experiment, we try tmax = 1000 and 10000 to observe the quality of the upper

bound obtained by the RandSum heuristic (see Section 3.3.2). In Table 5, we report the average

results for 30 trials for each n. We generate an original codeword by randomly combining the

rows of G. According to the results, we can obtain closer codewords to the original codeword,

i.e., the BER values are smaller, when tmax gets higher. Hence, we prefer to take tmax = 10000

in our BPRS and BCP methods.

Table 5: Performance of the RandSum heuristic

tmax 1000 10000

BER CPU z BER CPU

n z (×10−2) (secs) z (×10−2) (secs)

300 115.8 39.4 0.01 78.7 22.8 0.08

600 251.6 43.3 0.02 161.7 24.4 0.17

1200 522.0 44.8 0.05 332.3 24.7 0.46

1800 805.6 45.6 0.08 502.3 24.5 0.80

2400 1093.2 46.5 0.13 667.0 24.5 1.27

3000 1374.3 46.3 0.19 846.4 25.0 1.84

6000 2819.4 47.4 0.66 1715.0 25.2 6.04

8400 4004.0 48.2 1.22 2411.6 25.2 11.79

We experiment to compare the error correction capabilities of the BP, BPRS, BCP and EMD

methods. For each code length n, we run the decoders on 10 random received vectors (in total

240 instances for three p levels) and report the average values. We give the computational

results of the BP and EMD methods in Table 6 and the BPRS and BCP methods in Table

7. The column “zl” gives the best lower bound found by the method, and the column “z”

is the objective value of the best known solution. Although the objective functions of EM

and IPM are equivalent (see Proposition 1), their values are different. Hence, we report the

Hamming distance objective value for the solutions found by BP, BPRS, and BCP. We report

the percentage difference among zl and z in “Gap.” The number of instances that are solved to
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optimality (i.e., zl = z) is given in the column “#Opt” and the number of nodes evaluated in

the B&B tree is reported in “#Nodes.”

EMD adds the valid inequalities (27) by implementing the separation algorithm of Tanatmis

et al. (2010). The “#Cuts” column gives the number of cuts generated in EMD. BP decoder

can use the trivial solution of fi = 0 for all i ∈ V as an initial upper bound (see Section 3.1).

The column “ziu” shows the objective value of the initial solution.

We observe that the BP method uses fewer nodes than EMD. As the code length n increases,

the number of nodes that both methods can evaluate decreases due to time limitation. When

p = 0.05, BP is worse than EMD in terms of gap, BER and CPU. For all p values, BP cannot

complete the evaluation of the root node for n = 6000 and 8400 within the time limit to provide

a lower bound (i.e., zl = 0). EMD solves 90 instances to optimality whereas BP finds the

optimal solution of 68 among 240 instances.

Table 6: Performances of EMD and BP

EMD BP

Gap BER CPU # Gap BER CPU #

p n zl z (%) (×10−2) (secs) Opt Nodes Cuts zl z ziu (%) (×10−2) (secs) Opt Nodes

0.05 300 14.0 14.0 0 0 0.54 10 0.7 131.4 14.0 14.0 153.4 0 0 3.42 10 0

600 28.7 28.7 0 0 79.33 10 16.1 953.9 28.2 28.7 295.7 1.4 0 27.56 8 4.4

1200 57.3 57.3 0 0 4.58 10 2.2 565.1 57.2 57.3 599.9 0.1 0 122.04 9 0.4

1800 87.0 87.0 0 0 1.40 10 0 747.7 77.9 166.6 907.2 10.0 5.0 153.44 9 0

2400 117.7 117.7 0 0 2.18 10 0 1053.5 105.5 224.9 1198.7 10.0 5.0 177.95 9 0

3000 147.3 147.3 0 0 2.32 10 0 1221.6 103.5 540.1 1452.7 30.0 14.5 275.13 7 0

6000 301.7 301.7 0 0 66.52 10 0 3108.6 0 2970.9 2972.5 100 50.4 time 0 0

8400 425.9 425.9 0 0 12.74 10 0 3966.9 0 4199.7 4206.5 100 49.9 time 0 0

0.07 300 18.9 68.4 40.8 19.6 350.94 5 146329.3 2372.1 17.0 58.2 153.2 30.6 0 312.45 4 838.1

600 38.1 135.0 41.3 24.3 383.58 5 76456.9 3044.8 34.8 191.5 296.3 54.4 4.7 428.36 2 92.3

1200 77.1 346.3 77.7 39.4 time 0 41630.2 4180.4 70.8 290.4 604.2 40.6 5.0 542.42 1 16.6

1800 114.7 534.2 78.5 41.0 time 0 26690.6 4431.9 107.4 275.4 906.6 25.9 5.0 255.07 0 1.3

2400 156.7 712.8 78.0 41.9 time 0 20069.0 3678.1 156.6 368.0 1199.4 20.1 10.0 452.45 4 0

3000 197.7 893.0 77.9 42.3 time 0 12049.4 4603.9 141.2 581.9 1456.5 30.9 14.5 411.76 4 0

6000 397.0 1766.7 77.5 49.5 time 0 245.8 7177.2 0 2970.9 2970.9 100 49.5 time 0 0

8400 556.0 2507.4 77.8 49.9 time 0 9.7 8595.4 0 4200.6 4211.8 100 49.9 time 0 0

0.10 300 23.6 85.4 72.3 39.3 time 0 344196.6 3636.0 19.6 152.0 153.6 87.1 48.7 time 0 1405.6

600 44.5 174.6 74.5 39.2 time 0 129500.2 3057.1 38.9 294.5 294.5 86.8 49.0 time 0 111.8

1200 86.4 351.6 75.4 39.8 time 0 48311.8 2941.5 77.4 552.6 601.4 81.8 22.7 time 0 16.1

1800 130.1 528.9 75.4 39.7 time 0 25975.4 3865.5 124.3 682.0 901.8 69.7 22.6 time 0 1.0

2400 172.7 713.2 75.8 40.0 time 0 19352.6 3988.0 185.7 621.6 1197.0 48.3 15.0 time 0 0

3000 215.7 881.8 75.5 39.3 time 0 9691.8 4424.6 161.8 758.9 1457.3 44.7 24.1 597.50 1 0

6000 430.9 1778.5 75.8 39.4 time 0 195.9 6505.4 0 2961.5 2961.5 100 49.5 time 0 0

8400 602.8 2500.0 75.9 39.7 time 0 6.0 7884.2 0 4190.6 4202.4 100 49.9 time 0 0

The BPRS and BCP methods utilize an initial solution with the RandSum heuristic (see

Table 7). We report the number of valid cuts (27) used by the BCP method in the column

“#Cuts.” BCP can find the original codeword (i.e., BER = 0) for all instances by improving the

solution of RandSum with the BP algorithm. The number of cases out of 240 instances solved to

optimality for BPRS and BCP are 110 and 171, respectively. As we improve our BP algorithm

to BPRS and BCP, we observe better gap, BER, #Opt values and fewer nodes. Moreover, BCP
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gives better figures for these performance metrics compared to EMD while generating fewer

cuts (27) than EMD.

Table 7 shows that our algorithms can solve more instances to optimality as the code length

n increases for p = 0.07 and 0.10, which is somewhat counter intuitive. For example, BCP can

solve 10 instances to optimality when n ≥ 6000 for these p values. This is due to the properties

of H codes and the LPM formulation. In particular, randomly constructed permutation codes

have fewer cycles in their TG representations as the dimension of the code gets larger (Lau

et al., 2017). When a TG is cycle-free, any optimal solution of LPM is integral as noted in

Feldman et al. (2005). Hence, as the code length n increases, we have a TG with fewer cycles,

which results in a better LP lower bound at the root node. This is not apparent for BP since

we cannot complete the root node evaluation due to time limit for n ≥ 6000.

Table 7: Performances of BPRS and BCP

BPRS BCP

Gap BER CPU # Gap BER CPU #

p n zl z ziu (%) (×10−2) (secs) Opt Nodes zl z ziu (%) (×10−2) (secs) Opt Nodes Cuts

0.05 300 14.0 14.0 76.0 0 0 1.57 10 0 14.0 14.0 76.0 0 0 0.74 10 0 63.2

600 28.2 28.7 151.9 1.4 0 64.74 8 71.6 28.7 28.7 151.9 0 0 64.90 10 10.2 7.6

1200 57.2 57.3 326.7 0.1 0 35.65 9 1.2 57.3 57.3 326.7 0 0 32.81 10 1.7 11.9

1800 87.0 87.0 481.2 0 0 107.05 10 0 87.0 87.0 481.2 0 0 135.45 10 0 14.6

2400 117.7 117.7 643.9 0 0 303.86 10 0 117.7 117.7 643.9 0 0 340.03 10 0 36.2

3000 147.3 212.9 813.3 8.1 0 502.74 9 0 147.3 147.3 813.3 0 0 517.13 10 0 53.5

6000 149.2 970.7 1638.1 40.0 12.4 time 6 0 301.7 301.7 1638.1 0 0 596.00 10 0 56.7

8400 296.6 994.1 2316.7 30.0 7.5 time 7 0 425.9 425.9 2316.7 0 0 567.00 10 0 13.0

0.07 300 17.2 19.4 78.4 9.6 0 360.86 5 1759.8 18.9 19.4 78.4 2.1 0 303.79 6 25.1 7.6

600 34.8 84.9 157.7 34.2 9.6 426.39 2 915.1 38.7 39.3 157.7 1.4 0 507.20 6 11.3 193.0

1200 71.1 156.6 335.8 29.7 0 545.00 2 124.2 78.0 79.0 335.8 1.2 0 533.30 5 9.7 715.9

1800 110.2 196.2 497.8 22.7 2.4 565.00 2 32.8 117.7 120.8 497.8 2.5 0 559.00 5 9.7 813.2

2400 156.1 212.0 666.2 11.0 2.5 507.40 4 9.3 161.2 162.2 666.2 0.6 0 538.00 6 7.6 453.0

3000 198.0 265.5 839.5 9.9 2.5 510.00 5 1.9 203.7 204.1 839.5 0.2 0 527.10 9 7.6 422.6

6000 207.2 1060.1 1698.3 50.0 12.4 582.00 5 0 420.1 420.1 1698.3 0 0 573.90 10 4.9 62.3

8400 291.4 1492.6 2398.2 40.0 12.7 599.80 6 0 591.2 591.2 2398.2 0 0 586.30 10 4.6 2167.0

0.10 300 19.6 60.8 82.2 58.1 14.9 time 0 2836.1 29.0 30.6 82.2 4.9 0 582.90 4 9.1 58.9

600 38.9 122.9 168.3 58.6 14.2 time 0 1361.2 57.2 59.3 168.3 3.5 0 574.70 3 8.8 92.2

1200 77.4 258.6 351.8 60.3 15.5 time 0 110.9 110.4 117.6 351.8 6.0 0 594.10 1 7.0 171.5

1800 124.3 352.0 523.4 51.7 12.5 time 0 30.6 171.6 177.2 523.4 3.1 0 584.80 2 7.0 135.7

2400 187.9 281.8 699.2 24.2 14.8 time 0 8.1 226.1 234.8 699.2 3.7 0 time 0 7.0 138.2

3000 243.6 469.1 879.3 31.2 7.5 598.00 1 1.4 287.0 294.9 879.3 2.7 0 595.90 4 8.1 309.8

6000 417.3 956.7 1784.9 30.5 7.5 578.60 5 0 597.0 597.0 1784.9 0 0 594.80 10 6.3 61.4

8400 425.2 1853.0 2521.2 56.8 15.2 550.20 4 0 842.0 842.0 2521.2 0 0 599.30 10 6.0 81.9

Figure 11 illustrates the decoding latency and the optimality gap values of the BP, BPRS,

BCP and EMD methods in our experiments. In particular, Figure 11a shows that the average

decoding time per bit is almost the same for all methods at each error probability level. Ac-

cording to Figure 11b, the average optimality gap increases significantly as the probability p

gets higher for EMD. We observe that, the average optimality gap gradually improved from BP

to BPRS and BCP achieves the best optimality gap.

SP is a commonly used iterative message-passing algorithm to decode the received vector
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Figure 11: Decoding time and optimality gap comparison of the methods

in practical applications. At each iteration of SP, each variable node in the TG sends the

probability of being 0 or 1 as a message to the adjacent check nodes. A variable node decides

on the value of the bit after receiving the messages from its neighboring check nodes. It is well

known in the literature that the iterative decoding algorithms (such as SP) may fail to decode

if the TG includes cycles (Kschischang et al., 2001). On the other hand, the optimization-based

decoders BP, BPRS, BCP, and the benchmark EMD can complete decoding independent from

the existence of cycles. Note that, as there are fewer cycles in the TG, the decoding latency of

an optimization-based decoder improves, since the LP relaxation gets tighter.

4.1 Simulation Results

We further compare the performance of our BCP decoder to the state-of-the-art decoders EMD

and SP via BER simulations. Figure 12 shows the BER values of the decoders for five different

channel error probabilities, i.e., p = 10−1, 10−1.2, 10−1.4, 10−1.6, and 10−1.8. For each p value, we

randomly generate 10 different (5, 10)-regular LDPC codes with n = 300, and plot the average

BER of these 10 trials. For each LDPC code, we continue with the decoding of randomly gener-

ated received vectors until we observe 50 decoded vectors different from the original codeword.

For example, the average BER of 10 different LDPC codes is around 10−5 when p = 10−1.2 for
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our BCP decoder in Figure 12.

Figure 12: BER simulations of SP, EMD, and BCP

Figure 12 reveals that EMD has smaller BER figures than SP when p < 10−1.6, whereas our

BCP decoder has the best BER figures for all p values. As we mentioned earlier, EMD and our

decoders (BP, BPRS and BCP) are optimization-based decoders, and their BER achievements

are independent of the cycles. On the other hand, being an iterative message-passing algorithm,

SP can be adversely affected by the existence of cycles. In order to compare the performances

of SP and the optimization-based decoders, we facilitate TGs having the length of the smallest

cycle at least 6. Figure 12 shows that the BER performance of the BCP decoder is significantly

superior compared to the SP algorithm.

The polar codes, which is a dense code family, of Arıkan are currently in the 5G communica-

tion standards (Arikan, 2008). In this study, we experiment on the dense (5, 10)-regular codes,

and observe that our BCP method can contribute to the new telecommunication standards with

its impressive BER performance.

Furthermore, BCP is implementable for the cases such as deep space communications, that

we cannot reobtain the information from the digital source. For such applications, high quality

decoding is important instead of decoding speed. Our BCP method is a candidate decoder

thanks to its high decoding quality for such communication systems.
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5 Conclusions

In this study, we focus on the decoding algorithms that correct the errors in the received

vector using LDPC codes for digital communication systems. We consider a mathematical

formulation from the literature and propose a branch-and-price (BP) algorithm for its solution.

We improve the error correction capability of our BP algorithm by providing tight upper bounds

with the RandSum heuristic and introducing valid cuts to the mathematical formulation. These

enhancements give rise to our branch-and-price-random-sum (BPRS) and branch-cut-and-price

(BCP) methods, respectively.

Our computational experiments show that our BCP method outperforms exact model decoder

(EMD), which makes use of the commercial solver CPLEX 12.10, in terms of gap, BER and the

number of instances solved to optimality. According to the BER simulations of BCP, and the

state-of-the-art EMD and SP, we observe that BCP has the highest error correction capability

with acceptable decoding latency.

Our BCP decoder can contribute to the construction of reliable digital communication systems

with its high BER achievement. In particular, BCP can be used for the critical applications,

such as NASA’s Mission Cassini, in which we receive the information only once. In such set-

tings, solution quality is crucial instead of decoding latency. Considering decoding is an online

problem, faster decoders are desired. Hence, improving the solution time of the BCP method

can be a future track of research.
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