
A Branch-and-Cut Algorithm for a

Bipartite Graph Construction Problem in

Digital Communication Systems

Banu Kabakulak∗1, Z. Caner Taşkın1, and Ali Emre Pusane2

1Department of Industrial Engineering, Boğaziçi University, İstanbul, Turkey

2Department of Electrical and Electronics Engineering, Boğaziçi University, İstanbul, Turkey

We study a bipartite graph (BG) construction problem that arises in digital com-

munication systems. In a digital communication system, information is sent from one

place to another over a noisy communication channel using binary symbols (bits).

The original information is encoded by adding redundant bits, which are then used

to detect and correct errors that may have been introduced during transmission.

Harmful structures, such as small cycles, severely deteriorate the error correction

capability of a BG. We introduce an integer programming formulation to generate

a BG for a given smallest cycle length. We propose a branch-and-cut algorithm

for its solution and investigate the structural properties of the problem to derive

valid inequalities and variable fixing rules. We also introduce heuristics to obtain

feasible solutions for the problem. The computational experiments show that our

algorithm can generate BGs without small cycles in an acceptable amount of time

for practically relevant dimensions.

Keywords: Telecommunications, bipartite graphs, integer programming, branch-

and-cut algorithm.

∗Corresponding author. Tel.: +90 2123596771; fax: +90 2122651800.
E-mail addresses: banu.kabakulak@boun.edu.tr (B. Kabakulak), caner.taskin@boun.edu.tr (Z. C. Taşkın),
ali.pusane@boun.edu.tr (A. E. Pusane).

1 Introduction and Literature Review

Telecommunication is the transmission of messages from a transmitter to a receiver over a

potentially unreliable communication environment. In a digital communication system, any

information is represented by binary code symbols (bits). In parallel to rapid developments

in technology, digital communication systems have several application areas such as messaging

via digital cellular phones, fiber optic Internet, TV broadcasting, and agricultural monitoring

through digital satellites. Information is often transmitted across noisy environments such as

air or space, which may introduce transmission errors. In digital communications, the original

information is encoded by adding redundant bits to enable error recovery. When the receiver

obtains the information, the decoder estimates the original information by detecting and cor-

recting errors in the received vector using the redundant bits.

H =

A

B

Digital Source Encoder

Coding ChannelNoise

DecoderDigital Sink

u

w

v
û

Generator Matrix

G

Parity-Check Matrix

H

Mesaj Kaynağı Kanal Kodlayıcı

İletişim KanalıGürültü

Kanal Kod

Çözücüsü
Mesaj Hedefi

u

v

r
û

Üreteç Matrisi (G)

Eşlik-Denetim

Matrisi (H)

Digital Source Encoder

Binary Symmetric

Channel
Noise

DecoderDigital Sink

u

v

r
û

Generator Matrix

G

Parity-Check Matrix

H

Figure 1: Digital communication system diagram

Figure 1 shows the information flow in a digital communication system using low-density

parity-check (LDPC) codes. Let the original information be a binary vector u of k-bits. The

encoder adds redundant parity-check bits to vector u, generating codeword w of n-bits, where

n ≥ k. After the transmission of codeword w through a noisy channel, the receiver receives

vector v of n-bits. The decoder detects whether the received vector v includes errors or not

by checking whether the expression vHT is equal to vector 0 in (mod 2), where H is a binary

matrix known as parity-check matrix (see Figure 2). In case where v contains errors, the decoder

attempts to determine the error locations and tries to fix them [11]. As a result, the information

u sent from the source is estimated as û at the sink.

H =

0 1 0 0 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1
1 0 1 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0 1 1
1 1 1 1 0 0 0 1 0 1

Figure 2: A parity-check matrix from (3, 6)-regular LDPC code family

An LDPC code is identified by its H matrix, and said to be regular if there is a constant

number of ones at each column and row of the H matrix. The H matrix given in Figure

2 represents a (3, 6)-regular code since there are 3 ones at each column and 6 ones at each

row. The code can alternatively be represented as a bipartite graph (BG) corresponding to

the H matrix [28]. On one part of the BG, there is a variable node j (vj), j ∈ {1, ..., n}, for

each bit of the received vector v. Each row of the H matrix corresponds to a check node i

(ci), i ∈ {1, ..., n − k}, on the other part of the BG. The degree of vj (ci) is the number of

adjacent check nodes (variable nodes) on the BG. Hence, the H matrix is the bi-adjacency

matrix of the BG. A check node ci is satisfied if the sum of the adjacent bits is zero in (mod

2). Figure 3 shows the BG representation of the H matrix given in Figure 2.

1 2 3 4 5

1 2 3

1 2 3 4 5

1 2 3

6 7 8 9 10

4 5

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

c1 c2 c3 c4 c5

Figure 3: BG representation of the parity-check matrix given in Figure 2

The sparsity property of LDPC codes facilitates the usage of iterative decoding algorithms

(such as Gallager A) with low complexity [10, 33]. We demonstrate the Gallager A algorithm

under a binary symmetric channel (BSC) in Figure 4. In case of an error BSC flips the value of a

bit from 0 to 1, and vice versa. Assuming that the decoder has received codeword w = (1 1 0 0 0)

as vector v = (0 0 1 0 1), Gallager A sends these bits to the check nodes to evaluate the parity-

check equations (Figure 4a). We observe that c2 and c3 are satisfied whereas c1 is not. Then,

each check node conveys the information of whether it is satisfied (S) or unsatisfied (U) to the

adjacent variable nodes.

n - ccr ccr

m
 -

 r
c
r

r c
r

n - ccr ccr

m
 -

 r
c
r

r c
r

R

1 2 3 4 5

1 2 3

0 0 1 0 1

0 = 0 + 0 + 1 0 = 0 + 0 + 1 + 0 + 1 0 = 1 + 0 + 1

(a) (b)

1 2 3 4 5

1 2 3

0 = 0 + 0 + 1 0 = 0 + 0 + 1 + 0 + 1 0 = 1 + 0 + 1

US US USS SS SS

n - ccr ccr

m
 -

 r
c
r

r c
r

Q

R

Figure 4: An iteration of Gallager A algorithm

Among the variable nodes that have more unsatisfied adjacent check nodes than satisfied

nodes, Gallager A flips the value of the node vj having the highest number of unsatisfied

adjacent check nodes. The message passing between the variable and check nodes continues

until all check nodes are satisfied (a codeword is found), or a termination criterion (such as

iteration limit or no candidate bit to flip) is met. In Figure 4b, notice that all of the adjacent

check nodes of erroneously received bits v1 and v2 are in the length-4 cycle (v1, c1, v2, c2).

Gallager A fails to recover the bits v1 and v2, since the number of satisfied check nodes equals

the number of unsatisfied nodes. Hence, Gallager A terminates with the vector v = (0 0 1 0 1)

due to the nonpresence of a candidate bit to flip. The resulting vector is not a codeword as c1

is not satisfied.

As we illustrate in Figure 4, the error correction capability of iterative decoding algorithms

(such as Gallager A) deteriorates due to cycles in the BG. If there is no iteration limit, an

iterative decoding algorithm may loop indefinitely among vectors in the presence of small cycles

[24]. The length of a smallest cycle in a graph is known as girth [13]. In this study, we focus on

designing regular LDPC codes whose BGs do not contain small cycles. In particular, we aim to

construct a BG having girth no smaller than a given target girth value g.

In practice, an LDPC code is printed on the board of an electronical device to carry out digital

communication. Regular LDPC codes have the advantage of easy hardware implementation

compared to irregular ones. As given in Figure 4, the information is decoded in packets of

length n, and the complexity of an iterative decoding algorithm depends on the degrees J and

K. In order to minimize the decoding latency, LDPC codes having small (m,n) dimensions and

small (J,K) values are preferable. Hence, determining the minimum (m,n) dimensions when

girth g and (J,K) degrees are given is one of the focal points of this work.

The literature includes studies on the girth of a graph and constructing high girth graphs.

[32] investigates the theoretical properties of graphs with large girth. The linear time algorithm

of [9] computes the girth of a planar graph. [25] develops an approximation algorithm for the

minimum weight cycle in a weighted undirected graph. This algorithm is used to approximate

the girth of a graph. Some families of small regular graphs of girth 5 are described in [1]. Small

regular BGs of girth 6 can be constructed with the method given in [3]. [16] focuses on the

r-regular graphs with large girth and provides upper and lower bounds on the size of maximum

independent sets, maximum dominating sets, and minimum connected sets.

[8] describes a high girth graph construction algorithm that starts from the empty graph.

The bit-filling heuristic starts with a large girth target and decreases its target as it inserts

edges to BG one-by-one [7]. The heuristic terminates when a prescribed girth is met. The

Progressive Edge Growth (PEG) heuristic is based on adding edges to the BG iteratively without

constructing small cycles [18]. In [21] certain edges are exchanged within the BG to eliminate

small cycles without creating any others. In the edge deletion algorithm an edge that commonly

appears in the maximum number of cycles is selected [4]. In [15] the selection criteria of the

PEG algorithm to locate an edge in a BG is modified in order to have a better girth value than

PEG. There are other constructive heuristics in the literature that avoid small cycles [5, 19]. A

genetic algorithm to design a BG with a small number of nodes is given in [6]. In [26] a modified

shortest-path algorithm is used to construct a BG.

These methods are heuristic approaches and they change the degree distribution of the nodes

in the BG. Furthermore, they may fail to generate a BG for a given dimension with a target

girth value. In this study, we investigate the BG construction problem from an optimization

point of view. Our main contributions to the literature can be listed as follows:

• We propose an integer programming (IP) formulation to generate BGs with a given girth

value and develop a branch-and-cut (B&C) algorithm for its solution. To the best of our

knowledge, our paper is the first work that implements optimization algorithms on an IP

model for the BG (or LDPC code) design problem.

• We propose methods that are capable of finding a BG for a given girth value, or proving

that there cannot be such a BG.

• We investigate the structural properties of the problem for (J,K)-regular BGs to improve

our algorithm by applying a variable fixing scheme, adding valid inequalities and uti-

lizing initial solution generation heuristics. The computational results indicate that our

proposed methods significantly improve the solvability of the problem.

• We discuss how our method can be used to find the smallest dimension n that one can

generate a (J,K)-regular BG.

The remainder of the paper is organized as follows: we formally define the problem, and

introduce the mathematical formulation and the proposed B&C algorithm in the next section.

We propose a number of techniques to improve the performance of the B&C algorithm in Section

3. We test the efficacy of our methods via computational experiments in Section 4. Finally,

some concluding remarks and comments on future work appear in Section 5.

2 Solution Methods

In this section, we introduce our integer programming formulation and propose a B&C algorithm

for the solution of the problem. We investigate additional methods to improve the performance

of our B&C algorithm. We summarize the symbols used in this paper in Table 1.

Table 1: List of the symbols

Parameters

H parity-check matrix

k length of the original information

n length of the encoded information, number of columns in H

m n− k, number of rows in H

g target girth

vj variable node j

ci check node i

d(vj) target degree of vj

d(ci) target degree of ci

ρ(i, j) local girth of edge {ci, vj}
Decision Variables

xij (i, j) entry of the H matrix

sj slack for degree of vj

ti slack for degree of ci

2.1 Mathematical Formulation

In our Minimum Degree Deviation (MDD) model, our aim is to generate an H matrix (a BG)

of dimensions (m,n), where m = n − k, having girth no smaller than a given value g. In

the MDD model, xij represents the (i, j) entry of the H matrix. We are given the target

degree distributions d(vj) and d(ci) in the BG for the nodes vj and ci, respectively. The degree

deviation sj of the node vj from the target d(vj) is modeled with the constraints (2). Similarly,

the constraints (3) introduce the deviation ti of the node ci from the target d(ci). In the

constraints (4), Km,n represents a complete bipartite graph with bipartitions C = {c1, ..., cm}

and V = {v1, ..., vn}. These constraints eliminate the cycles with length less than the target

girth g from the solution space. The objective function (1) minimizes the total weighted degree

deviations from the given degree distributions.

Minimum Degree Deviation (MDD) Model:

min

n∑

j=1

sj
d(vj)

+

m∑

i=1

ti
d(ci)

(1)

s.t.:
m∑

i=1

xij + sj = d(vj), j = 1, ..., n (2)

n∑

j=1

xij + ti = d(ci), i = 1, ...,m (3)

∑

(i,j):{ci,vj}∈S

xij ≤ |S| − 1, for each cycle S ⊆ E(Km,n) : |S| < g (4)

xij ∈ {0, 1}, i = 1, ...,m, j = 1, ..., n. (5)

sj , ti ≥ 0, i = 1, ...,m, j = 1, ..., n. (6)

As we discussed in Section 1, an iterative decoder (such as Gallager A) decides on the value

of a bit using the messages among the check and variable nodes. The decoder’s decision is

more reliable if it collects messages from as many nodes as possible. In other words, the degree

deviation of a node having a smaller target degree is more important in terms of the error

correction capability of a code. Hence, the weight of a degree deviation (sj or ti) is inversely

proportional to the target degree (d(vj) or d(ci)) in the objective function (1) of our MDD

model.

Note that if all deviations sj and ti are zero in MDD, i.e., the value of the objective function

is zero, one obtains a BG with the target degree distributions and the girth is no smaller than

g. As a special case, one can generate a (J,K)-regular H matrix by picking d(vj) = J for all

j, and d(ci) = K for all i. Since there can be an exponential number of cycles in a BG, we can

have exponential number of the constraints (4) in the MDD model. In order to obtain a solution

in an acceptable amount of time, we can add the constraints (4) in a cutting-plane fashion to

MDD. This is the main idea behind our B&C algorithm explained in the next section.

2.2 Branch-and-Cut (B&C) Algorithm

In our B&C algorithm, we are given a target girth value g, and the dimensions (m,n) of H

matrix. We initialize our algorithm by relaxing the constraints (4) from MDD, to obtain the

relaxed model MDDr. We can find either an integral or a fractional solution after solving

MDDr. We test the feasibility of an integral solution x of MDDr with respect to the relaxed

constraints (4) by our integral solution separation (IntSep) algorithm. Let Gx = (V ∪C,Ex) be

the induced BG by the nonzero xij values. IntSep first constructs the graph Gx of an integral

solution x, and implements a depth-first-search (DFS) up to depth (g − 2) to detect all cycles

smaller than g. The complexity of the IntSep algorithm is determined by the number of nodes

in the DFS tree, and can be given as O(J̄ [(J̄ − 1)(K̄ − 1)]g/2), where J̄ = maxvj∈V {d(vj)} and

K̄ = maxci∈C{d(ci)}.

We can strengthen the linear relaxation of MDD by separating a fractional solution x of

MDDr that violates the constraints (4). We can detect all cycles that violate the constraints (4)

by implementing DFS up to depth (g − 2) in the induced graph Gx by the nonzero xij values

as in IntSep. However, the number of nonzero xij values can be mn for a fractional x, whereas

it is at most J̄K̄ in IntSep. Hence, determining all violating cycles for a fractional solution

has complexity O(m[(m − 1)(n − 1)]g/2). Instead, our FracSep algorithm finds the maximum

mean cost cycle on Gx to find some of the cycles that violate the constraints (4) with lower

complexity.

The minimum mean cost cycle problem, which is a special case of the minimum cost-to-time

ratio cycle problem, is a well known network problem in the literature and there is a polynomial

time solution algorithm that solves it in directed graphs [2, 12, 22]. The problem aims to find a

directed cycle S having the smallest mean cost
∑

(ci,vj)∈S xij/|S| in a directed graph. However,

we cannot implement this algorithm directly since we seek an undirected BG. Instead, we

update the best known mean cost by utilizing a negative cycle detection algorithm repeatedly.

Recall that the Bellman-Ford algorithm can detect negative cycles while searching for one-to-

many shortest paths in directed graphs. The Bellman-Ford algorithm is also applicable for the

undirected induced Gx in O((m+n)|Ex|) time if for an edge {ci, vj} the algorithm updates the

distance label of node vj when it is not the predecessor of node ci [2]. If the algorithm detects

a negative cycle, we can track the predecessor list to identify the cycle.

In our FracSep algorithm we use the undirected Bellman-Ford algorithm to detect negative

cycles within a mean cost update method. We first set edge costs as −xij to convert our maxi-

mization problem to a minimization problem. Let µ represent an estimation on the minimum

mean cost and µ∗ denote the (unknown) optimal value of µ. Then, given a µ value, we update

the edge costs to (−xij − µ) and check for the existence of a negative cycle. If we start with a

µ that is an upper bound for µ∗, we can encounter one of the following cases for µ∗.

Case 1: G has a negative cycle S. In this case,
∑
{ci,vj}∈S(−xij − µ) < 0. Therefore,

µ > −
∑
{ci,vj}∈S xij

|S| > µ∗. (7)

Hence, µ is a strict upper bound on µ∗. We can update µ as µ = −
∑
{ci,vj}∈S

xij

|S| in the next

iteration.

Case 2: G has a zero-cost cycle S∗. In this case,
∑
{ci,vj}∈S∗(−xij − µ) = 0. This implies,

µ = −
∑
{ci,vj}∈S∗ xij

|S∗| = µ∗. (8)

Hence, µ = µ∗, and S∗ is a minimum mean cost cycle. FracSep concludes that µ = µ∗ if

|µ− µ∗| < ε, where ε is a given very small positive real number.

Input: A solution of MDDr with fractional xij values, g target girth

1. Let µ = 0, set cost of the edge {ci, vj} as (−xij − µ).

2. While we can detect a negative cycle S with the undirected Bellman-Ford,

3. If |S| < g and S violates (4), Then add the corresponding cut (4).

4. Update µ← −
∑

{ci,vj}∈S xij

|S|

5. End While

Output: Cuts added to MDDr model

Figure 5: Fractional solution separation (FracSep) algorithm

FracSep in Figure 5 summarizes our fractional solution separation algorithm. We initially set

µ = 0, since it is an upper bound on µ∗. If we can find a violating negative cycle with length

|S| < g, we can add a cut to MDDr. This means that S is a cycle with
∑
{ci,vj}∈S xij > |S| − 1.

We continue updating µ values until we find a minimum mean cycle. The time complexity of

FracSep is O(log(1/ε)(m+ n)|Ex|).

3 Modeling and Algorithmic Improvements

In this section, we propose some improvements to the B&C algorithm given in the previous

section. We first observe that the solution space of MDD includes symmetric solutions. Hence,

we consider a variable fixing approach to decrease the adverse effect of symmetry. Secondly, we

introduce some valid inequalities to improve the linear relaxation of MDD. Finally, we develop

heuristic approaches to provide an initial feasible solution to the B&C algorithm.

3.1 Symmetry in the MDD Solution Space

In combinatorial optimization problems, such as scheduling, symmetry among the solutions

is an important issue, which directly affects the performance of the applied solution methods

[14, 27]. We observe that the feasible region of MDD contains symmetric solutions. That is,

there can be isomorphic representations of a BG obtained by permuting the variable and check

nodes. As an example, the variable nodes are in the sequence {v1, v2, v3, v4} in Figure 6a, and

the names of v2 and v4 are swapped in Figure 6b.

1 2 3 4

1 2 3

H¹ =

1 4 3 2

1 2 3

(a) (b)

Figure 6: Symmetry in the MDD solution space

In Figure 7, H1 and H2 are the parity-check matrices for the BGs in Figures 6a and 6b,

respectively. We see that although the BGs are isomorphic, their H matrix representations are

not identical. In the MDD solution space, H1 and H2 are considered as two different solutions,

which increases the complexity of the solution algorithm.

H1 =

1 0 1 0
1 1 1 0
0 1 1 1

 H2 =

1 0 1 0
1 0 1 1
0 1 1 1

Figure 7: Parity-check matrices for the BGs in Figure 6

We can calculate the number of symmetric solutions for a BG as (n!)(m!), since we can

permute n variable nodes as (n!) and m check nodes in (m!) different ways.

3.2 Symmetry Breaking with Variable Fixing

In the literature ordering the decision variables, adding symmetry-breaking cuts to the for-

mulation, and reformulating the problem are some of the suggested techniques to eliminate

symmetric solutions from the feasible region [27, 20]. In our case, we propose a variable fixing

scheme (given as VarFix in Figure 8) for the nonzero xij entries of a (J,K)-regular H matrix,

which breaks symmetry and does not affect the girth g of the BG.

Input: (m,n) dimensions, (J,K) values

0. Let rcr = b(n− 1)/(K − 1)c, and ccr = b(m− 1)/(J − 1)c.
For i = 1, ..., rcr, j = 1, ..., n, set xij = 0.

For i = rcr + 1, ...,m, j = 1, ..., ccr, set xij = 0.

Set x11 = 1.

1. For i = 1, ..., rcr + 1, j = 1, ...,K − 1,

2. If 1 + (i− 1)(K − 1) + j ≤ n, Then set xi,1+(i−1)(K−1)+j = 1.

3. End For

4. For i = 1, ..., J − 1, j = 1, ..., ccr + 1,

5. If 1 + (j − 1)(J − 1) + i ≤ m, Then set x1+(j−1)(J−1)+i,j = 1.

6. End For

Output: Some xij values are fixed

Figure 8: Variable fixing (VarFix) algorithm

VarFix algorithm starts with a matrix whose entries are initially zero. In the first iteration,

VarFix constructs the H1 matrix by fixing the first K entries in the first row and the first J

entries in the first column to 1. The remaining entries in the first row and column are set to

0, since the constraints (2) for j = 1, and the constraints (3) for i = 1 are satisfied without

deviation, i.e., s1 = t1 = 0. For a nonzero entry (i, j) of an H matrix, the local girth ρ(i, j) is

the size of the smallest cycle including the edge {ci, vj} in the BG [18]. In the second iteration,

we temporarily assume that xij = 1 for each unfixed (i, j) entry, and determine ρ(i, j) by

carrying out a breadth-first-search (BFS) on H1 starting from node vj (see Figure 12 in Section

3.3 for ρ(i, j) values when J = 3 and K = 6). We obtain H2 by permanently fixing the first

(K − 1) entries in the second row, and the first (J − 1) entires in the second column that have

ρ(i, j) =∞ (no cycle is formed) to 1. VarFix generates Hγ in the γth iteration, and alternates

between the rows and columns as allowed by the dimensions (m,n).

We illustrate VarFix in Figure 9 for a (3, 6)-regular BG of dimensions (20, 40). In Figure

9, the labels on the rows and columns show the sum of the values in that row and column,

respectively. We observe that for rcr = b(n − 1)/(K − 1)c many rows, the sum is equal to 6,

and ccr = b(m− 1)/(J − 1)c many columns, the sum is equal to 3. Hence, for ccr-columns the

ccr
3333333332111111111111111111111111111111

6 1111110000000000000000000000000000000000
6 1000001111100000000000000000000000000000
6 1000000000011111000000000000000000000000
6 0100000000000000111110000000000000000000
6 0100000000000000000001111100000000000000
6 0010000000000000000000000011111000000000

rcr 6 0010000000000000000000000000000111110000
5 000100000 . 1111
1 000100000 .
1 000010000 .
1 000010000 .
1 000001000 .
1 000001000 .
1 000000100 .
1 000000100 .
1 000000010 .
1 000000010 .
1 000000001 .
1 000000001 .
1 0000000001 .

Figure 10: Variable fixing on a (3, 6)−regular H matrix of dimensions (20, 40)

Proposition 1. Let J < K < n. For a (J,K)−regular code of dimensions (m,n), rcr ≤ ccr where

rcr = b(n− 1)/(K − 1)c and ccr = b(m− 1)/(J − 1)c.

Proof. Let J
K = a ∈ (0, 1), then mK = nJ =⇒ m = na. We can write, m−1

J−1 = na−1
Ka−1 =

a(n−1)+a−1
a(K−1)+a−1 >

n−1
K−1 , since a < 1. From here we obtain b n−1K−1c ≤ bm−1J−1 c =⇒ rcr ≤ ccr. �

In Proposition 2, we show that any (J,K)–regular H matrix of dimensions (m,n) that has sufficiently

large girth T can be expressed as in Figure 11 by reordering its rows and columns.

Proposition 2. Let H be a (J,K)–regular code of dimensions (m,n). Let R be the reduced rectangle of

size (m−rcr)×(n−ccr) and R
⋃
S be the region between the two extending 1–blocks as in Figure 11. Let

ρ(i, j) be the length of a smallest cycle that is formed when Xij = 1, and τ = max(i,j)∈S{ρ(i, j)}.Then,

nonzero entries of H can be represented as two extending 1–blocks as in Figure 11 by reordering its rows

and columns if it has a girth T > τ . Remaining nonzero entries are in the reduced rectangle R.

Proof. Let H be (J,K)–regular matrix of dimensions (m,n) with girth T > τ . Let us apply the

following reordering algorithm with time complexity O(ccr) on the H.

15

Figure 9: VarFix on a (3, 6)-regular H matrix of dimensions (20, 40)

constraints (2), and for rcr-rows the constraints (3) are satisfied without deviation. We are left

with a reduced rectangle of size (m− rcr)× (n− ccr), which includes the unfixed xij variables

shown as dots. VarFix in Figure 8 runs in O(nccr) time. VarFix also helps to improve the error

correction capability of a decoder since there is at least one neighboring check node for each

variable node to control the correctness of the bit.

Proposition 1. For given (m,n) dimensions, let F be the set of nonzero entries fixed by VarFix .

As in Figure 10, let R be the reduced rectangle of size (m − rcr) × (n − ccr) and R
⋃
Q be the

region between the entries in F . Let ρ(i, j) be the local girth of the entry (i, j) when xij = 1,

and τ = max(i,j)∈Q{ρ(i, j)}. Then, for any (J,K)-regular H of dimensions (m,n) with girth

g > τ , the rows and columns can be reordered such that all nonzero entries are in F and R (see

Appendix for the proof).

n - ccr ccr

m
 -

 r
c
r

r c
r

n - ccr ccr

m
 -

 r
c
r

r c
r

R

1 2 3 4 5

1 2 3

0 0 1 0 1

0 = 0 + 0 + 1 0 = 0 + 0 + 1 + 0 + 1 0 = 1 + 0 + 1

(a) (b)

1 2 3 4 5

1 2 3

0 = 0 + 0 + 1 0 = 0 + 0 + 1 + 0 + 1 0 = 1 + 0 + 1

US US USS SS SS

n - ccr ccr

m
 -

 r
c
r

r c
r

Q

R

Figure 10: Reordered (J,K)-regular H matrix with girth g > τ

In Proposition 1, we show that any (J,K)-regular H matrix of dimensions (m,n) that has

sufficiently large girth g can be expressed as in Figure 10 by reordering its rows and columns.

Hence, fixing the entries with VarFix does not eliminate any regular codes from the solution

space.

Some characteristics of the cycles in a BG can be visualized by considering the BG given in

Figure 6a and the corresponding matrix H1 in Figure 7. It can be seen that S1 = (v1, c1, v3, c2)

and S2 = (c1, v1, c2, v2, c3, v3) are two cycles in the BG in Figure 6a. Figures 11a and 11b

visualize cycles S1 and S2 on H1, respectively.

1 2 3 4

1 2 3

1 4 3 2

1 2 3

(a) (b)

...
Depth 1

J

...

...

...

...

......

...

J(K-1)

J(K-1)(J-1)

JK(J-1)(K-1)

J(K-1)[((J-1)K-1)](T 6)/2

...
Depth 2

Depth

(T – 2)/2

J(K-1)(J-1)[(K-1)(J-1)]T/

2- 2

...

Depth 1

Depth 0

Depth 2

Depth 3

Depth

T - 4

1 0 1 0

1 1 1 0

0 1 1 1

v1 v2 v3 v4

c1

c2

c3

1 0 1 0

1 1 1 0

0 1 1 1

v1 v2 v3 v4

c1

c2

c3

vd

hr

hl

vu vd

hr
vd

hr

vu

hl

(a) (b)

1 0 1 0

1 1 1 0

0 1 1 1

v1 v2 v3 v4

c1

c2

c3

1 0 1 0

1 1 1 0

0 1 1 1

v1 v2 v3 v4

c1

c2

c3

vd

hr

hl

vu vd

hr
vd

hr

vu

hl

(a) (b)

Figure 11: Cycles S1 and S2 on H1

We observe that a cycle is an alternating sequence of horizontal and vertical movements

between cells having value 1. In particular, cycle S1 is a sequence of horizontal right (hr),

vertical down (vd), horizontal left (hl), and vertical up (vu) movements. Similarly, cycle S2 can

be expressed with the sequence (vd, hr, vd, hr, vu, hl). Moreover, we deduce that a cycle should

include at least one from each of the hu, hd, vu, and vd movements.

Proposition 2. VarFix on H matrix does not form any cycles in the BG (see Appendix for

the proof).

We can use the partial solution obtained with VarFix in Figure 8 to generate a feasible solution

of MDD. Since the partial solution does not include any cycles (see Proposition 2), setting the

nonfixed entries to zero yields a feasible solution (an upper bound). We implement VarFix at

the beginning of our B&C algorithm. VarFix shrinks the problem size by (m−rcr)×(n−ccr)
m×n ×100%

and provides an initial upper bound to the B&C algorithm.

3.3 Valid Inequalities for Cycle Regions

After applying VarFix , MDD problem reduces to locating ones in the reduced rectangle R of

size (m − rcr) × (n − ccr) in Figure 10. In this section, we introduce valid inequalities for

(J,K)-regular codes to further improve the performance of our B&C algorithm.

First we divide the region R
⋃
Q in Figure 10 into subblocks having (J − 1)(K − 1) rows and

(K − 1) columns as shown in Figure 12. For each entry (i, j) in a subblock, we investigate the

local girth ρ(i, j) by temporarily assuming xij = 1. For example, in Figure 12, we observe that

ρ(i, j) is common for all (i, j) entries in a subblock except the subblocks at the boundaries of

the fixed 1s. We define a cycle-α region, which has a repeating pattern due to (J,K)-regularity,

as the collection of (i, j) entries that have ρ(i, j) = α.

Figure 12: Subblocks and cycle regions with J = 3 and K = 6

In particular, when there is a 1 in a cycle-4 region (dotted area), we have a cycle of length 4

(see cycles C1 and C2 in Figure 13). We note that cycle-4 regions repeat both horizontally and

vertically.

Figure 13: Cycle-4 region with J = 3 and K = 6

Similar horizontal and vertical repeating patterns can be seen for cycle-6 and cycle-8 regions

Figure 14: Cycle-4, cycle-6, and cycle-8 regions with J = 3 and K = 6

in Figure 14. Making use of these patterns, one can express ρ(i, j) of an entry (i, j) as a function.

We introduce valid inequalities for MDD based on ρ(i, j) of the entries in the rectangle R.

Proposition 3. Let (i, j) ∈ R, i.e., i ∈ {m− rcr, ...,m} and j ∈ {n− ccr, ..., n}, and let ρ(i, j)

represent the local girth of the entry. Let σ denote the number of subblocks that intersect with

R, and let Bs, s ∈ {1, ..., σ} represent the set of (i, j) entries in the subblock s.

(1) If ρ(i, j) < g, then the constraint
xij = 0 (9)

is valid.

(2) If g ≥ 8 and (i, j) ∈ Bs with ρ(i, j) = 8 or 10, then the constraints

J−1∑

i=1

∑

((k−1)(J−1)+i,j)∈Bs

x(k−1)(J−1)+i,j ≤ 1, k ∈ {1, ...,K − 1} (10)

are valid.

(3) If g ≥ 10 and (i, j) ∈ Bs with ρ(i, j) ≥ 10, then the constraint

∑

(i,j)∈Bs

xij ≤ 1 (11)

is valid.

Proof. Let us consider each claim separately.

(1) There cannot be cycles of length smaller than the girth g. If xij = 1, then we have a cycle

of length ρ(i, j) < g, which is not desired. Hence, xij = 0 in this case.

(2) If g ≥ 8, then there should not be any cycles of length 6. Let us consider a subblock with

cycle region 8 or 10, which is subdivided into (K− 1) equal subpieces each having (J − 1)

rows. In Figure 15, we give an example for a cycle-8 subblock with J = 3 and K = 6

where we have (K − 1) = 5 subpieces each having (J − 1) = 2 rows. As seen in Figure 15,

a cycle of length 6 forms when there is more than one nonzero entry in a subpiece.

Figure 15: A cycle of length 6 on cycle-8 region with J = 3 and K = 6

A similar case appears for cycle-10 subblocks. Hence, the constraints (10) are valid, since

they ensure the existence of at most one nonzero entry in each subpiece when the cycle

region of the subblock is either 8 or 10.

Figure 16: A cycle of length 8 on cycle-10 region with J = 3 and K = 6

(3) A cycle of length 8 is not allowed when g ≥ 10. However, when there is more than one

nonzero entry in a subblock with a cycle region of at least 10, there is a cycle of length 8

as given in Figure 16. The constraint (11) is valid, since it bounds the number of nonzero

entries from above by 1. �

Proposition 4. Let z∗ be the optimal objective value of MDD and z∗f be the optimal objective

value of MDD when VarFix is applied. Let τ be defined as in Proposition 1. Assume that there

exists a (J,K)-regular code with dimensions (m,n), then

(1) 0 = z∗ = z∗f if g > τ ,

(2) 0 = z∗ ≤ z∗f if g ≤ τ (see Appendix for the proof).

Since the number of valid inequalities (9), (10), and (11) is polynomial in dimensions (m,n),

i.e., O(ccrm+ rcrn), we add them at the beginning of the B&C in order to obtain a tight lower

bound at the root node.

3.4 Feasible Solution Generation Heuristics

In this section, we provide our heuristic approaches to generate feasible solutions of MDD. In

particular, we adapt a heuristic from the telecommunications literature in Section 3.4.1, and

describe how to polish given feasible solutions in Section 3.4.2.

3.4.1 Modified Progressive Edge Growth Algorithm

The last improvement to our B&C algorithm is to introduce a starting solution that will provide

an initial upper bound. For this purpose, we adapt an existing algorithm from the literature

known as Progressive Edge Growth (PEG) algorithm [17]. We modify this algorithm for our

problem by starting PEG from a partial initial solution generated by our VarFix in Figure 8,

and ensuring that the generated solution has girth at least g.

In our modified PEG (mPEG) (see Figure 17), dv and dc are the target degree vectors for

the variable and check nodes, respectively. Let the deviation from the target degrees for the

variable and check nodes be given by the slack vectors s and t, and the current degrees of the

variable nodes be listed in the vector d. Moreover, let N l
j represent the set of all check nodes

that can be reached from vj with a tree of depth l. Hence, the set N l
j \ N l−1

j consists of the

check nodes that are reached at the lth step from vj for the first time. We can represent the

check nodes in the set N l
j with an incidence vector I as Ici = 1 if ci ∈ N l

j , and zero otherwise.

Starting from the solution provided by VarFix (Step 1), mPEG inserts edges to the BG for

each variable node vj with positive slack sj (Steps 2 and 3). An edge {ci, vj} is a candidate if

the slacks ti and sj are positive, and adding the edge does not form a cycle smaller than g. If

there are some check nodes that the BFS tree cannot reach, i.e., |N l
j | ≤ m, then we can add the

Input: (m,n) dimensions, dv and dc vectors, g target girth

0. Initialize x← 0, d← 0, s← dv, and t← dc, I ← 0.

1. Apply VarFix (Figure 8), and update slacks

sj ← sj −
∑

i xij for all j and ti ← ti −
∑

j xij for all i,

and current degrees dj ←
∑

i xij for all j.

2. For j ∈ {1, ..., n}, set I ← 0

3. For k ∈ {0, ..., dj} with dj < d(vj)

4. If k = 0, Then set xi′j = 1 for i′ = argmaxi{ti}.
5. Else apply BFS from vj to reach check nodes, let the search tree have depth l.

6. If 2l ≥ g or |N l
j | ≤ m, let I be incidence vector for N l

j .

If ∃i′ = argmaxi{(1− Ici)ti}, Then set xi′j = 1. Else break.

7. End If

8. Update dj , sj , ti as in Step 1.

9. End For

10. End For

Output: An initial solution for MDD

Figure 17: Modified PEG (mPEG) algorithm

edge {ci, vj} without forming any cycles. Otherwise, if there are check nodes that cannot be

reached by a tree with depth of l ≥ g/2, then the corresponding edge will form a cycle of length

2l ≥ g. Among the candidate check nodes, we pick the one with the maximum slack ti in order

to fit the target degree d(ci) (Steps 5 and 6). The generated solution is feasible for MDD, since

it has girth at least g. Moreover, it yields an initial upper bound for our B&C algorithm. The

time complexity of mPEG is O((m + n)|Ex| + |Ex|2), where Gx = (V ∪ C,Ex) is the induced

graph by the nonzero xij values after VarFix .

3.4.2 Solution Polishing Algorithms

In this section we introduce our Polish heuristic to improve the given feasible solutions of MDD.

Polish consists of three subheuristics, i.e., CombineCodes, DeleteEdge, and AddEdge.

CombineCodes combines two (J,K)-regular codes with dimensions (m1, n1) and (m2, n2) with

m1+m2 ≥ m and the girth of at least g for given (m,n), (J,K), and girth g values. We augment

the two codes diagonally and remove the last m1 + m2 −m rows and n1 + n2 − n columns to

fit the dimensions.

DeleteEdge picks the codes with the girth smaller than g, and deletes edges until we end up

with a BG with girth g. Deleting an edge {ci, vj} from a BG increases the slacks ti and sj , and

the objective function value. Hence, we choose an edge {ci, vj}, which is in a small cycle, i.e.,

small ρ(i, j) < g, has small degree deviations ti and sj , and small objective function coefficients

1
d(ci)

and 1
d(vj)

. This means, we choose the entry (i∗, j∗) to delete, i.e., set xi∗j∗ = 0, using

Equation (12).

(i∗, j∗) = argmin(i,j)

{
ρ(i, j)

(
ti

d(ci)
+

sj
d(vj)

)}
(12)

AddEdge inserts edges to a BG with girth of larger or equal to g without forming cycles

smaller than g. Adding an edge {ci, vj} to a BG improves the objective function value by

decreasing the slacks ti and sj . We prefer to add an edge {ci, vj}, which forms a large cycle, i.e.,

large ρ(i, j) ≥ g, has large degree deviations ti and sj , and large objective function coefficients

1
d(ci)

and 1
d(vj)

. Hence, we choose the entry (i∗, j∗) to add, i.e., set xi∗j∗ = 1, using Equation

(13).

(i∗, j∗) = argmax(i,j)

{
ρ(i, j)

(
ti

d(ci)
+

sj
d(vj)

)}
(13)

Polish runs at the beginning of our B&C method by implementing the heuristics in the order

of CombineCodes, DeleteEdge, and AddEdge to obtain a tight upper bound for MDD.

4 Computational Results

We carry out the computations on a computer with a 2.0 GHz Intel Xeon E5-2620 processor

and 46 GB of RAM working under a Windows Server 2012 R2 operating system. In the compu-

tational experiments, we used CPLEX 12.8.0 to test the performance of the B&C algorithm and

to evaluate how various improvement strategies given in Section 3 affect the results. We imple-

mented all algorithms in C++ programming language. We summarize the solution methods in

Table 2.

Table 2: Summary of the solution methods

Method IntSep FracSep VarFix Valid Cuts mPEG Polish

BC0
√ √

- - - -

BC1
√ √ √

- - -

BC2
√ √ √ √

- -

BC3
√ √ √ √ √ √

In BC0, we apply our B&C algorithm with IntSep and FracSep to separate integral and frac-

tional solutions, respectively (see Section 2.2). In CPLEX, we implement IntSep and FracSep

with a Callback routine, and utilize default branching settings. In the BC1 method, VarFix

fixes some of the entries of the H matrix at the beginning of the B&C (see Section 3.2). In the

BC2 method, we apply VarFix and add the valid inequalities at the root node of the B&C (see

Section 3.3). Finally in the BC3 method, in addition to utilizing VarFix and the valid cuts, the

B&C starts from the best feasible solution provided by mPEG and Polish (see Section 3.4).

Table 3: List of the computational parameters

Parameters

(J,K) (3, 6) and (5, 10)-regular BGs

(m,n) (10, 20), (15, 30), (20, 40), (30, 60),

(40, 80), (100, 200), (150, 300), (250, 500), (500, 1000)

g 6, 8, 10

Time Limit 10800 secs

We list the parameters used in the computational experiments in Table 3. In practical appli-

cations small n values are desired since the information is received in packets of length n. In

IEEE 802.11 WLAN 2007 standards, the codes have length n ∈ (500, 2300), J/K = 1/2, and

the girth at least 6 [31]. Recent works propose codes of length n ∈ (250, 500) in order to receive

data in smaller packet sizes [23]. In our experiments, we consider (3, 6) and (5, 10)-regular H

matrices with girth values g = 6, 8, or 10. We test nine different (m,n) dimensions from n = 20

to 1000. Since (5, 10)-regular codes are denser, we try larger n values, i.e., n ≥ 200. We report

the results that CPLEX found in a time limit of 10800 seconds.

Table 4: Computational results for BC0
CPU Gap #Cuts #Calls CPU (%) Actual

g J n zl z ziu (secs) (%) Nodes Int Frac Int Frac Int Frac g

6 3 20 0 6.5 30 time 100 255556 7970 0 872 495073 0.03 53.06 6

30 0 3 45 60.39 100 2927 9725 0 1189 4338 8.64 83.48 6

40 0 0 60 0.27 0 3 125 0 17 2 33.46 13.24 6

60 0 0 90 0.95 0 10 172 0 31 11 28.75 45.03 6

80 0 0 120 1.11 0 5 182 0 27 8 28.21 48.07 6

200 0 0 300 0.96 0 0 117 0 6 1 26.54 40.75 6

300 0 0 450 3.53 0 1 170 0 7 2 16.11 50.44 6

500 0 0 750 6.18 0 0 153 0 6 1 23.40 40.14 6

1000 0 0 1500 153.81 0 7 166 0 10 6 29.15 52.39 6

5 200 0 291.3 300 time 100 7545 523558 0 4849 10078 4.80 14.30 10

300 0 411.6 450 time 100 5152 598856 0 9059 3618 18.47 11.90 10

500 0 0 750 146.64 0 50 13301 0 324 24 70.81 11.85 6

1000 0 0 1500 341.37 0 30 1613 0 28 32 29.47 46.72 6

8 3 20 0 7.5 30 time 100 131931 68109 15103 2002 253443 0.06 11.48 10

30 0 10 45 time 100 31627 167270 7397 2367 57591 0.13 3.22 8

40 0 16 60 time 100 23712 213134 5308 2454 42933 0.20 3.57 8

60 0 14.5 90 time 100 8609 294480 1685 1928 14287 0.31 2.31 8

80 0 24 120 time 100 9671 421986 1866 2780 15210 0.74 4.07 8

200 0 171 300 time 100 8602 468624 701 4039 11967 3.78 13.74 8

300 0 213 450 time 100 7339 469399 357 5102 8663 8.49 19.09 8

500 0 308 750 time 100 5223 371370 97 5856 4285 31.64 30.16 8

1000 0 0 1500 511.96 0 59 1657 0 49 68 32.10 56.46 8

5 300 0 352.8 450 time 100 1090 23642 110 17 2167 0.06 8.81 8

500 0 672.9 750 time 100 195 30778 13 4 392 0.14 5.05 10

1000 0 1253.4 1500 time 100 1 21743 0 3 3 0.94 0.15 10

10 3 20 0 6.5 30 time 100 67218 190343 73472 453 118026 0.06 5.89 10

30 0 13.5 45 time 100 11916 516532 10526 1077 18449 0.25 1.93 10

40 0 25 60 time 100 10161 582038 7162 1135 16002 0.32 2.15 10

60 0 37.5 90 time 100 7783 812030 4514 1008 11785 0.57 3.16 10

80 0 27.5 120 time 100 5701 549745 2691 684 9508 0.49 3.20 10

200 0 122 300 time 100 2013 216090 610 305 3681 0.53 3.65 10

300 0 184 450 time 100 761 33023 25 61 1517 0.16 4.13 10

500 0 515 750 time 100 782 113682 136 149 1444 1.89 10.81 10

1000 0 1218 1500 time 100 780 152898 103 179 1441 14.20 68.34 10

5 300 0 450 450 time 100 0 255378 0 1 0 1.50 0 10

500 0 750 750 time 100 0 265866 0 1 0 2.61 0 10

1000 0 1500 1500 time 100 0 271433 0 1 0 12.52 0 10

From Table 4 to 7, the column “z” is the best upper bound of MDD at termination and

the column “zl” is the best known lower bound found by CPLEX within the time limit. For

each of the methods, we have an initial feasible solution (an upper bound) with the objective

value ziu. In the BC0 method, H = 0 is a trivial solution providing an initial upper bound.

In the methods BC1, BC2 and BC3, initial feasible solutions are obtained from VarFix (see

Section 3.2), mPEG or Polish heuristics (see Section 3.4), respectively. The computational

time in seconds is given in the column “CPU (secs)” and the percentage difference among zl

and z is presented in the column “Gap (%).” VarFix , adding the valid cuts, mPEG , and Polish

methods take negligible time, and are not reported in the tables. The “Nodes” column gives

the number of nodes processed by the B&C algorithm. The “#Cuts” column summarizes the

number of IntSep and FracSep cuts generated while “#Calls” shows the number of times that

our Callback routine is called by CPLEX for finding these cuts. We report the percentage of

time within the total time “CPU (secs)” consumed for the IntSep and FracSep algorithms in

the column “CPU (%).” The column “Actual g” shows the girth of the generated BG within

the time limit.

As discussed in Section 2.1, we have a (J,K)-regular code if zl = z = 0. We can conclude that

it is not possible to have a (J,K)-regular code with given (m,n) and the girth g when we have

z ≥ zl > 0. In Table 4, BC0 finds (J,K)-regular code for 10 instances (z = 0). For the instances

that cannot be solved to optimality (Gap > 0), the number of nodes processed decreases as n

gets larger. On average, FracSep algorithm is called more frequently (see #Calls) and takes

more time than IntSep (see CPU(%)) whereas the number of the IntSep cuts are more than

the FracSep cuts (see #Cuts). Hence, IntSep is more effective than FracSep in generating the

constraints (4). As g gets larger, we observe that the CPU(%) values of IntSep and FracSep

decrease since CPLEX consumes the majority of the total time.

Table 5: Computational results for BC1

CPU Gap # Cuts # Calls CPU (%) Actual

g J n zl z ziu (secs) (%) Nodes Int Frac Int Frac Int Frac g

6 3 20 3.25 6.5 15.5 time 50 5299967 250 0 51 10221752 0.01 90.44 6

30 0.25 2 23 time 87.5 2407393 2496 0 668 4671452 0.01 88.31 6

40 0 0 30.5 0.14 0 1 152 0 14 1 10.71 0 6

60 0 0 45.5 0.19 0 0 130 0 13 2 17.02 17.02 6

80 0 0 60.5 0.25 0 3 120 0 18 3 31.60 6.40 6

200 0 0 150.5 0.58 0 0 130 0 12 1 40.31 10.90 6

300 0 0 225.5 1.23 0 0 153 0 6 2 26.58 22.77 6

500 0 0 375.5 3.56 0 0 209 0 6 2 30.26 24.12 6

1000 0 0 750.5 31.77 0 0 139 0 5 2 47.96 24.99 6

5 200 0 189 210.3 time 100 13883 337710 0 4763 22414 4.17 29.78 6

300 0 0 315.3 4108.08 0 3814 327121 0 7641 2710 30.48 19.13 6

500 0 0 525.3 48.54 0 20 3989 0 112 16 61.53 22.18 6

1000 0 0 1050.3 194.30 0 13 1724 0 25 14 45.96 34.45 6

8 3 20 15.5 15.5 15.5 0.06 0 0 0 0 1 0 0 0 10

30 21.5 21.5 21.5 1.39 0 666 268 0 29 918 0 80.88 8

40 13 21.5 30.5 time 39.5 1051701 2341 10 147 2048148 0 85.91 8

60 3 16 45.5 time 81.3 185607 42013 0 1952 362494 0.14 35.52 8

80 0 16.5 60.5 time 100 64513 112803 0 3159 126280 0.44 23.49 8

200 0 133 150.5 time 100 14284 347040 0 4686 22792 3.02 23.10 8

300 0 183.5 225.5 time 100 11541 397646 0 7290 15148 11.73 35.24 8

500 0 0 375.5 556.28 0 602 49313 0 1082 374 54.73 33.63 8

1000 0 0 750.5 2600.96 0 330 1097 0 42 606 4.83 89.27 8

5 300 21 311.1 315.3 time 93.2 2251 393396 0 111 4492 1.46 13.48 8

500 0 520.5 525.3 time 100 572 38731 0 43 981 0.33 10.16 8

1000 0 1050.3 1050.3 time 100 92 21719 0 9 169 1.20 10.77 10

10 3 20 15.5 15.5 15.5 0.08 0 0 0 0 1 0 0 0 10

30 23 23 23 0.08 0 0 0 0 1 0 0 0 10

40 30.5 30.5 30.5 0.11 0 0 0 0 1 0 0 0 10

60 45.5 45.5 45.5 0.11 0 0 0 0 1 0 0 0 10

80 59 59 60.5 696.07 0 38404 3138 19 498 42661 0.43 90.26 10

200 16.5 148 150.5 time 88.9 6729 357143 12 659 12886 0.98 13.35 10

300 0 219 225.5 time 100 5364 555047 0 663 10116 3.13 24.77 10

500 0 375.5 375.5 time 100 4447 764122 0 762 8142 9.36 55.67 10

1000 0 750.5 750.5 time 100 1058 209274 0 230 1884 17.02 77.73 10

5 300 315.3 315.3 315.3 0.13 0 0 0 0 1 0 37.60 0 10

500 369.3 525.3 525.3 time 29.7 748 1645923 93 76 1255 6.75 11.99 10

1000 294.3 1050.3 1050.3 time 72 297 639635 3 17 575 29.26 30.11 10

BC1 solves 20 instances to optimality as given in Table 5. We note that for 16 instances there

is no (J,K)-regular code since zl > 0. Compared with BC0, we have tighter ziu values provided

by VarFix , and we improve the best known upper bound z for 26 instances. Moreover, we

process more nodes by adding fewer IntSep and FracSep cuts, and improve the computation

time by 32% on average.

Table 6: Computational results for BC2

CPU Gap # Cuts # Calls CPU (%) Actual

g J n zl z ziu (secs) (%) Nodes Int Frac Int Frac Int Frac g

6 3 20 3.25 6.5 15.5 time 50 4835210 246 0 48 9361686 0.01 89.44 6

30 0.25 2 23 time 87.5 2344931 2506 0 669 4501860 0.01 87.48 6

40 0 0 30.5 0.14 0 1 152 0 14 1 33.33 0 6

60 0 0 45.5 0.16 0 0 130 0 13 2 9.62 10.26 6

80 0 0 60.5 0.27 0 3 120 0 18 3 35.71 5.64 6

200 0 0 150.5 0.63 0 0 130 0 12 1 42.24 10.08 6

300 0 0 225.5 1.27 0 0 153 0 6 2 28.36 24.72 6

500 0 0 375.5 5.27 0 0 209 0 6 2 40.67 23.16 6

1000 0 0 750.5 43.05 0 0 139 0 5 2 52.13 25.80 6

5 200 0 184.8 210.3 time 100 13952 338378 0 4863 22468 4.48 30.61 6

300 0 0 315.3 3368.63 0 3335 305752 0 6891 2202 35.15 19.32 6

500 0 0 525.3 51.89 0 21 4519 0 115 14 66.64 17.73 6

1000 0 0 1050.3 190.10 0 12 1727 0 21 10 52.28 31.48 6

8 3 20 15.5 15.5 15.5 0.11 0 0 0 0 1 0 0 0 10

30 21.5 21.5 23 0.14 0 0 0 0 1 0 0 0 10

40 21.5 21.5 30.5 24.74 0 5892 441 0 68 6348 0.25 87.70 8

60 7 14 45.5 time 50 136315 61461 0 2001 264944 0.24 39.63 8

80 1.5 16.5 60.5 time 90.9 44405 111784 0 2080 85627 0.34 17.83 8

200 0 99.5 150.5 time 100 16276 298919 0 5063 25810 5.70 35.76 8

300 0 175 225.5 time 100 10182 328829 0 6456 12884 10.52 30.01 8

500 0 0 375.5 1316.96 0 1075 79070 0 2144 486 67.86 23.36 8

1000 0 0 750.5 257.44 0 27 1149 0 35 20 54.27 37.72 8

5 300 83.4 310.5 315.3 time 73.2 1797 307602 0 137 3246 1.01 8.54 8

500 1.5 452.4 525.3 time 99.7 346 18107 0 36 610 0.21 6.54 8

1000 0 1050.3 1050.3 time 100 31 10716 0 2 61 0.54 5.09 10

10 3 20 15.5 15.5 15.5 0.13 0 0 0 0 1 0 0 0 10

30 23 23 23 0.17 0 0 0 0 1 0 0 0 10

40 30.5 30.5 30.5 0.16 0 0 0 0 1 0 9.55 0 10

60 45.5 45.5 45.5 0.16 0 0 0 0 1 0 10.26 0 10

80 59 59 60.5 0.17 0 0 1 0 2 0 8.72 0 10

200 65 99.5 150.5 time 34.7 31037 174760 10 2258 58528 2.95 83.81 10

300 26 205.5 225.5 time 87.4 5471 539611 0 845 9556 3.48 23.64 10

500 0 354.5 375.5 time 100 2102 277233 0 308 3750 4.25 33.01 10

1000 0 750.5 750.5 time 100 567 91086 0 94 1046 10.70 68.23 10

5 300 315.3 315.3 315.3 0.15 0 0 0 0 1 0 31.97 0 10

500 516.3 516.3 525.3 104.95 0 63 1813 0 401 30 73.49 11.30 10

1000 861.3 1050.3 1050.3 time 18 1640 86147 9 26 2067 4.25 91.96 10

BC2 utilizes the valid cuts (1), (2), and (3) given in Proposition 3 (see Section 3.3). Note

that the cuts (1) fix some of the xij variables to zero. The cuts (2) are valid for g ≥ 8, whereas

the cuts (3) are applicable for g ≥ 10. In Table 6, we report the results when we add the valid

cuts (1), (2), and (3) wherever they are applicable. Compared with BC1, BC2 improves zl for 9

instances, z for 10 instances, and the CPU time decreases by 13% on average. Furthermore, the

number of processed nodes decreases by 18%, whereas the number of IntSep cuts is reduced by

51%, and the FracSep cuts decreases by 86% on average. BC2 solves 22 instances to optimality

and concludes that there cannot be a (J,K)-regular code with the given dimensions for 19

instances (zl > 0).

We also investigate the contributions of each valid cut family on zl, z, and time figures by

gradually including them to BC2. As we report in Table 9, we first use only the valid cuts (1),

then (1) and (2), and finally (1), (2) and (3) together (see Appendix). Compared with BC1,

using only the valid cuts (1) improves zl for one instance, and z for 3 instances. Adding the

valid cuts (2), we further improve zl for 5 instances and tighten z for 6 instances while saving

time and separation cuts. We observe an improvement on zl for 4 instances and z for 3 instances

when we also utilize the valid cuts (3). The number of valid cuts (1), (2), and (3) used in BC2

are given in the last three columns of Table 9.

Table 7: Computational results for BC3

ziu CPU Gap # Cuts # Calls CPU (%) Actual

g J n zl z mPEG Polish (secs) (%) Nodes Int Frac Int Frac Int Frac g

6 3 20 3.25 4 6.5 4a time 18.75 2980922 167 1048962 37 5566509 0 88.25 6

30 0.25 2 2 – time 87.5 1302865 721 3347818 213 2066319 0 77.04 6

40 0 0 0.5 0a 0.08 0 0 0 0 1 0 2.47 0 6

60 0 0 0.5 0c 0.29 0 0 0 0 1 0 17.01 0 6

80 0 0 0.5 0c 0.22 0 0 0 0 1 0 29.41 0 6

200 0 0 1 0a 0.21 0 0 0 0 1 0 14.08 0 6

300 0 0 0.5 0a 0.35 0 0 0 0 1 0 20.06 0 6

500 0 0 0.5 0c 3.29 0 0 0 0 1 0 46.46 0 6

1000 0 0 1 0c 27.05 0 0 0 0 1 0 57.19 0 6

5 200 0 0.9 2.4 0.9a time 100 12773 232692 871827 3581 11594 2.75 12.98 6

300 0 0 2.1 0a 0.67 0 0 0 0 1 0 44.94 0 6

500 0 0 2.7 0a 1.81 0 0 0 0 1 0 41.39 0 6

1000 0 0 1.5 0c 1.66 0 0 0 0 1 0 17.56 0 6

8 3 20 15.5 15.5 15.5 – 0.07 0 0 0 0 1 0 0 0 10

30 21.5 21.5 21.5 – 0.07 0 0 0 0 1 0 0 0 8

40 21.5 21.5 21.5 – 0.91 0 0 0 0 1 0 0.77 0 8

60 7 9.5 16.5 9.5a time 26.31 0 1869 102172 24 1494 0.01 2.99 8

80 1.63 9.5 9.5 – time 82.89 0 891 127852 11 1060 0.01 4.98 8

200 0 0 4 0a 0.41 0 0 0 0 1 0 21.48 0 8

300 0 0 2.5 0a 0.31 0 0 0 0 1 0 0.00 0 8

500 0 0 2.5 0c 0.84 0 0 0 0 1 0 27.87 0 8

1000 0 0 3 0c 0.87 0 0 0 0 1 0 40.23 0 8

5 300 83.4 136.8 136.8 – time 39.03 0 23821 180035 11 48 0.07 10.24 8

500 1.5 150.9 150.9 – time 99.01 0 7148 53622 3 7 0.07 5.71 8

1000 0 106.2 106.2 – time 100 0 6833 43110 1 5 0.31 3.57 8

10 3 20 15.5 15.5 15.5 – 0.06 0 0 0 0 1 0 1.59 0 10

30 23 23 23 – 0.07 0 0 0 0 1 0 0 0 10

40 30.5 30.5 30.5 – 0.07 0 0 0 0 1 0 0 0 10

60 45.5 45.5 45.5 – 0.06 0 0 0 0 1 0 1.56 0 10

80 59 59 59 – 0.08 0 0 0 0 1 0 6.25 0 10

200 65 76 78.5 76a time 14.47 0 13288 247672 66 867 0.03 4.78 10

300 26 68.5 68.5 – time 62.04 0 9736 643235 24 567 0.05 11.67 10

500 0 43.5 43.5 – time 100 0 3261 335890 4 180 0.04 17.98 10

1000 0 15 15 – time 100 0 2918 191128 2 112 0.27 22.14 10

5 300 315.3 315.3 315.3 – 0.14 0 0 0 0 1 0 33.33 0 10

500 516.3 516.3 516.3 – 0.76 0 0 0 0 1 0 44.69 0 10

1000 861.3 875.4 875.4 – time 1.61 0 70712 150362 668 1186 27.03 49.45 10

The BC3 method first implements mPEG and then Polish heuristics to start with a tight

upper bound (see Section 3.4). We populate the feasible solutions that we have obtained from

BC0 to BC2 in a solution pool for the Polish heuristic. In Table 7, the “ziu” column gives the

initial upper bounds of mPEG and Polish. The symbol “–” indicates that the upper bound

of Polish is the same as mPEG , the label “a” shows that the best solution is obtained from

AddEdges, and the label “c” means that CombineCodes generates the best upper bound. Polish

can find better feasible solutions than mPEG for 18 instances.

Compared with BC2, BC3 improves zl for one instance, z for 14 instances, and the time

decreases by 16% on average. The percentages of the time consumed by IntSep and FracSep

decrease by 28% and 68% on average, respectively. Better initial upper bounds allow us to

generate the constraints (4) by fewer calls to the separation algorithms.

Among the methods from BC0 to BC3, we can see that BC3 solves the highest number of

instances to optimality (24 instances out of 37 instances) in the shortest time. Furthermore, BC3

provides a computational evidence that there cannot be a (J,K)-regular code (when zl > 0) for

19 instances within the given time limit. BC3 can determine the smallest n of a (J,K)-regular

code with girth g by starting from a small n and gradually increasing it while zl > 0.

Taking into account that the code design problem is an offline problem, one can implement the

BC3 method to construct a (J,K)-regular code providing sufficiently large time. Furthermore,

BC3 can generate alternative (J,K)-regular codes with given (m,n) dimensions and girth g.

For example, let H be a code generated by BC3. We can randomly pick an entry (i, j) with

Hij = 1, and resolve the MDD model after adding the constraint xij = 0 via the Callback

routine of CPLEX to obtain another code.

In Table 8, we compare the performance of BC3 with some commonly used methods from

the literature. The (J,K)-regular codes in [29] and [30] are generated by carrying out complete

enumeration, which is the common method for code generation in the telecommunications lit-

erature, for the mentioned (m,n) dimensions in Table 8. There are several criteria to pick the

best LDPC code: small (m,n) dimensions and regular degree distributions (easier hardware im-

plementation), small (J,K) values (faster decoding with a sparse code), and high girth g (better

error correction). Since the code design is an offline problem, usually months are reserved to

choose an LDPC code and the algorithm run time is not reported in the literature.

Table 8: Comparison of the BC3 method with the existing methods in [29] and [30]
Existing Codes BC3

(J,K) (m,n) Reference z g z ziu CPU (secs) g

(2, 3) (14, 21) [29] 0 12 0 35 0.77 12

(3, 4) (78, 104) [29] 0 6 0 1.8 4.95 8

(3, 5) (93, 155) [29] 0 8 0 2.1 569.41 8

(3, 4) (27, 36) [30] 0 8 0 39.1 2352.01 8

(3, 5) (39, 65) [30] 0 8 0 66.7 18638.64 8

(3, 6) (54, 108) [30] 0 8 0 6.5 26302.15 8

(4, 5) (92, 115) [30] 0 8 0 9.9 31649.13 8

(4, 6) (96, 144) [30] 0 8 0 23.3 51432.21 8

(4, 7) (120, 210) [30] 0 8 0 33.8 78594.53 8

(4, 8) (156, 312) [30] 0 8 0 43.1 112643.57 8

(5, 6) (165, 210) [30] 0 8 0 43.9 19455.85 8

(5, 7) (265, 371) [30] 0 8 0 48.7 287421.15 8

In Table 8, we consider the (J,K), (m,n), and g parameters used in [29] and [30], and

implement our BC3 method to solve the instances to optimality without any time limitations.

We do not utilize Polish heuristic, since there is no solution pool. The ziu column is the initial

upper bound obtained from mPEG . BC3 needs 3.3 days, which is the longest time among the

instances, to find a (5, 7)-regular code of dimensions (265, 371). Hence, we can say that our BC3

method is a strong candidate to generate LDPC codes for the practical applications. Besides, it

has the capability to detect the smallest (m,n) dimensions that one can obtain a (J,K)-regular

code with the girth of at least g.

5 Conclusions

In this work, we investigate the LDPC code design problem and provide an IP formulation

for the design of a bipartite graph (BG) with a given degree distribution. For the solution of

the problem, we propose a branch-and-cut (B&C) algorithm. We analyze structural properties

of the problem and improve our B&C algorithm by using techniques such as variable fixing,

adding valid inequalities, and providing an initial solution using a heuristic. The computational

experiments indicate that each of these techniques improves the B&C one step further. Among

all, the method that combines all of these strategies, i.e., the BC3 method, can solve the largest

number of instances to optimality and gives the smallest gap values on average in an acceptable

amount of time. One important gain of the method is that it can provide evidence as to whether

a (J,K)-regular code with the given dimensions exists or not.

In this study, our focus has been on (J,K)-regular BGs. In telecommunication applications,

irregular LDPC codes are also utilized. Hence, extending these techniques to irregular BGs

can be a direction of future research. Spatially-coupled (SC) LDPC codes are another code

family, which have become popular due to their channel capacity approaching error correction

capability. The design of SC LDPC codes without small cycles will be a valuable contribution

to future communication standards. Furthermore, a graph algorithm can perform better on

higher girth graph instances as described in [16]. Hence, the BG instances generated with our

methods can be used for the problems defined on BGs to have better results.

Acknowledgments

This research has been supported by the Turkish Scientific and Technological Research Council

with grant no 113M499, and partially supported by Boğaziçi University Research Fund with

grant no 14451P.

References

[1] Abreu, M., Araujo-Pardo, G., Balbuena, C., and Labbate, D. (2012). Families of small

regular graphs of girth 5. Discrete Mathematics, 312(18):2832 – 2842.

[2] Ahuja, R. K. (2017). Network Flows: Theory, Algorithms, and Applications. Pearson

Education, 1st edition.

[3] Araujo-Pardo, G. and Balbuena, C. (2010). Constructions of small regular bipartite graphs

of girth 6. Networks, 57(2):121–127.

[4] Bandi, S., Tralli, V., Conti, A., and Nonato, M. (2011). On girth conditioning for low-density

parity-check codes. IEEE Transactions on Communications, 59(2):357–362.

[5] Bocharova, I. E., Johannesson, R., and Kudryashov, B. D. (2014). A unified approach to

optimization of LDPC codes for various communication scenarios. In 2014 8th International

Symposium on Turbo Codes and Iterative Information Processing (ISTC), pages 243–248.

[6] Broulim, J., Davarzani, S., Georgiev, V., and Zich, J. (2016). Genetic optimization of a

short block length LDPC code accelerated by distributed algorithms. In 2016 24th Telecom-

munications Forum (TELFOR), pages 1–4.

[7] Campello, J. and Modha, D. S. (2001). Extended bit-filling and LDPC code design. In

GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No.01CH37270), vol-

ume 2, pages 985–989 vol.2.

[8] Chandran, L. (2003). A high girth graph construction. SIAM Journal on Discrete Mathe-

matics, 16(3):366–370.

[9] Chang, H. and Lu, H. (2013). Computing the girth of a planar graph in linear time. SIAM

Journal on Computing, 42(3):1077–1094.

[10] Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M. P. C., and Hu, X.-Y. (2005). Reduced-

complexity decoding of LDPC codes. IEEE Transactions on Communications, 53(8):1288–

1299.

[11] Costello Jr, D. J. (2009). An introduction to low-density parity check codes.

[12] Dantzig, G. B., Blattner, W., and Rao, M. (1966). Finding a cycle in a graph with

minimum cost to time ratio with application to a ship routing problem. Technical report,

Stanford University Operations Research House.

[13] Diestel, R. (2010). Graph Theory (Graduate Texts in Mathematics). Springer.

[14] Gschwind, T. and Irnich, S. (2011). A note on symmetry reduction for circular traveling

tournament problems. European Journal of Operational Research, 210(2):452 – 456.

[15] He, X., Zhou, L., Du, J., and Shi, Z. (2015). The multi-step PEG and ACE constrained

PEG algorithms can design the LDPC codes with better cycle-connectivity. In 2015 IEEE

International Symposium on Information Theory (ISIT), pages 46–50.

[16] Hoppen, C. and Wormald, N. (2018). Local algorithms, regular graphs of large girth, and

random regular graphs. Combinatorica, 38(3):619–664.

[17] Hu, X.-Y., Eleftheriou, E., and Arnold, D. . (2001). Progressive edge-growth tanner graphs.

In GLOBECOM’01. IEEE Global Telecommunications Conference, volume 2, pages 995–1001

vol.2.

[18] Hu, X.-Y., Eleftheriou, E., and Arnold, D. M. (2005). Regular and irregular progressive

edge-growth tanner graphs. IEEE Transactions on Information Theory, 51(1):386–398.

[19] Jiang, X., Hai, H., Wang, H., and Lee, M. H. (2017). Constructing large girth QC proto-

graph LDPC codes based on PSD-PEG algorithm. IEEE Access, 5:13489–13500.

[20] Krushinsky, D. and Woensel, T. V. (2015). An approach to the asymmetric multi-depot

capacitated arc routing problem. European Journal of Operational Research, 244(1):100 –

109.

[21] McGowan, J. A. and Williamson, R. C. (2003). Loop removal from LDPC codes. In

Information Theory Workshop, 2003. Proceedings. 2003 IEEE, pages 230–233. IEEE.

[22] Orlin, J. B. and Ahuja, R. K. (1992). New scaling algorithms for the assignment and

minimum mean cycle problems. Mathematical Programming, 54(1):41–56.

[23] Pramanik, A., Patil, G., and Borman, L. (2013). Small length quasi-cyclic LDPC code for

wireless applications. In 2013 Annual International Conference on Emerging Research Ar-

eas and 2013 International Conference on Microelectronics, Communications and Renewable

Energy, pages 1–5.

[24] Richardson, T. (2003). Error floors of LDPC codes. In Proceedings of the annual Aller-

ton conference on communication control and computing, volume 41, pages 1426–1435. The

University; 1998.

[25] Roditty, L. and Tov, R. (2013). Approximating the girth. ACM Transactions on Algorithms

(TALG), 9(2):15.

[26] Shebl, S., Shokair, M., and Gomaa, A. (2014). Novel construction and optimization of

LDPC codes for NC-OFDM cognitive radio systems. Wireless personal communications,

79(1):69–83.

[27] Sherali, H. D. and Smith, J. C. (2001). Improving discrete model representations via

symmetry considerations. Management Science, 47(10):1396–1407.

[28] Tanner, R. (1981). A recursive approach to low complexity codes. IEEE Transactions on

Information Theory, 27(5):533–547.

[29] Tanner, R. M., Sridhara, D., Sridharan, A., Fuja, T. E., and Costello, D. J. (2004). LDPC

block and convolutional codes based on circulant matrices. IEEE Transactions on Information

Theory, 50(12):2966–2984.

[30] Tasdighi, A., Banihashemi, A. H., and Sadeghi, M.-R. (2016). Symmetrical constructions

for regular girth-8 QC-LDPC codes. IEEE Transaction on Communications, 14(8).

[31] IEEE Std 802.11TM (2007). Wireless LAN medium access control (MAC) and physical

layer (PHY) specifications. Technical report.

[32] Thomassen, C. (1983). Girth in graphs. Journal of Combinatorial Theory, Series B,

35(2):129–141.

[33] Zhang, J. and Fossorier, M. P. (2005). Shuffled iterative decoding. IEEE Transactions on

Communications, 53(2):209–213.

Appendix

Proof of Proposition 1: We first prove that for a (J,K)-regular code of dimensions (m,n),

rcr ≤ ccr where rcr = b(n− 1)/(K − 1)c and ccr = b(m− 1)/(J − 1)c.

In practice, J < K < n relationship is valid. Let J
K = a ∈ (0, 1), then mK = nJ =⇒

m = na. We can write, m−1
J−1 = na−1

Ka−1 = a(n−1)+a−1
a(K−1)+a−1 >

n−1
K−1 , since a < 1. From here we obtain

b n−1K−1c ≤ bm−1J−1 c =⇒ rcr ≤ ccr.

Let H be (J,K)-regular matrix of dimensions (m,n) with girth g > τ . Let us apply the

following reordering algorithm with time complexity O(ccr) on the H.

At step 1 of Reordering in Figure 18, J ones are located in the first column. For the second

row, i.e., s = 2, first available (K−1) columns to locate ones are the columns (K+1, ..., 2K−1),

since otherwise a cycle with length of less than g exists. Similarly for the second column, i.e.,

s = 2, first available (J − 1) rows are the rows (J + 1, ..., 2J − 1) without creating a cycle.

The algorithm continues in this fashion for rcr rows and columns. Since we have rcr ≤ ccr, we

continue to locate ones for the remaining (ccr − rcr) many columns. �

Input: H, (m,n) dimensions, (J,K) values, g target girth

1. Pick row 1, reorder columns such that all ones are in first K columns.

Pick column 1, reorder rows such that all ones are in first J rows.

2. For s ∈ {2, ..., rcr}
3. Pick row s, reorder columns such that (K − 1) ones are in first available columns.

Pick column s, reorder rows such that (J − 1) ones are in first available rows.

4. End For

5. For s ∈ {rcr + 1, ..., ccr}
6. Pick column s, reorder rows such that (J − 1) ones are in first available rows.

7. End For

Output: Reordered H matrix

Figure 18: Reordering algorithm

Proof of Proposition 2: Assume we applied VarFix and consider cells whose xij values

have been fixed to 1. There are four cases to have an alternating sequence among variable and

check nodes as given in Figures 19 and 20.

vd

hr

hl

vu

vd

vd

vd

vd

vd

vd

vd

vd

hr

hr

hr

hr

hr

hr

hr

hr

hr hl
vd

vu

(a) (b)

(a) (b)

Figure 19: Alternating variable and check nodes, cases 1 and 2

In Figure 19a, the sequence of case 1 is (vd, hr, vd, hr, ...) and in Figure 19b for case 2, we

have the sequence (hr, vd, hr, vd, ...). Both of the sequences do not include vu and hl movements.

Hence, there cannot be any cycles in these cases.

In Figure 20a (case 3), we have two options to start, i.e., hr or hl movements. Then the

sequence will be (hr or hl, vd, hr, vd, hr, ...), which does not include vu movement. In Figure

20b (case 4), vd or vu are candidates to begin the sequence. In this case, the sequence will be

(vd or vu, hr, vd, hr, vd, ...), which does not include hl movement. Hence, there are no cycles in

these cases either. �

Proof of Proposition 4: For any dimensions (m,n), we have z∗ ≤ z∗f , since VarFix fixes

some xij variables. If there exists a (J,K)-regular code, then there is an optimal solution with

vd

hr

hl

vu

vd

vd

vd

vd

vd

vd

vd

vd

hr

hr

hr

hr

hr

hr

hr

hr

hr hl
vd

vu

(a) (b)

(a) (b)

Figure 20: Alternating variable and check nodes, cases 3 and 4

objective value z∗ = 0. We know from Proposition 1 when g > τ , a (J,K)-regular BG can be

expressed as in Figure 10. Hence, we have z∗f = z∗ = 0.

In MDD, if ρ(i, j) ≥ g, then xij can be nonzero without harming the girth g. When g ≤ τ ,

there are (i, j) ∈ Q in Figure 10 with ρ(i, j) ≥ g and they are fixed to zero, since VarFix fixes

all entries in the region Q to zero. Then, we have 0 = z∗ ≤ z∗f in this case. �

Table 9: The impact of the valid cuts (1), (2), and (3) in Proposition 3 on BC2

Valid Cuts (1) Valid Cuts (1), (2) Valid Cuts (1), (2), (3)

CPU # Cuts CPU # Cuts CPU # Cuts # Cuts

g J n zl z (secs) Nodes Int Frac zl z (secs) Nodes Int Frac zl z (secs) Nodes Int Frac (1) (2) (3)

6 3 20 3.25 6.5 time 4835210 246 0 81

30 0.25 2 time 2344931 2506 0 164

40 0 0 0.14 1 152 0 282

60 0 0 0.16 0 130 0 613

80 0 0 0.27 3 120 0 1074

200 0 0 0.63 0 130 0 6570

300 0 0 1.27 0 153 0 14725

500 0 0 5.27 0 209 0 40785

1000 0 0 43.05 0 139 0 162810

5 200 0 184.8 time 13952 338378 0 4029

300 0 0 3368.63 3335 305752 0 8577

500 0 0 51.89 21 4519 0 23003

1000 0 0 190.10 12 1727 0 89370

8 3 20 15.5 15.5 0.05 0 0 0 15.5 15.5 0.11 0 0 0 171 0

30 21.5 21.5 1.72 676 268 0 21.5 21.5 0.14 0 0 0 378 3

40 13.5 21.5 time 1758125 2309 78 21.5 21.5 24.74 5892 441 0 573 15

60 3 16 time 170375 38275 0 7 14 time 136315 61461 0 963 72

80 0 16.5 time 61678 108441 0 1.5 16.5 time 44405 111784 0 1563 138

200 0 124 time 14507 349094 0 0 99.5 time 16276 298919 0 7693 910

300 0 183.5 time 11397 391908 0 0 175 time 10182 328829 0 16363 1832

500 0 0 1400.91 1112 89264 0 0 0 1316.96 1075 79070 0 43473 1792

1000 0 0 498.32 47 1345 0 0 0 257.44 27 1149 0 168133 1451

5 300 21 311.1 time 2078 349105 0 83.4 310.5 time 1797 307602 0 16865 783

500 0 520.5 time 758 25183 0 1.5 452.4 time 346 18107 0 36385 2277

1000 0 1050.3 time 108 21751 0 0 1050.3 time 31 10716 0 112779 9384

10 3 20 15.5 15.5 0.06 0 0 0 15.5 15.5 0.08 0 0 0 15.5 15.5 0.13 0 0 0 171 0 0

30 23 23 0.08 0 0 0 23 23 0.06 0 0 0 23 23 0.17 0 0 0 406 3 0

40 30.5 30.5 0.05 0 0 0 30.5 30.5 0.06 0 0 0 30.5 30.5 0.16 0 0 0 741 15 0

60 45.5 45.5 0.05 0 0 0 45.5 45.5 0.13 0 0 0 45.5 45.5 0.16 0 0 0 1711 72 0

80 59 59 729.42 37892 3173 8 59 59 732.06 37892 3173 8 59 59 0.17 0 1 0 2983 129 3

200 16.5 146.5 time 6135 332259 3 16.5 146.5 time 6418 338386 3 65 99.5 time 31037 174760 10 11403 149 175

300 0 219 time 4783 453199 0 0 217.5 time 5186 482806 0 26 205.5 time 5471 539611 0 21383 99 428

500 0 354.5 time 3625 644638 0 0 354.5 time 4404 751600 0 0 354.5 time 2102 277233 0 51493 99 1184

1000 0 750.5 time 820 159362 0 0 750.5 time 964 187364 0 0 750.5 time 567 91086 0 183843 161 4639

5 300 315.3 315.3 0.14 0 0 0 315.3 315.3 0.15 0 0 0 315.3 315.3 0.15 0 0 0 44551 783 0

500 369.3 525.3 time 895 1581125 66 369.3 525.3 time 893 1581027 66 516.3 516.3 104.95 63 1813 0 115801 2037 30

1000 294.3 1050.3 time 326 831424 2 294.3 1050.3 time 322 831058 2 861.3 1050.3 time 1640 86147 9 300051 3924 630

