An Integer Programming-Based Search Technique for Error-Prone
Structures of LDPC Codes

Abdullah Sariduman®, Ali E. Pusane?®, Z. Caner Tagkin”

% Department of Electrical and Electronics Engineering, Bogazi¢i University, Istanbul 34342, Turkey
bDepartment of Industrial Engineering, Bojazici University, Istanbul 84342, Turkey

Abstract

In this paper, an efficient, general framework is presented for finding common, devastating error-prone
structures (EPS) of any finite-length low-density parity-check (LDPC) code. The smallest stopping set for
the binary erasure channel (BEC), the smallest fully absorbing set, the smallest absorbing set, and the
smallest elementary trapping set for the binary symmetric channel (BSC) are found and the dominant EPS
are enumerated. The method involves integer programming optimization techniques, which guarantees that

the results are provably optimal.

Keywords:
integer programming.

Trapping sets, stopping sets, absorbing sets, fully absorbing sets, elementary absorbing sets,

1. Introduction

Low-density parity-check (LDPC) codes, devel-
oped by Gallager in 1962, have become one of today’s
most popular error control techniques due to their
capacity-approaching error performance [1]. A well
constructed LDPC code has a bipartite graph repre-
sentation, called the Tanner graph, which does not
have small error-prone structures (EPS); a property
needed to ensure that the code has high error floor
performance. The error floor is an abrupt degrada-
tion in the frame error rate performance in the high
signal-to-noise ratio region that arises because of the
presence of EPS in the code’s graph representation
and low weight codewords. For many LDPC code
families, EPS are more dominant than the low weight

This work was supported in part by the Scientific and
Technological Research Council of Turkey (TUBITAK) (Grant
no. 113M499) and European Union FP7 Marie Curie Interna-
tional Reintegration Grant (Grant no. 268264).

Preprint submitted to Elsevier

codewords in the error floor region, as in the exam-
ple of [2], since there are EPS with fewer sizes than
the weight of the minimum codeword weight. Al-
though all of the EPS appear as a result of the ex-
istence of (short) cycles in the graph representation,
their detailed structure is determined by the channel
used. For instance, stopping sets are known to be the
main problematic structures for communication over
the binary erasure channel (BEC), whereas trapping
sets are the main problematic structures for commu-
nication over the binary symmetric channel (BSC),
as well as the additive white Gaussian noise chan-
nel (AWGNC) [3], [4]. Among the family of trap-
ping sets, it is demonstrated that elementary trap-
ping sets, absorbing sets, and fully absorbing sets are
the main structures that determine the error floor
performance of an LDPC code [4], [5], [6]. It was
also shown that problematic sets of smaller sizes are
dominant in the error floor region, since the proba-
bility of occurrence is higher for these structures [4].

A very important code property of LDPC codes
is the minimum distance, i.e., the smallest Ham-

September 18, 201/

ming distance between any two distinct codewords
of a code. The knowledge of the minimum distance
and the small dominant problematic structures of an
LDPC code allows for approximating and/or bound-
ing its performance for maximum-likelihood decod-
ing and iterative decoding, respectively. For exam-
ple, in [4], Richardson uses trapping sets to estimate
the error floor performance of LDPC codes. More-
over, this knowledge provides the code designer with
a metric to further tweak the code design to achieve
better error performance. For instance, [7] proposed
an efficient method to improve LDPC code designs
in terms of the error floor performance when small
dominant problematic structures are known at the
decoder. Therefore, a general framework to find dom-
inant problematic structures and calculate the mini-
mum distance of LDPC codes is vital.

There are several studies present in the literature
that calculate the minimum distance of an LDPC
code. Although the calculation of the minimum dis-
tance is an NP-hard problem, a very efficient method
is proposed in [8] to calculate the minimum dis-
tance of an LDPC code using the branch-and-cut
algorithm. Its idea mainly inspired our work. In
[8], integer programming (IP) is employed to model
the code constraints and calculate the minimum dis-
tance. Similar to the minimum distance problem,
finding most dominant problematic structures, min-
imum trapping sets and minimum stopping sets, are
not easy tasks; in fact, these problems are also shown
to be NP-hard in [9, 10].

Due to the complexity of finding minimum error
prone structures, several studies in the literature in-
stead focus on finding an inexhaustive list of EPS.
Dolecek et al. in [11] designed an FPGA simulation
to generate a partial list of EPS and estimate the
error floor. Others have also considered dominant
EPS by utilizing importance sampling and the error
impulse methods in [12, 13]. However, finding the
small EPS size and obtaining an inexhaustive EPS
list are not comparable tasks, since the latter one does
not guarantee to include the smallest set. There are
also some studies in the literature that aim to calcu-
late the smallest EPS size, including [14]. However,
in that study, the authors assume that an extensive
amount of prior knowledge, namely an exhaustive list

of the cycles, is given as an input to the algorithm.
This makes a fair comparison between their algorithm
and the one proposed in this paper impossible. An-
other similar study in the literature is [15], where the
smallest EPS and an exhaustive list of EPS are ob-
tained. The main difference is in the calculation of
the absorbing sets. While the authors in [15] first enu-
merate stopping sets and then construct other EPS
based on these stopping sets, in our approach, we de-
vise new IP models for the other EPS types as well.

In this paper, we propose an efficient, general
framework to find the smallest dominant problematic
structures and enumerate small dominant problem-
atic structures of an LDPC code by means of the IP
optimization technique. For completeness, we also
review the IP model developed in [8]. In [4] and
[5], it was shown that the problematic structures for
communication over the BSC also cause problems for
communication over the AWGNC. Therefore, deter-
mining these small structures can be beneficial for the
AWGNC as well as the BSC. Our proposed method
takes the parity-check matrix representation of an
LDPC code as an input and finds the important pa-
rameters of an LDPC code, including the smallest ab-
sorbing set size, the smallest fully absorbing set size,
the smallest elementary absorbing set size, and the
smallest stopping set size. An iterative IP algorithm
is then proposed to enumerate all EPS. The solution
is provably optimal due to the use of IP, i.e., if the
proposed algorithm succeeds, the output is guaran-
teed to be optimal. The proposed algorithm is tested
for LDPC codes with lengths suitable for practical
implementations and it is demonstrated that the al-
gorithm executes in a reasonable amount of time for
on modern computers.

The rest of the paper is organized as follows: Sec-
tion 2 contains basic relevant definition and nota-
tions. Section 3 describes the proposed integer pro-
gramming models for finding small EPS. Section 4 de-
scribes an algorithm to enumerate all EPS of a given
code and Section 5 provides some numerical results.
Finally, the paper is concluded in Section 6.

2. Preliminaries

2.1. Bipartite graph representation

An (n,k) LDPC code can be represented in terms
of a bipartite graph, G (also called the Tanner graph),
with two sets of nodes: n variable nodes, V =
{v1,...,vn}, and m = n — k check nodes, C =
{e1,...,¢em} [16]. Variable nodes correspond to code
symbols and check nodes correspond to parity-check
equations. An edge connects a variable node to a
check node if and only if the corresponding code
symbol participates in the corresponding parity-check
equation. The nodes connected to the i-th variable
(j-th check) node are referred to as its neighbors and
denoted as N(v;) (N(c;)). The degree of a node,
therefore, is given as | N (v;)| or [N(c¢;)| . The induced
subgraph of subset x C V', GG, is a bipartite graph
containing x, N(z) and their corresponding edges.
E(z) represents the set of the check nodes in N(x)
with even degree in G, and O(x) represents the set
of check nodes in N(z) with odd degree in G,. The
adjacency matrix of the Tanner graph, H,, «y, is an
m X n matrix that satisfies vHT = 0 mod (2) if and
only if v ={vy,vs,...,0,} is a codeword in the as-
sociated code.

Example 1. The Tanner graph of an (8,3) LDPC
code with parity-check matriz H is represented in Fig-
ure 1. The filled circles represent the variable nodes
and the empty squares represent the check nodes. The
corresponding parity-check matriz is given by

01001001
10110000
H=[11000 0 1 1/. (1)
10110100
00101011

2.2. Problematic structures

2.2.1. BEC

For communications over the BEC, the received
vector consists of both correctly received and erased
symbols. In order to eliminate these erased symbols,
the erasure decoder iteratively determines their val-
ues, utilizing check nodes with single erased neighbors
in each iteration.

Figure 1: The Tanner graph of an (8,3) LDPC code.

A decoding error occurs when there are still erased
symbols in the received vector and all check nodes
have either zero or at least two erased symbols in
their neighborhoods. The decoder gets stuck on such
a configuration of erased symbols. Note that this
configuration can appear directly at the output of
the channel or at any time during the decoding oper-
ations. It is therefore crucial to identify these config-
urations, namely stopping sets (SS), and study their
structures. The following is an example of a small
SS.

Example 2. For the (8,3) LDPC code, whose Tan-
ner graph is given in Figure 1, x = {va,v5,v7} is a
SS, since the degrees of check nodes c1, c3, and c5 are
all equal to two in G.

2.2.2. BSC

For communication over the BSC, the received
vector consists of correctly and erroneously received
symbols and it is the decoder’s task to determine
which symbols are in error. The most popular decod-
ing algorithm to be used over the BSC is Gallager’s
bit-flipping algorithm. The bit-flipping algorithm, as
its name suggests, flips the value of a variable node
when at least b of its neighboring check nodes are un-
satisfied. Such a flip would then reduce the number
of unsatisfied check nodes in the Tanner graph. The
decoder continues flipping the variable nodes until a
maximum number of iterations is reached or there are
no remaining unsatisfied check nodes.

A decoding error occurs when there are still unsat-
isfied check nodes in the graph, yet the decoder fails
to flip any more variable nodes. This occurs when

each variable node in the graph has more satisfied
neighboring check nodes than unsatisfied ones. Er-
ror configurations that give rise to such a result are
therefore of interest to us.

We begin by defining the structure of trapping sets,
the general framework of EPS in the Tanner graph.

Definition 3. « C V is an (s,t) trapping set if |z| =
s and |O(z)| =t.

An (s,t) trapping set with small values for both
of the parameters has the potential to harm the de-
coding performance, since a small value of s makes it
more likely to observe such an error structure at the
channel output and a small value of ¢ makes it more
likely for a decoder to get stuck during the decoding
iterations. A special class of trapping sets are called
elementary trapping sets and are defined as:

Definition 4. An (s,t) elementary trapping set x is
an (s,t) trapping set such that |N(c;)| = 1, Ve; €
O(z) and |N(c;)| =2, V¢; € E(x).

Although trapping sets and elementary trapping
sets vaguely describe the potential damage they could
cause to the decoding process, they are mostly con-
ceptual structures and their damage is heavily depen-
dent on the chosen value of the (s, t) pair. A subclass
of them, called absorbing sets, provide us with a more
realistic definition. An absorbing set (AS) is a trap-
ping set such that all the variable nodes that take
part in the AS are connected to more satisfied check
nodes than unsatisfied ones. This means that an AS,
on itself, would be able to stop the decoding process.
In fact, for the Gallager-B variant of the bit-flipping
algorithm with invariant threshold b=(|N (v;)|—1)/2,
all of the trapping sets are exactly AS.

An AS is called fully absorbing, when all variable
nodes in the graph, both within the induced graph
and elsewhere, have more satisfied neighboring check
nodes than unsatisfied ones. Finally, similar to the
trapping set definitions, an AS is called elementary if
the induced graph only has check nodes of weights 1
and 2. The following two examples demonstrate the
conditions for the decoder to stop processing when
an AS is encountered.

Example 5. x = {vy,v3} is an AS for the Tanner
graph in Figure 1, since both vy and vs have less odd

degree neighbors in their induced subgraph, cs or cs,
than their remaining neighbors, co and c4. On the
one hand, it is not a fully absorbing set (FAS), be-
cause vg has two odd neighbors, c3 and c5, from G,
and only one neighbor, ¢y, from G.. On the other
hand, it is an elementary absorbing set (EAS) own-
ing to fact that every check node in G, has degree
two.

Example 6. x = {vy,v3,vs} is an FAS, since it is an
AS and every variable node in Gl has less neighbors
from O(x) than their remaining neighbors.

3. Integer Programming Formulations for

Finding Small EPS

Linear programming (LP) is a very popular op-
timization technique that is widely used for model-
ing and solving optimization problems encountered
in many different areas. In the LP method, every de-
cision point in the problem is modeled as a decision
variable. Constraints satisfied by the feasible solu-
tions are expressed as linear functions of the decision
variables. Similarly, the objective function is defined
as a linear function of the decision variables and mea-

sures the quality of feasible solutions. A standard
form of an LP model is given as

minimize ¢’'x (2)

such that: Ax=Db (3)

Dx>e (4)

Fx<g (5)

x > 0, (6)

where x represents the vector of decision variables,
A, D, F are matrices that represent constraint coef-
ficients, c is a vector representing objective function
coefficients and b, e, g are vectors representing con-
straint right-hand-side values. An optimal solution
that is guaranteed to minimize the objective function
can be found in polynomial time and all of the con-
straints are simultaneously satisfied [17]. There are
various algorithms for solving LP problems. Some
interior point algorithms such as Karmarkar’s algo-
rithm and ellipsoid method have polynomial time

complexity. While the worst case complexity of the
simplex algorithm is exponential, its works very well
in practice, and is one of the most popular methods
for solving LPs [18].

LP assumes that the decision variables can take
non-integer values. On the other hand, this assump-
tion is not realistic in some applications and the deci-
sion variables must take integer values. The form of
LP, which assumes that all of the decision variables
must take on integer values, is called IP. A standard
form of an IP model is then given as a modification
of the LP model, where equation (6) is replaced with

(7)

Although LP problems can be solved in polynomial
time, the solution of IP problems is NP-hard. How-
ever, in practice, IP problems can be efficiently solved
for quite large problem sizes using algorithms such as
branch-and-bound and branch-and-cut [19].

To solve an IP problem, such as the ones that are
of interest to us in this paper, the problem is first
transformed into an LP problem via LP relazation.
In this relaxed model, integrality restrictions on the
decision variables are removed to allow for fractional
values. This modification significantly simplifies the
solution and an optimal solution of the LP relaxation
can be found in polynomial time as discussed earlier.
Interested readers can refer to [17, 18, 20] for more
details. Although very easy to find, the optimal ob-
jective function value of the relaxed LP problem is
not necessarily equal to that of the original IP prob-
lem. However, it can be used to obtain a valid lower
bound (upper bound) for the optimal objective func-
tion value of the minimization (maximization) prob-
lem at hand. Therefore, a branch-and-bound algo-
rithm can be used to solve the original IP problem.
In this paper, we employ the branch-and-bound algo-
rithm given in Algorithm 1 to solve the minimization
problems of interest.

Although branch-and-bound algorithms are very
effective in solving the IP problems at hand, the num-
ber of internal nodes that the algorithm needs to
traverse can increase very fast, resulting in a situ-
ation where an optimum solution cannot be found in
a reasonable amount of time. In order to improve on

X € 7.

Algorithm 1 Branch-and-bound algorithm

Step 1: Set the active node count n = 1 (LP re-
laxation of the original problem is an active node).
Set the candidate objective value z= oc.

Step 2: If there is no active node, n = 0, then the
candidate solution is the optimal solution. Else, go
to Step 3.

Step 3: Solve the LP relaxation of any active node
and set this node as the current node. If there is no
feasible solution of the current node or the optimal
objective function value of the current node, z*, is
larger than the candidate objective function value
z, go to Step 4. Else, if the solution has fractional
values, then go to Step 5. Otherwise, go to Step 6.

Step 4: Process the current node. Decrease the
active node number by 1. Go to Step 2.

Step 5: Branch on the current node. Select a frac-
tional variable, x;. Let x; be between y and y + 1,
where y € Z. Generate child nodes by adding new
constraints as x; < y and x; > y + 1. Increase the
active node number, n, by 1 and go to Step 2.

Step 6: Set the current node as the candidate so-
lution. Set the the candidate objective value as
z = z*. Decrease n by 1. Go to Step 2.

this situation and reduce the number of active nodes,
branch-and-cut algorithms are employed. These al-
gorithms produce additional inequalities, called cuts,
that are satisfied by all integer solutions, but not nec-
essarily by fractional solutions. Once the algorithm
produces a wiolated cut, i.e., an inequality that is not
satisfied by the current fractional optimum solution
of the relaxed LP problem, the cut is added to the LP
relaxation, which is then re-solved. Branching is per-
formed on the corresponding node only if a violated
cut cannot be generated. Strong cuts that manage
to eliminate the current best fractional best solution
significantly improve solvability of the IP problem.
In this paper we utilize CPLEX 12.4 software, which
employs the simplex, branch-and-bound, and branch-
and-cut algorithms to efficiently solve IP problems.

In this section, we develop IP models to search
for dominant problematic error sets for (n, k) LDPC
codes with associated parity-check matrices H,,«n
over the BEC and BSC. In all of our IP models, the
decision variables represent the variable nodes and it
is assumed that a decision variable takes on the value
1 if the corresponding variable node is in error (BSC)
or is erased (BEC).

3.1. Finding the Minimum Distance

Minimum distance computation of an LDPC code
via IP was achieved in [8]. The authors utilized the
property of all linear codes that the summation of
any two codewords is also a codeword and therefore,
the minimum distance of a linear block code is the
minimum Hamming weight of its non-zero codewords.
Their IP model finds a codeword having minimum
Hamming weight. The IP formulation that is used to
find a codeword x = {x1,22,...,2,} with minimum
Hamming weight was modeled in [8] as:

n

minimize E z;
j=1

(8)

sto > higwy =2k, i=1,2,....m (9)
j=1

n
ij 2 1
j=1

ki € Z, i=1,2,....m
z; € {0,1}, j=1,2,...,n.

(10)

(11)
(12)

The objective function in this model is the sum of
the components of x, i.e., the Hamming weight of x.
The constraint set (9) forces x to satisfy HxT = 0
mod (2), i.e., x is a codeword. The constraint set
(10) further forces x to be non-zero. Finally, variable
k is used to linearize and represent the mod (2) op-
eration.

3.2. Finding the Minimum Stopping Set

We start with giving a formal definition of stopping
sets.

Definition 7. © C V is a SS if [N(c;) N Gy| > 2,
VC]‘ S N(J?)

This defines a subset z of the variable nodes (used
to determine the erased nodes) and requires that the
connected check nodes (in the induced graph) have
multiple connections to z. Using this notation, an
extension of the model given in (8)-(12) is obtained
to find the minimum SS size over the BEC:

n

minimize Z xj (13)
j=1
n
s.t.: 2U1 Sthajj 1= 1,27...,77’7, (14)
j=1
Z hi,jxj < Zh’hjui’ 1= 1, 2, ceey, M
j=1 j=1
(15)
Zl”v: >1 (16)
=1
u; € {0,1}, i=1,2,...,m (17)
z; € {0,1}, j=1,2,...,n. (18)

A decision variable, x;, is equal to 1 if and only if
the corresponding variable node is a member of the
stopping set. Therefore, in order to find the mini-
mum SS, the objective function given in (13) is sim-
ply defined as the summation of the decision vari-
ables. Modeling what constitutes a stopping set is
a little trickier than modeling a codeword, though.
We start with the observation that a check node in
the existence of a stopping set has degree either zero
(check node outside the induced subgraph) or at least
two (check node inside the induced subgraph). To be
able to model these two conditions, we first calcu-
late the degree of a check node ¢;, i1 =1,2,...,m, as
d(e;) = Z;L:1 hi jz;. In (14), we define a binary vari-
able u; that determines whether check node ¢; is in
the induced subgraph: w; takes on the value 1 if ¢; is
in the induced subgraph and the value 0, otherwise.
If the check node is in the induced subgraph (u; = 1),
the constraint (14) guarantees that the degree d(c;) is
at least two and the constraint (15) becomes inactive,

since
n n
Y hijr < hij
j=1 j=1

is satisfied for every possible binary x vector. If the
check node is not in the induced subgraph (u; = 0),
the constraint (15) guarantees that Y 7, h;jx; is
zero. Hence, (14) and (15) guarantee that the de-
gree d(c;) is either zero or at least two for all ¢ =

(19)

1,2,...,m. Finally, the constraint (16) is necessary
to make the solution z; = 0, j = 1,2,...,n, an in-
feasible choice.

When this IP model is employed, it computes the
best feasible solution by using the branch-and-cut al-
gorithm. Since our constraints ensure that this solu-
tion is a stopping set, the minimum set size found by
IP model is guaranteed to be the size of the minimum
stopping set.

3.8. Finding the Minimum Fully Absorbing Set

Although fully absorbing sets are subsets of ab-
sorbing sets, they are easier to define using an IP
model, and therefore, we start with giving a formal
definition of them.

Definition 8. An (s,t) absorbing set x is an FAS if
IN(v;) \ O(x)| > |N(v;) N O(x)], Yv; € V.

The vector x in this definition determines the po-
sitions of errors and can be observed at either the
channel output or at some point during the itera-
tions.

An IP model to find the minimum FAS size over
the BSC can be given as:

n
minimize g T,

j=1

(20)

s.t.: Zhi,jzj+si:2ki7 i:1,2,...,m (21)

j=1

ihL]’& S ihi’j/Q’] = 1,2,...,n
i=1 i=1

(22)
m
> osi>1 (23)
=1
si € {0,1}, k; € Z, i=1,2,....m
(24)
z; € {0,1}, j=1,2,...,n. (25)

By definition, an error set is a FAS if and only
if every variable node in the graph has more even-
degree neighbors than odd-degree neighbors. This

simple condition is sufficient to determine whether
an error set is a FAS. We define a binary variable
s; to represent the situation of the check node ¢;: s;
takes on the value 1 is ¢; is unsatisfied and the value
0, otherwise. These values are set via the constraint
set (21). The constraint set (22) guarantees that the
number of odd-degree neighbors of a variable node v;
is less than half of its degree, i.e., v; has mode even-
degree neighbors than odd-degree neighbors. Finally,
the constraint (23) is necessary to make the solution
z; =0,7=1,2,...,n, an infeasible choice.

3.4. Finding the Minimum Absorbing Set
Having formally defined the FAS, the AS definition

becomes much easier:

Definition 9. An (s,t) AS z is an (s,t) trapping set
such that |N(v;) \ O(z)| > |N(v;) NO(x)], Yv; € .

An IP model to find the minimum AS size over the
BSC can be given as:

n

minimize E x;
j=1

(26)

sto > higwi+si =2k, i=1,2,...,m (27)

j=1
hi’jsi S hi’j(l —l‘j/2),

2o 2 29

j=12,....n

m

d s>l (29)

=1

S; € {0,1}, k;, € ZJr, 1=1,2, ,m
(30)

v € {0,1}, j=1,2,....n. (31)

Finding the minimum AS size is very similar to
finding the minimum FAS size. The only difference is
that, for the minimum AS size, we must consider only
the variable nodes in the induced subgraph rather
than the entire graph. Therefore, the constraint set
(22) should be valid for the values of j = 1,2,...,n
for which z; = 1. We achieve this by replacing (22)

by (28). If z; is zero, then the constraint (28) be-

comes
m m
g hijsi < g hij,
im1 i1

which is satisfied for all possible s vectors and there-
fore has no effect. If x; is one, however, the constraint
becomes identical to (22).

(32)

8.5. Finding the Minimum FElementary Absorbing
Set

Finally, an EAS is also defined as an extension of
AS.

Definition 10. A (a,b) absorbing set x is an EAS
if IN(cj)| = 1, Ve; € O(z) and |[N(c¢j)| = 2, Ve; €

An IP model to find the minimum EAS size over
the BSC can be given as:

n

minimize Z z; (33)
j=1
s.t.: Zhi,jzj+si:2ki7 i:1,2,...,m (34)
j=1
hijsi < hij(1—x5/2),
2 s @
i=12....n
> si>1 (36)
i=1
si ki € {0,1}, 1=1,2,....m (37)
zj € {0,1}, j=1,2,...,n. (38)

To be an EAS, the induced subgraph of an AS must
have only check nodes with degree one or two. There-
fore, the degree of a check node in the induced sub-
graph, d(c;) = Y7, hi jx;, cannot be greater than
two for the check nodes in the induced subgraph.
This condition is achieved by placing the constraint
set (37), where the restriction on the value of k; guar-
antees that the check node degrees cannot exceed
two.

4. Enumerating All EPS

The IP models developed in Section 3 for finding
small error-prone substructure sizes are useful tools
to determine the error correction potential of a given
code. However, in some applications, we further
would like to list and enumerate all of these struc-
tures rather than knowing their sizes. Enumeration
algorithms, such as the one proposed in this section,
help the code designer tweak his code and/or decoder
design. The proposed enumeration algorithm, pre-
sented in Algorithm 2, is quite generic and can be
employed in conjunction with all of the IP models we
have discussed so far.

Algorithm 2 Enumerating all EPS of size less than
t

1: Input: Parity-check matrix H of the LDPC
code, maximum size t, IP models

2: size 0

3: while

4: Solve the IP; obtain the solution vector as
x*.

5: if wy(x*) > t, where wy(.) is the Hamming
weight of a vector,

6: break while

7 end

8 if wy(x*) > size

9: Restore the original IP model

10: Add Z?zl x; > wi(x*) as a new constraint
to the IP

11: end
12: Add x* to the solution table
13: Add > z;+ > (1—=x;) >1asanew

j:&:J’f:O j:z;:l

constraint to the IP model

14: Set size = wy(x*)

15:end

16:Output: The solution table which presents the

all EPS of size less than ¢

The algorithm starts by solving the original TP
problem to find the minimum error-prone substruc-
ture and its size. Omnce a solution is obtained, its
size is compared to the maximum search size t in
Steps 5-7 and the algorithm is stopped if it exceeds

t. The list of EPS it has found so far is given as
output. Otherwise, if the size is smaller than ¢, then
the obtained solution x* is added to the list and a
new constraint is added to the IP model to ensure
that the same solution cannot be reached in subse-
quent runs (Steps 12 and 13). We also set the vari-
able size to the substructure size to store this value
in the subsequent runs (Step 14). An enumeration
of all EPS is possible using this model, however, the
number of additional constraints added to the model
may be too large for large values of t. To overcome
this problem and obtain a more efficient algorithm,
Steps 8-11 are added for model simplification. In ef-
fect, Step 8 compares the size of the newest solution
to the stored value. If the size has increased, there
is no need to use the additional constraints added in
Step 13 to make every one of the past solutions in-
feasible; we can simply restore the original IP model
and add a single constraint to eliminate all solutions
with size smaller than the current one. This allows us
to avoid adding too many constraints to which would
result in reduced performance. The following exam-
ple demonstrates the complexity savings achieved by
these steps.

Example 11. The smallest AS for the quasi-cyclic
Tanner code of length n = 155 has size 4 and there
are 465 distinct such substructures in the code’s graph
representation. Therefore, in order to find an AS
of size 5, we would need some 465 additional con-
straints in our IP model, whereas a single constraint
Z?Zl x; > 6 would easily replace these constraints.

5. Numerical Results

In this section, we present dominant error-prone
substructure search results for several different
classes of LDPC codes of practical lengths. In or-
der to verify the applicability of the proposed op-
timization algorithms, we consider both a family
of circulant-based quasi-cyclic LDPC codes, namely
Tanner codes [21], and families of randomly con-
structed LDPC codes, both fully random permu-
tation matrix-based codes and structurally random
codes obtained by the progressive edge growth (PEG)
algorithm [22]. LDPC codes obtained by using the

[SS
Code Structure Optimal _LE__UB d Nodos_Active Nodes_Time | Optimal LB__UB_ Processed Nodes _Active Nodes_Time
G 7S 0 0 6 193 0 0
20 823172 0 501 18 153633 0 194
20 1160588 0 |18 330905 0 484
20 1405230 0 1215 | 18 580591 0 1019
Algebraic (Tanner Codes) || 775 2 751388 0 3723 | time 20 24 861251 76059 10800
930 2 1232906 0 8553 | time 19 24 877041 209212 10800
1085 || 24 818594 0 6538 | time 20 24 842084 11764 10800
2170 | memory 22 24 1907336 25753 6485 | time 10 24 428609 283000 10800
; time 19 24 1812888 359272 10800 | memory 10 24 668138 45921 1205
1340 | time 19 24 1975515 482390 10800 | time 10 24 879654 596281 10800
8680 || memory 7 24 512074 357411 2047 | memory 5 24 392227 310930 2516
51 1 92 0 0 1 271 0 0
156 8 4556 0 0 8 8767 0 2
312 14 210928 0 70 11 129097 0 52
504 12 71828 0 447 1 106388 0 &
Random (PEG) 600 16 192098 0 184 16 557244 0 2676
756 | memory 9 759 1916443 1735067 2391 | time 12 25 903124 300790 10800
1008 | memory 8 1008 1796164 1674921 12017 | time 10 58 1428634 1147657 10800
2400 | memory 5 2400 13117244 1235735 478 | memory 6 196 12409636 1220202 921
3600 || memory 4 3600 960896 883357 576 | memory 4 192 886795 882320 874
4200 || memory 3 4200 867309 784259 632 | memory 3 347 793994 789226 989
8010 || memory 1 8010 522569 481099 66| memory 1 634 478398 475061 1053
51 2 0 0 0 2 0 0 2
156 4 19 0 0 4 671 0 0
312 2 281 0 0 2 1658 0 0
504 2 35 0 0 2 08 0 0
Random (Permutation) || 756 8 89 0 0 8 179 0 0
810 8 572327 0 015 | 8 321340 0 872
900 2 102 0 0 2 184 0 0
1008 || memory 9 336 2131109 1047481 2846 | time 11 33 1293694 6309684 10800
2400 | memory 5 800 1307781 1228845 585 | memory 5 178 1250538 1202679 990
3600 || memory 4 1200 950432 874655 545 | memory 4 269 881307 S7ATT5 848
4200 || memory 4 1400 862352 781552 666 | memory 4 292 792998 788318 10502
8010 || memory 1 2670 517598 476433 663 | memory 1 625 478825 476433 1093
Table 1: Dominant minimum problematic structures of LDPC codes
FAS FAS
Code Structure Size || Optimal Processed Nodes _Active Nodes _Time | Optimal _Proc Active Nodes _Time | Optimal _Processed Nodes _ Active Nodes _Time
%% 1 103 0 0 3 0 0 3 33 0 0
155 5 9938 0 1 4 0 0 4 3198 0 0
310 5 16608 0 3 4 0 1 4 6091 0 1
620 5 36706 0 9 4 0 8 4 8076 0 3
Algebraic (Tanner Codes) || 775 4 14305 0 4 4 0 14 4 13390 0 14
930 4 15834 0 6 4 17 0 19 4 12964 0 18
08 | 4 18081 0 7 4 27258 0 34 4 18054 0 36
070 | 4 33750 0 29 4 46559 0 115 4 24391 0 147
3255 | 4 48088 0 66 4 71368 0 335 4 20929 0 343
4340 | 4 64553 0 118 4 66001 0 1655 | 4 41187 0 605
8680 | 4 229237 0 311 4 2200237 0 2652 | 4 71904 0 2094
7} 3 232 0 0 3 156 0 0 3 255 0 0
156 3 847 0 0 3 2647 0 0 3 1643 0 0
312 3 1792 0 0 3 5214 0 1 3 3687 0 4
504 3 1784 0 0 3 5410 0 1 3 3459 0 0
Random (PEG) 600 3 3260 0 1 3 9350 0 5 3 6050 0 4
756 3 4005 0 2 3 12060 0 13 3 8544 0 7
w008 |3 5827 0 3 3 15359 0 21 3 9797 0 17
200 | 3 14798 0 21 3 12351 0 7 3 15197 0 164
3600 | 3 20064 0 35 3 17592 0 302 3 17801 0 125
20| 3 23670 0 a7 24316 0 264 3 19185 0 697
8010 | 3 44579 0 133 3 48779 0 1220 | 3 26591 0 2
E7 2 0 0 2 106 0 0 2 9% 0 0
156 2 0 0 2 711 0 0 2 755 0 0
312 2 0 0 2 677 0 1 2 722 0 1
504 2 0 0 2 1159 0 0 2 1223 0 0
Random (Permutation) || 756 2 0 0 2 2628 0 2 2 2377 0 3
810 2 0 0 2 2380 0 4 2 2100 0 5
900 2 0 0 2 2414 0 6 2 2536 0 2
1008 | 2 0 2 2 2467 0 7 2 2641 0 7
200 | 2 0 8 2 5811 0 108 2 5076 0 12
3600 | 2 0 13 2 8864 0 359 2 8291 0 660
4200 | 2 0 18 2 9870 0 866 2 9478 0 866
8010 | 2 0 78 2 18774 0 9586 | 2 14544 0 4132

Table 2: Dominant minimum problematic structures of LDPC codes

10

PEG algorithm have the randomness property of the
underlying code as well as maximal girth values, a
property that manifests itself in increased values for
the smallest error-prone substructure sizes. The PEG
construction relies on establishing edges to Tanner
graph of the LDPC codes in a way that avoids small
cycles. The selection of an edge is determined by
the potential impact on the girth. After the Tan-
ner graph is updated by establishing best-choice edge,
the placement procedure is repeated for the remain-
ing edges. Randomly constructed LDPC codes, be-
cause of the lack of the algebraic structure, have some
problems such as encoding data and analyzing code
performance. Algebraically constructed LDPC codes
can deal with these issues, however, the girth, mini-
mum distance, and error performance of algebraically
constructed LDPC codes are not good as random
codes. In the recent literature, Tanner codes, com-
prised of blocks of circulant matrices, is one of best
algebraically constructed LDPC code families with
high minimum distance values.

The IP optimizations are performed on a computer
with 2.27 GHz Intel Xeon CPU and 12 GB RAM
using the CPLEX 12.4 software. Tables 1 and 2
show the minimum distance (d,,;,) and the smallest
EPS sizes (the variable nodes numbers in the smallest
SS, FAS, AS, and EAS) of LDPC codes of different
lengths as well as the time (in seconds) it takes to ob-
tain these results. The optimizations are terminated
when the program runs for more than three hours
working time or more than 3 GB of memory is uti-
lized. Finding the error-prone structures of a code is
an off-line task that does not require real-time pro-
cessing. However, we still impose a 3 GB memory /
three hours time limit, since we have observed that,
for codes of practical lengths, if a computation does
not terminate within three hours, it tends to fail at
terminating in a reasonable time. This happens when
the gap between the number of created nodes and the
number of solved nodes fails to close. The restriction
on the memory the program is allowed to use can also
be seen as a restriction on the number of nodes the
algorithm can generate. When the number of nodes
increases very fast, the program will consume a pro-
portional amount of memory. Estimating when an IP
problem will be solved is actually a separate and very

11

important problem in the literature. One popular
solution is to utilize the mixed-integer programming
(MIP) gap, which is the relative difference between
lower and upper bounds on the objective value [23].
We provide a MIP gap analysis of several instances
of our problem in Figure 2, where typical solution
behavior patterns of our problems are observed. For
calculations that are not finished in three hours, the
MIP gap tends to stay at high values for a long time
and we therefore predict that they won’t be finished
in a reasonable time.

In Tables 1 and 2, the smallest error-prone sub-
structure sizes are presented as optimal for success-
fully completed calculations. For incomplete calcula-
tions, we also present the lower and upper bounds
(LB and UB) on the optimal value based on the
state of the solver at the time of termination. As
expected, the results show that Tanner codes usually
have higher minimum distances than the randomly
constructed codes. When it comes to the error prone
structures, the same observation is made, i.e., the
size of minimum error prone structures is higher in
Tanner codes. The size is typically around 18 for
stopping sets and 4 for absorbing sets. However, for
fully random codes, it is only 2 for both stopping sets
and absorbing sets. The PEG algorithm is observed
to increase the size of the minimum stopping sets
and absorbing sets compared to fully random codes.
However, its performance is not enough to catch that
of the Tanner codes.

The results given in Table 1 shows that IP is
not very efficient in finding minimum distance and
minimum SS size. The number of solved nodes for
stopping set problems is about half million even for
smaller block lengths, which gives us the information
about the difficulty of finding minimum SS. Although
optimal solutions for the IP problems of SS can be ob-
tained for block lengths up to 1,000, for larger block
lengths, the previously defined termination criteria
are met and the solver provides us with bounds on
the optimal solution.

On the other hand, the results given in Table 2
demonstrate that the runtime performance is quite
high for finding the absorbing set sizes of practical
codes. Minimum AS, minimum FAS, and minimum
EAS sizes were found very quickly for all of the con-

MIP Gap Analysis

Tanner 1085 (minimum distance)
‘‘‘‘‘‘ Random 2400 (minimum SS)
- = = PEG 600 (minimum SS)

3 35

Time (hour)

Figure 2: MIP gap analysis of EPS search problems.

sidered codes. It should be noted that, when the
block length is less than 1,000, the computations take
mere seconds in most cases. For block lengths of up
to 8,000, optimal solutions are obtained in less than
three hours. In fact, only one of the calculations takes
a time close to three hours. We should emphasize
again that finding and enumerating EPS is an off-
line task that is completed in the code design phase
and the timing is not as big of a problem as in the
real-time decoding implementations (as long as the
calculation is successful under given time/memory re-
strictions). Nevertheless, the proposed IP models are
shown to be solved efficiently for finding minimum
AS, FAS, and EAS.

6. Conclusions

We presented an efficient, general framework to
find and enumerate EPS of any finite-length LDPC
code. This includes developing efficient integer pro-
gramming models to describe and calculate the small-
est stopping set size for the BEC, the smallest fully
absorbing set, absorbing set, and elementary absorb-
ing set sizes for the BSC and the AWGNC. The ob-

12

tained results are provably optimal due to the use of
integer programming.

The proposed integer programming models require
only the knowledge of the parity-check matrix H and
can be efficiently solved for a wide variety of practi-
cal code lengths as well as code structures, e.g., regu-
lar and irregular LDPC codes, randomly constructed
and algebraically constructed codes, etc. With the
knowledge of the dominant EPS, the error floor per-
formance of LDPC codes can be estimated, as in the
case of [4] and [6]. The obtained result can also be
used to improve LDPC code designs, such as done
in [24] with maximizing the stopping sets for BEC
and in [7] with maximizing trapping sets for BSC.
In addition to applications in code design and error
performance estimations, the knowledge of the small-
est EPS can also be used to generate adaptive cuts
for LP-based decoding algorithms. In [25], cycles of
the parity-check matrix of an LDPC code are used
to improve the LP decoder performance. Since trap-
ping sets are closely related to cycles, the proposed
method can be an efficient tool for generating adap-
tive cutting techniques.

References

[1]

R. Gallager, Low-density parity-check codes,
IRE Transactions on Information Theory 8 (1)
(1962) 21-28.

L. Dolecek, Z. Zhang, V. Anantharam, M. Wain-
wright, B. Nikolic, Analysis of absorbing sets
for array-based LDPC codes, in: IEEE Inter-
national Conference on Communications, 2007.

ICC "07., 2007, pp. 6261-6268.

C. Di, D. Proietti, I. Telatar, T. Richard-
son, R. Urbanke, Finite-length analysis of low-
density parity-check codes on the binary era-

sure channel, IEEE Transactions on Information
Theory 48 (6) (2002) 1570-1579.

T. Richardson, Error floors of LDPC codes,
in: Proceedings of the Annual Allerton Confer-
ence on Communication Control and Comput-
ing, Vol. 41, 2003, pp. 1426-1435.

Z. Zhang, L. Dolecek, B. Nikolic, V. Anan-
tharam, M. Wainwright, Gen03-6: Investigation
of error floors of structured low-density parity-
check codes by hardware emulation, in: IEEE

Global Telecommunications Conference, 2006.
GLOBECOM ’06., 2006, pp. 1-6.

L. Dolecek, Z. Zhang, M. Wainwright, V. Anan-
thram, B. Nikolic, Evaluation of the low frame
error rate performance of LDPC codes using im-
portance sampling, in: Proc. Information The-
ory and Applications Workshop, 2007, pp. 202—
207.

M. Ivkovic, S. Chilappagari, B. Vasic, Elimi-
nating trapping sets in low-density parity-check
codes by using Tanner graph covers, IEEE
Transactions on Information Theory 54 (8)
(2008) 3763-3768.

A. B. Keha, T. M. Duman, Minumum distance
computation of LDPC codes using a branch and
cut algorithm, IEEE Transactions on Communi-
cations 58 (4) (2010) 1072-1079.

13

[9]

[10]

[11]

[15]

A. McGregor, O. Milenkovic, On the hard-
ness of approximating stopping and trapping
sets, IEEE Transactions on Information Theory
56 (4) (2010) 1640-1650.

K. Krishnan, P. Shankar, Computing the
stopping distance of a Tanner graph is NP-
hard, IEEE Transactions on Information Theory
53 (6) (2007) 2278-2280.

L. Dolecek, P. Lee, Z. Zhang, V. Anantharam,
B. Nikolic, M. Wainwright, Predicting error
floors of structured ldpc codes: deterministic
bounds and estimates, IEEE Journal on Selected
Areas in Communications 27 (6) (2009) 908-917.

E. Cavus, B. Daneshrad, A performance im-
provement and error floor avoidance technique
for belief propagation decoding of Idpc codes,
in: IEEE 16th International Symposium on Per-
sonal, Indoor and Mobile Radio Communica-
tions, 2005. PIMRC 2005., Vol. 4, 2005, pp.
2386-2390 Vol. 4.

C. A. Cole, S. G. Wilson, E. K. Hall, T. R. Gi-
allorenzi, A general method for finding low error
rates of LDPC codes, CoRR abs/cs/0605051.

M. Karimi, A. Banihashemi, An efficient al-
gorithm for finding dominant trapping sets of
LDPC codes, in: Proc. IEEE International Sym-
posium on Turbo Codes and Iterative Informa-
tion, 2010, pp. 444-448.

G. B. Kyung, C.-C. Wang, Finding the exhaus-
tive list of small fully absorbing sets and design-
ing the corresponding low error-floor decoder,

IEEE Transactions on Communications 60 (6)
(2012) 1487 ~1498.

R. Tanner, A recursive approach to low com-
plexity codes, IEEE Transactions on Informa-
tion Theory 27 (5) (1981) 533-547.

M. Bazaraa, J. Jarvis, H. Sherali, Linear pro-
gramming and network flows, 2nd Edition, Wi-
ley, 1990.

[18] F. Hillier, G. Lieberman, Introduction to Oper-
ations Research, Introduction to Operations Re-
search, McGraw-Hill Higher Education, 2010.

L. A. Wolsey, Integer Programming, Wiley-
Interscience, New York, NY, 1998.

W. Winston, M. Venkataramanan, Introduction
to Mathematical Programming: Applications
and Algorithms, Brooks/Cole, 2002.

R. Tanner, D. Sridhara, A. Sridharan, T. Fuja,
D. Costello Jr, LDPC block and convolutional
codes based on circulant matrices, IEEE Trans-
actions on Information Theory 50 (12) (2004)
2966—2984.

X.-Y. Hu, E. Eleftheriou, D. Arnold, Regular
and irregular progressive edge-growth Tanner
graphs, IEEE Transactions on Information The-
ory 51 (1) (2005) 386-398.

0. Y. Ozaltin, B. Hunsaker, A. J. Schacfer,
Predicting the solution time of branch-and-
bound algorithms for mixed-integer programs.,
INFORMS Journal on Computing 23 (3) (2011)
392-403.

23]

C.-C. Wang, Code annealing and the suppress-
ing effect of the cyclically lifted LDPC code en-
semble, in: IEEE Information Theory Work-
shop, 2006. ITW ’06 Chengdu., 2006, pp. 86-90.

[25]

M.-H. Taghavi, P. Siegel, Adaptive methods
for linear programming decoding, IEEE Trans-
actions on Information Theory 54 (12) (2008)
5396-5410.

Abdullah Sariduman received
the B.Sc. degree in electrical
and electronics engineering from
TOBB Economy and Technology
University, Ankara, Turkey, in
2010. He received the M.Sc. de-
gree in electrical and electronics
engineering from Bogazici University, Istanbul, in
2013. He is currently working towards a Ph.D. degree
at Bogazici University, Istanbul, Turkey. His research
interests include coding theory, wireless communica-
tion, and integer optimization techniques.

14

Ali E. Pusane received the B.Sc.
and M.Sc. degrees in electron-
ics and communications engineer-
ing from Istanbul Technical Uni-
versity, Istanbul, Turkey, in 1999
and 2002, respectively, and the
M.Sc. degree in electrical engi-
neering, the M.Sc. degree in applied mathematics,
and the Ph.D. degree in electrical engineering from
the University of Notre Dame, Notre Dame, IN, in
2004, 2006, and 2008, respectively. He was a Visit-
ing Assistant Professor at the Department of Elec-
trical Engineering, University of Notre Dame, during
2008-—2009, after which he joined the Department of
Electrical and Electronics Engineering, Bogazici Uni-
versity, Istanbul, Turkey, as an Assistant Professor.
His research is in coding theory.

Z. Caner Tagkin is an Associate
Professor at the Department of
Industrial Engineering, Bogazici
University, Istanbul, Turkey. He
received his B.Sc. and M.Sc.
av degrees in Industrial Engineering
from Bogazi¢i University in 2003 and 2005, respec-
tively, and his Ph.D. degree in Industrial and Sys-
tems Engineering from the University of Florida,
Gainesville, FL, in 2009. His main research interests
are about integer programming, hybrid decomposi-
tion algorithms, and telecommunications network op-
timization.

