
 Procedia Computer Science   100  ( 2016 )  644 – 651 

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of CENTERIS 2016
doi: 10.1016/j.procs.2016.09.206 

ScienceDirect
Available online at www.sciencedirect.com

Conference on ENTERprise Information Systems / International Conference on Project 
MANagement / Conference on Health and Social Care Information Systems and Technologies, 

CENTERIS / ProjMAN / HCist 2016, October 5-7, 2016 

Mathematical models for optimal Volumetric Modulated Arc 
Therapy (VMAT) treatment planning  

Pınar Dursun*, Z. Caner Ta kın, . Kuban Altınel

Department of Industrial Engineering, Bo aziçi University, Bebek, stanbul 34342, Turkey  

Abstract 

Volumetric Modulated Arc Therapy (VMAT) is an external radiation treatment method, during which the gantry of the linear 
accelerator (linac) may rotate on one or more arc and send radiation continuously. A multileaf collimator (MLC) is mounted in the 
linac head in order to shape the radiation beam. These properties make VMAT powerful in obtaining high conformal plans in terms 
of dose distribution. However, there is interdependency between apertures that are composed by the MLC, and this makes the 
VMAT planning hard. In this study, we present two mixed integer linear programming models and compare them with respect to 
their total solution times and quality. 
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1. Introduction  

The aim of radiation therapy is to destroy all cancerous cells from a target area while protecting normal tissues and 
critical organs by sparing surrounding structures. The radiation damages the deoxyribonucleic acid (DNA) of cancer 
cells and makes them unable to reproduce. However, healthy cells can renew themselves because of their self-repair 
mechanism if they are not exposed to high amount of radiation. Hence, the success of the treatment depends on the 
ability to deliver the proper amount of radiation to all structures. 
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Fig. 1. (a) Linac2; (b) An MLC3. 

In external radiation therapy, a linear accelerator (linac) is used to generate radiation beam. The gantry of the linac 
is able to rotate 360 degree around the treatment couch where the patients are positioned. A beam collimator is mounted 
on the treatment head of the linac to shape the radiation beam. Multileaf collimators (MLCs) have been used in 
Intensity Modulated Radiation Therapy (IMRT) since 1990s, thus it is possible to modulate radiation intensity across 
a beam and conformity of the dose distribution with the planning target volume (tumor plus some margin), and normal 
tissue sparing are superior1. An MLC consists of a number of moveable leaf pairs of material that can block radiation. 
The radiation generated by the linac passes through this MLC and shaped beam is delivered to the patient body. In 
Fig. 1 a linac and an MLC are illustrated.   

Volumetric Modulated Arc Therapy (VMAT), which succeeds IMRT, is a more advanced technology. The delivery 
time of the treatment may be about ten times shorter than the conventional IMRT, and whenever radiotherapy is well 
planned high conformal dose distributions with fewer monitor units (MUs) may be obtained. As the radiation therapy 
time decreases, risk of movement and also discomfort of the patients during treatment decreases. Resource utilization 
becomes more efficient, thus the number of treated patients increases. This superiority of VMAT in treatment time 
stems from the fact that radiation is delivered continually by rotating the gantry of the linac through one or more arcs. 
However, in IMRT a few discrete beam angles (generally 5-9) are used. In Fig. 2 example treatment plans for both 
IMRT and VMAT techniques are illustrated. 

Previous studies dealing with VMAT treatment planning can be classified mainly into two categories: those are 
two-step approaches converting an IMRT treatment plan to VMAT plan in some fashion6-10, and others are direct 
aperture optimization (DAO) methods11-17. In DAO studies MLC constraints and delivery time are considered 
simultaneously while determining a treatment plan. The studies of Gözba ı14, Akartunalı et al.16, and Song et al.17 are 
closely related to our research where a complete mixed integer linear program (MILP) of VMAT planning problem is 
given. None of these studies provide remarkable initiative to solve mathematical models optimally. They suggest 
heuristics to obtain only good feasible treatment plans, which are also clinically acceptable. Since the corresponding 
problem in VMAT treatment planning is hard, there is a lack of studies in the determination of optimal solutions. This 
motivates us to deal with VMAT treatment planning problem and find exact optimal treatments. In this study, we 
develop two MILPs for VMAT planning and compare them using a real case data set with respect to the total solution 
time and quality. In Section 2, we explain the mathematical models in detail. In Section 3, we report the results of the 
experiments briefly. Finally, we conclude the paper with Section 4.   

Fig. 2. (a) IMRT4; (b) VMAT5. 
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2. Mathematical Models 

We first to note that in our models we discretize continuous radiation delivery in VMAT treatment. To this end we 
assume that there is a large number of adjacent control points on a co-planar arc. Therefore, a complete tour on a 
treatment arc means that the gantry is positioned at each of these control points and delivers radiation for a certain 
time. Radiation delivery is ignored during movement of the gantry between consecutive angles. The planning problem 
determines the shape of the radiation beam and amount of radiation dose intensity at each control point. We have 
developed two MILP models for VMAT treatment planning problem. Each model consists of two main parts: the first 
part forms radiation beam shapes by satisfying mechanical necessities of the MLC and the second part determines 
dose intensity delivered from each control point considering the individualized radiation dose distributions. There is 
a relation between the dose rate of the linac and gantry rotation speed. The unit of dose rate is monitor unit (MU) per 
unit time, thus the dose intensity at a control point is a function of the dose rate and gantry rotation speed. As an 
example, if dose rate is 10 MU per second at a control point and the gantry delivers radiation for 2 seconds from this 
point, then dose intensity will be 20 MU. Note that a beam shape formed by the MLC is also called as aperture. In the 
mathematical models an aperture is represented as a binary matrix and each entry of the matrix is called beamlet. In 
Fig. 3 an aperture and its beamlet (binary matrix) representation are illustrated. There are partial volume constraints 
associated to different volumes in the models. For instance, the oncologist may decide that at least 95% of the target 
volume must receive radiation at least prescribed dose amount. To calculate how much volume of the target receive 
proper amount dose, the patient body is discretized into small cubes called voxel and absorbed dose of each voxel is 
calculated. The dose influence matrix D which contains the dose delivered to each voxel per unit intensity of each 
beamlet is used in this calculation. The D matrix is input for our optimization models and the unit of each entry is 
Gray per monitor unit (Gy/MU). 

Our proposed models directly optimize the aperture shape and dose intensity at each control point (gantry position) 
by minimizing total dose intensity of all control points while satisfying all individualized dose prescriptions. In each 
model there are decision variables to form an aperture, namely positions of leaves of the MLC at each control point. 
Also, there is a decision variable per control point represents dose intensity. The differences between the proposed 
models MILP 1 and MILP 2 stems from the definition of the decision variables related to MLC leaves. As a result, 
the constraints related to the MLC are also different. In the MILP 2 we use similar decision variables as in Gözba ı14

to define position of leaves, however they are new in MILP 1 and firstly proposed to the literature. Similar to the study 
of Romeijn et al.18, we construct the partial-volume constraints using the approach called Conditional Value At Risk 
(CVAR). Using this approach we are able to construct partial-volume constraints using only continuous variables. In 
the MILP model proposed by Gözbasi14, CVAR approach is also utilized. There are similarities between our MILP 2 
and his model. However, there is an additional binary variable per each beamlet and extra constraints in MILP 2. Also, 
there is small difference in definition of the leaves’ positions (he uses corner of a beamlet as a position, thus the left 
and right leaf may be same value). Lastly, in MILP 2 there is a constraint per each row to prevent overlapping. Our 
models do not only try to find a feasible treatment, but also it tries find the treatment with minimum total dose intensity. 
However, maximizing the size of the target volume that receive at least prescribed amount of radiation16, minimizing 
the linear summation of underdose of target volume and/or overdose of OAR16,17, and minimizing weighted sum of 
the average dose on OARs14 are some of the objective functions used in the previous studies.  

In both models we assume that there is a single co-planar treatment arc (namely the gantry completes only one tour 
around the patient) and speed of the gantry during rotation is constant. There are 180 equally spaced control points 
with 2-degree spacing, which is a good approximation of the continuous delivery. At each control point the linac 
delivers radiation for same amount of time. It is also assumed that the MLC must satisfy consecutive ones property 
and efficiency constraints related to MLC leaf motion during the rotation. There is a limitation in the motion of the 
leaves between consecutive angles, which depends on gantry rotation speed. The MLC allows interdigitation of the 
consecutive rows, and connectedness is not necessary. These mechanical properties of different MLCs are explained 
by Gören and Ta kın19 in detail. During rotation, intensity can change between two consecutive  
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Fig. 3. An aperture and its beamlet representation including z variable value 

control points without any limit in variation. The only necessity is that it must be within significant limits. (Because 
the dose rate of the linac may change during rotation). For now, we assume that there are two structures: a target and 
an organ at risk (OAR). However, the formulations can be modified easily by changing the parameters of additional 
structures. Common parameters and decision variables, and additional variables of both models are given in Table 1 
and Table 2, respectively.  

Table 1. Common parameters and decision variables of the MILPs. 

Parameter Definition  Parameter Definition 

I The index set of the MLC rows (I=1,..., m)  Dk
ijv Dose influence matrix (in units of Gy/MU) 

J The index set of the MLC columns (J=0,...,n+1); 0 and 
n+1 are home positions of left and right leaf,respectively 

The maximum leaf motion speed (in terms of beamlet) 
between two consecutive control points 

Vt 

Vo

Set of voxels in target volume 

Set of voxels in OAR 

 The minimum ratio of voxels in target that receive 
radiation dose at least prescribed dose 

V 

K 

Set of all voxels, V = Vt Vo 

The index set of control points (gantry positions) 

The minimum ratio of voxels in OAR that receive 
radiation at most tolerance dose 

Lt Lower bound for absorbed radiation dose (in units of 
Gy) for target 

Lower bound of dose intensity (in units of MU) 

Upper bound of dose intensity  (in units of MU) 

Upper bound for absorbed radiation dose (in units of 
Gy) for target 

Prescribed dose for target (in units of Gy) 

Tolerance dose for OAR (in units of Gy) 

Variable Definition  Variable Definition 

zk
ij Binary variable, it is set to 1 if a beamlet is within the 

left and right leaves of row i at control point k, 0 o.w. 
t Continuous variable stands for the ((1- )/|Vt|)th target 

voxel receiving the lowest radiation dose 

muk Radiation dose intensity (MU) at control point k  o Continuous variable stands for the ((1- )/|Vo|)th target 
voxel receiving the highest radiation dose 

ak
ij Continuous variable used for linearization  Artificial variable for target voxels 

dv Total absorbed radiation dose of voxel v   Artificial variable for OAR voxels 

Table 2.  Additional decision variables of the MILP 1 and the MILP 2.

MILP 1 MILP 2 

Variable Definition  Variable Definition 

lik Positive integer variable, represents the position of 
the left leaf, last (rightmost) closed beamlet on the 
left side of row i at control point k

lk
ij Binary variable, related to the left leaf; it is set to 

1 if the last (rightmost) closed beamlet of row i is 
j at control point k

rik Positive integer variable, represents the position of 
the right leaf, first (leftmost) closed beamlet on the 
right side of row i at control point k

rk
ij Binary variable, related to the right leaf; it is set to 

1 if the first (leftmost) closed beamlet of row i is j
at control point k
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     Our first model (MILP 1) is as follows: 

min k

k K

mu
∈

           (1) 

s.t.       1 ik ikr l− ≥     1, , ;  1, ,| |i m k K= … = …    (2) 

( 1)i k ikl l δ+ − ≤     1, , ;  1, ,| | 1i m k K= … = … −     (3) 

( 1)ik i kl l δ+− ≤     1, , ;  1, ,| | 1i m k K= … = … −     (4) 

( 1)i k ikr r δ+ − ≤     1, , ;  1, ,| | 1i m k K= … = … −    (5) 

( 1)ik i kr r δ+− ≤     1, , ;  1, ,| | 1i m k K= … = … −    (6) 

1k
ik ijr jz− ≥        1, , ;  1, , ;  1, , | |i m j n k K= … = … = …    (7) 

( 1 ) k
ij ikn j z l n+ − + ≤    1, , ;  1, , ;  1, , | |i m j n k K= … = … = …   (8) 

1

1
n

k
ik ik ij

j

r l z
=

− − =    1, , ;  1, ,| |i m k K= … = …    (9) 

ikl n≤      1, , ;  1, ,| |i m k K= … = …    (10) 

1 1ikr n≤ ≤ +     1, , ;  1, ,| |i m k K= … = …    (11) 
| |

1 1 1

0
K m n

k k
v ijv ij

k i j

d D a
= = =

− =   v V∈       (12) 

k k
ij mu ija U z≤      1, , ;  1, , ;  1, ,| |i m j n k K= … = … = …   (13) 

(1 )k k k
ij mu ija mu U z≥ − −   1, , ;  1, , ;  1, ,| |i m j n k K= … = … = …   (14) 

k k
ija mu≤      1, , ;  1, , ;  1, ,| |i m j n k K= … = … = …   (15) 

'1
(1 ) | |

t

t v
v Vt t

at d
V

ξ
α ∈

− ≥
−

         (16) 

v t vat dξ≥ −      tv V∈       (17) 

1
(1 ) | |

o

o v
v Vo o

oao U
V

ξ
α ∈

+ ≤
−

         (18) 

v v oao d ξ≥ −      ov V∈       (19) 

v td L≥      tv V∈       (20) 

v td U≤      tv V∈       (21) 
k

mumu L≥      1, ,| |k K= …      (22) 
k

mumu U≤     1, ,| |k K= …      (23) 
| | | |;m K m Kl r× ×

+ +∈ ∈          (24) 
| | | | | | | |{0,1} ;  ;  ;  m n K V K m n Kz d mu a× × × ×

+ + +∈ ∈ ∈ ∈      (25) 
| | | |;  ; . ;  t oV V

t ours urs at aoξ ξ + +∈ ∈        (26) 
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The objective function (1) minimizes the sum of dose intensities at all control points. Constraints (2)-(11) are 
related to the mechanical restrictions of the MLC and yield a feasible aperture for each control point. For a given row 
the left leaf must not overlap with the right leaf and this is ensured by (2). Constraints (3)-(6) are for limiting the leaf 
motion: any leaf cannot move more than beamlets between two consecutive angles. The open beamlets for a given 
row must be consecutive and must be between the left and right leaves. This consecutive ones property for each row 
is ensured by constraints (7)-(9). By (12) the amount of radiation absorbed by voxel v is calculated. This constraint is 
linearized using the technique proposed by Glover20 by means of constraints (13)-(15). Clinical requirements of 
treatment are forced by the constraint (16)-(19). Constraints (16) and (17) make the average dose of the (1- t)|Vt| 
voxels receiving the lowest doses in the target, namely the lower mean tail dose at level t is at least the prescription 
dose. When these constraints are satisfied at least t|Vt| target voxels absorb radiation more than or equal to the 
prescribed amount d’. Similarly, (18) and (19) guarantee that the average dose of the (1- o)|Vo| voxels receiving the 
highest doses in the OAR, namely the upper mean tail dose at level o is at most the tolerance dose limit. Then, at 
least o|Vo| OAR voxels absorb radiation less than or equal to the tolerance dose amount. The limits of the left and 
right leaves’ positions, the absorbed radiation dose amount for target voxels, and the dose intensity at each control 
point are given in the constraints (10)-(11), (20)-(21), and (22)-(23), respectively. Constraints (24)-(26) is for variable 
definitions. Our second model (MILP 2) is as follows: 

min  k

k K

mu
∈

    s.t.     
0

1
n

k
ij

j

l
=

=      1, , ;  1, ,| |i m k K= … = …    (27) 

  
1

1

1
n

k
ij

j

r
+

=

=      1, , ;  1, ,| |i m k K= … = …    (28) 

  ( 1)
0 0

0
j j

k k
i p ip

p p

r l+
= =

− ≤     1, , ;  0, , ;  1, ,| |i m j n k K= … = … = …   (29) 

  
min( , )

1

max(0, )

0
n j
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ij ip

p j

l l
δ

δ

+
+
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min( 1, )

1

max(1, )

0
n j

k k
ij ip

p j

r r
δ

δ

+ +
+

= −
− ≤    1, , ;  1, , 1;  1, ,| | 1i m j n k K= … = … + = … −  (31) 

   
1

0 1

0
j j

k k k
ij ip ip

p p

z l r
−

= =
− + =    1, , ;  1, , ;  1, , | |i m j n k K= … = … = …   (32) 

   ( 1) | | ( 1) | |{0,1} ;  {0,1}m n K m n Kl r× + × × + ×∈ ∈        (33) 

   (12) - (23); (25); (26). 

In this model the decision variables associated with the positions of the leaves are binary. Constraint (27) guarantee 
that there is only one rightmost closed beamlet of the left leaf in a row. Similar constraint for right leaf is given in 
(28). Overlapping of leaf pairs is prevented by (29). Leaf motion between consecutive control points is limited by (30) 
and (31). The consecutive ones property is satisfied (32) and for an open beamlet its corresponding z variable is set to 
1. Finally, (33) is for modified decision variables. 

3. Preliminary Results  

We have implemented both MILP models in Python 2.7.11 programming language21 and solve by Gurobi 6.5 
solver22 running on a Windows Server 2012 R2 Standard 64-bit PC with a 2.00 GHz Intel Xeon CPU, 46 GB RAM. 
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Gurobi solver contains efficient implementations of state-of-the-art algorithms such as branch-and-cut, cutting planes 
etc. to solve large scale mixed integer programming problems as our MILPs. We can direct any interested reader to 
Wolsey and Nemhauser23, and Conforti et al.24 for the algorithmic details. We use a real data set belonging to an 
anonymous prostate patient which is provided by Craft et al.25. There are 180 equispaced co-planar beams (control 
points), and 13 rows and 16 columns in the MLC. Also, there are 25,404 beamlets with size 1cm x 1cm, 2 target 
regions (PTV 68 and PTV 56), and 5 OAR regions (bladder, left femoral head, right femoral head, penile bulb, and 
rectum). In the preliminary experiments we only consider PTV 68. Also we unify all OARs and consider as one OAR. 
We reduce the size of the original data by randomly sampling the voxels from all regions. It is assumed that the number 
of fractions is 34 and is 2 Gy. We also assume that the rotation of the gantry is completed in 3 minutes, and at each 
control point the gantry deliver radiation for 1 second. Therefore, at each control point maximum dose intensity may 
be 10 MU. (Note that maximum dose rate of the linac is accepted as 600 MU/minute, thus 10 MU/s). Remaining 
parameters are as follows: o is 0.4 (%40), t is 0.95 (%95), Ut is 2.14 Gy, Lt is 1.9 Gy, and Uo is 1.47 Gy. For each 
total voxel size we generate 5 different instances from real data, and solve by the MILPs. We set time limit to 1800 
seconds for each run and we use only one thread. Minimum optimality gap is set to 0.01 %. In Table 3 average 
performance values of only solved instances in each sample size are summarized. To give an example MILP 1 can 
solve four out of five instances having 660 voxels, and average CPU time and optimality gap of these four instances 
are given in the table. 

4. Discussion and Future Direction 

We try to minimize total radiation intensity in a fraction of treatment, since patients may move during treatment or 
there may be leakage radiation through the MLC leaves. Thus, in addition to shortening the duration of treatment, 
minimizing total intensity also decreases risk of damaging. However, it is also very important to find a feasible 
treatment plan and make possible to start treatment in a short time to prevent increasing severity of disease. As we see 
from preliminary results given in Table 3, the MILP 1 outperforms the MILP 2 in these two respects: 

• MILP 1 can solve some of the instances (4 instances with 660 voxels, 2 instances with 880 voxels, and 1 instance 
with 1100 voxels), however MILP 2 cannot solve any of them within 1800 seconds. Namely, MILP 1 can find 
feasible treatment plans of good quality for some of the big size problems, however MILP 2 cannot give any 
feasible plan for any of them.  

• Considering only the voxel sizes (11-220) that both MILPs solve all of 5 instances within 1800 seconds, MILP 1 
is faster than MILP 2 (average CPU time is 413 seconds for MILP 1, and 680 seconds for MILP 2). Note that MILP 
1 not only find good feasible treatment plan for more instances, but also solves the problem in less time.  

Table 3. Preliminary results (average time and optimality gap of solved instances in each sample size). 
 MILP 1 MILP 2   MILP 1  MILP 2  

Voxel 
Size 

CPU 
(sec.) 

GAP 
(%) 

O/T* CPU 
(sec.) 

GAP 
(%) 

O/T*  Voxel 
Size 

CPU 
(sec.) 

GAP 
(%) 

O/T* CPU 
(sec.) 

GAP 
(%) 

O/T* 

11 507 0.009 5/5 716 0.006 5/5  220 1224 0.006 5/5 1037 0.004 5/5 

22 62 0.001 5/5 378 0.003 5/5  660 1656 0.001 4/5 N/A N/A 0/5 

44 66 0.001 5/5 408 0.005 5/5  880 1800 0.079 2/5 N/A N/A 0/5 

66 501 0.034 5/5 898 0.020 5/5  1100 1676 0.004 1/5 N/A N/A 0/5 

88 118 0.003 5/5 646 0.003 5/5  1301 N/A N/A 0/5 N/A N/A 0/5 

* Number of test instances solved / Total number of test instances 

Since we set the largest allowable optimality gap to 0.01 %, it is also worth to talk about the instances that both 
models cannot decrease the gap below this threshold. The results are not given in instance level however there are 
three such instances in total (one from each sample size having 11, 66, and 220 voxels). In each one of them the MILP 
2 gives slightly lower optimality gap. (Note again that CPU time and optimality gap of each individual instance is not 
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given, Table 3 includes only average values of the solved instances in each sample sizes). Nevertheless, we can 
conclude that the MILP 1, which has original decision variables associated to MLC leaves, is better than the MILP 2. 
It is important to note also that, both models are incapable to solve clinical size of problems to optimality. For future 
direction we plan to apply decomposition methods as Benders and Dantzig-Wolfe decompositions to the solution of 
MILP 1, and try to solve realistic clinical size problems optimally.  
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